
Variables aléatoires à densité
Chapitre 10

Les variables aléatoires que nous avons connu jusqu’à là étaient soit finies soit dénombrables, elles pouvaient prendre un
nombre infini de valeurs mais dénombrables, on avait donc des variables aléatoires dont l’univers image pouvait être un
des ensembles parmi rr 1 ; n ss, N, N˚, Z. Mais il était impossible d’avoir dans ce cadre, des variables aléatoires qui prenaient
des valeurs aléatoires dans r 0 ; 1 s (car cet ensemble n’est pas dénombrable). De plus, le prochain chapitre montrera que
des variables aléatoires dont l’univers image est R arrive naturellement même à partir de variables aléatoires discrètes.

Ce polycopié contient une animation, il est donc conseillé d’utiliser un lecteur de pdf capable de lire les animations
(comme Adobe Reader, Foxit PDF Reader, Okular ou autres).

Attention : utiliser un lecteur de pdf adapté
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1 Densité d’une variable aléatoire

On dit que f : R Ñ R est une densité de probabilité si f est continue sauf en un nombre fini de points, f est

positive,
ż `8

´8
f converge et

ż `8

´8
fpxq dx “ 1.

Définition d’une densité de probabilité

Exemples 1. ‚ Pour pa, bq P R2 avec a ă b, f : x ÞÑ 1
b ´ a

1r a ; b spxq est une densité de probabilité.
‚ Pour λ ą 0, g : x ÞÑ 1R` pxqλe ´λx est une densité de probabilité.

On dit qu’une variable aléatoire X est à densité s’il existe une densité de probabilité f telle que pour tout x P R,
FXpxq “

ż x

´8
fptq dt. La fonction f est appelée densité de X.

Définition d’une variable aléatoire à densité

Remarques 1. ‚ Modifier la valeur de f en un nombre fini de points ne change pas la valeur de l’intégrale de f sur
s ´8 ; x s, il n’y a pas unicité de la densité.

‚ Pour des variables aléatoires à densité, trouver la loi c’est en trouver une densité.

Soit f une densité de probabilité, alors il existe X une variable aléatoire à densité dont f est une densité.
Proposition no 1 : existence d’une variable aléatoire à densité fixé (admis)

1. On dit que X suit une loi uniforme sur r a ; b s (où pa, bq P R2 avec a ă b) si t ÞÑ 1
b ´ a

1r a ; b sptq est une
densité de X. On note X „ U pr a ; b sq.

2. On dit que X suit une loi exponentielle de paramètre λ ą 0 si t ÞÑ 1R` ptqλe ´λt est une densité de X. On
note X „ E pλq

Définition de variables aléatoires usuelles à densité

0 a b

‚ ‚‚1
b ´ a

Densité de la loi uniforme sur r a ; b s
0

‚λ

Densité de la loi exponentielle de paramètre λ.

Remarque 2. Si X „ E pλq, alors pour tout ps, tq P pR˚̀q2, PpX ą s ` t|X ą sq “ PpX ą tq. On dit qu’il y a absence de
mémoire ou d’invariance temporelle.

Soit X une variable aléatoire de densité f . Si f est continue en x, alors FX est dérivable en x et F 1
Xpxq “ fpxq.

Proposition no 2 : régularité de la fonction de répartition d’une variable aléatoire à densité

1. Si X „ U pr a ; b sq, alors FX : x ÞÑ x ´ a

b ´ a
1r a ; b spxq ` 1s b ; `8 rpxq.

2. Si X „ E pλq, alors FX : x ÞÑ p1 ´ e ´λxq1R` pxq (ne pas oublier les parenthèses)

Exemples de fonctions de répartition des variables aléatoires usuelles à densité
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0 a b
‚

‚1

Fonction de répartition la loi uniforme sur r a ; b s.

0

1

λ´1

1 ´ e ´1

‚

Fonction de répartition la loi exponentielle

Une VA X admet une densité ssi FX est continue sur R et de classe C 1 sur R privé d’un nombre fini de points.
Proposition no 3 : CNS pour qu’une variable aléatoire soit à densité (admis)

Exemple 2. Soit X une VA dont la fonction de répartition est F : x ÞÑ x4

2561r 0 ; 4 spxq ` 1s 4 ; `8 rpxq. Montrer que X est
à densité et donner une densité de X.

‚ Si on connaît f densité de X, alors la fonction de répartition s’obtient en intégrant : FXpxq “
ż x

´8
fptq dt.

‚ Si on connaît FX , la fonction de répartition. Si FX est dérivable en x alors fpxq “ F 1
Xpxq, si FX est non

dérivable en x, alors on peut prendre fpxq “ 0 (ou bien fpxq “ 18).

Comment passer de la densité à la fonction de répartition d’une variable à densité et vice-et-versa ?

Soit X une VA dont f est une densité et F sa fonction de répartition. Pour tout pa, bq P R2 avec a ă b :

PpX “ aq “ 01. PpX ă aq “ PpX ď aq “ F paq “
ż a

´8
f2. PpX ě bq “ PpX ą bq “ 1 ´ F pbq “

ż `8

b

f3.

Ppa ă X ă bq “ Ppa ď x ď bq “ Ppa ă X ď bq “ Ppa ď X ă bq “
ż b

a

f4.

Proposition no 4 : calcul de probabilité pour une variable aléatoire à densité

f‚
b

‚
a

Contrairement aux VA discrètes, pour tout x P R, PpX “ xq “ 0, et cela ne donne pas d’information sur X.
Une VA à densité est caractérisée soit par «sa» densité soit par sa fonction de répartition.
Une VA discrète est caractérisée soit par x ÞÑ PpX “ xq soit par sa fonction de répartition.

Attention la valeur de PpX “ xq ne caractérise pas la loi d’une variable aléatoire à densité

Exemples 3. Soit X „ U pr 0 ; 1 sq
1. Si 0 ă c ă d ă 1, que vaut Ppc ď X ď dq ?
2. Montrer que Y “ X2 est à densité et déterminer une densité et FY . Calculer Pp´1{2 ď Y ď 1{2q
3. Pour λ ą 0, on pose Z “ ´ 1

λ
lnp1 ´ Xq, déterminer la loi de Z.

Remarques 3. ‚ Soit X une variable aléatoire discrète (finie ou infinie), alors X n’est pas une variable à densité.
‚ Si X est une VA à densité, alors Y “ aX ` b aussi si a ‰ 0.

2 Indépendances de variables aléatoires
Remarque 4. Si pX1, X2, . . . , Xnq est une famille de VA indépendantes, alors toute sous-famille est indépendante.

Si X1, . . . , Xn`p sont indépendantes, alors fpX1, . . . , Xnq et gpXn`1, . . . , Xn`pq sont indépendantes.
Lemme des coalitions (admis)
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Remarque 5. On peut faire plus de deux coalitions : les variables aléatoires fpX1, . . . , X4q, gpX5, . . . , X8q, hpX9, X10q,
..., mpX20, . . . , X25q sont indépendantes. De même, u1pX1q, u2pX2q, . . . , unpXnq sont indépendantes.

Soient X et Y deux VA indépendantes de densité respective f et g. La fonction f ˚ g : x ÞÑ
ż `8

´8
fptqgpx ´ tq dt,

appelée produit de convolution est bien définie et X ` Y est une VA à densité dont f ˚ g est une densité.

Théorème no 1 : densité de la somme de deux variables aléatoires à densité indépendantes (admis)

Exemples 4. ‚ Déterminer la loi de X ` Y où X „ U pr 0 ; 1 sq et Y „ U pr 0 ; 1 sq sont indépendantes.
‚ Pour les mêmes X et Y , déterminer la loi de maxpX, Y q
‚ Soit pX1, X2, . . . , Xnq une famille de VA indépendantes suivant toutes une loi uniforme sur r 0 ; 1 s, déterminer la

loi de minpX1, X2, . . . , Xnq.

3 Espérance

On dit que X admet une espérance si
ż `8

´8
xfpxqdx converge absolument, on définit alors l’espérance de X par :

EpXq “
ż `8

´8
xfpxq dx. On dit que X est centré si X admet une espérance et que EpXq “ 0.

Définition de l’espérance d’une variable aléatoire à densité

1. Si X „ U pr a ; b sq, alors X admet une espérance et EpXq “ a ` b

2

2. Si X „ E pλq alors X admet une espérance et EpXq “ 1
λ

.

Exemples d’espérance des variables aléatoires usuelles à densité

Exemple 5. Pour t ă 1, on pose fptq “ 0 et pour t ě 1, fptq “ 1
t2 , soit X une variable aléatoire admettant f comme

densité, est-ce que X admet une espérance ?

Soient X et Y deux variables aléatoires admettant des espérances et λ P R alors :
1. λX ` Y admet une espérance et EpλX ` Y q “ λEpXq ` EpY q linéarité de l’espérance (admise)
2. Si X ě 0 (pour tout ω P Ω, Xpωq ě 0), alors EpXq ě 0 positivité de l’espérance
3. Si X ď Y (@ω P Ω, Xpωq ď Y pωq) alors, EpXq ď EpY q croissance de l’espérance

Proposition no 5 : propriétés de l’espérance

Remarque 6. On peut appliquer la linéarité de l’espérance que X et Y soient discrètes ou à densité sans savoir si λX `Y
est discrète ou à densité.

Si X est une VA à densité f et ϕ : I Ñ R continue sur l’intervalle I privé d’un nombre fini de points, avec XpΩq Ă I,
alors ϕpXq admet une espérance ssi

ż

I

ϕf converge absolument. Dans ce cas : EpϕpXqq “
ż

I

ϕpxqfpxq dx

Théorème no 2 : formule de transfert (admis)
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Soient a ą 0 et X une variable aléatoire positive admettant une espérance. Alors PpX ě aq ď EpXq
a

Proposition no 6 : inégalité de Markov

‚ Si X et Y deux VA indépendantes admettent des espérances, alors XY aussi et EpXY q “ EpXqEpY q
‚ Si X1, . . . , Xn sont indépendantes admettent des espérances, alors

n
ś

i“1
Xi aussi et E

ˆ

n
ś

i“1
Xi

˙

“
n

ś

i“1
EpXiq

Proposition no 7 : espérance du produit de variables aléatoires indépendantes (admise)

Soit k P N˚, on dit que X admet un moment d’ordre k si Xk admet une espérance.

Définition d’un moment d’ordre k

Remarque 7. Si X admet un moment d’ordre 2, alors X admet un moment d’ordre 1.

4 Variance

‚ Si X et pX ´ EpXqq2 ont une espérance, on définit la variance de X par VpXq “ EppX ´ EpXqq2q
‚ On appelle écart-type de X le réel positif σpXq “ a

VpXq.
‚ Si X admet une variance et que EpXq “ 0 et VpXq “ 1, on dit que X est centrée réduite.

Définition de la variance et de l’écart-type

Soient X, Y deux variables aléatoires telles que X admet une variance et pa, bq P R2, alors :
1. VpXq ě 0
2. aX ` b a une variance et VpaX ` bq “ a2VpXq (la variance est quadratique)
3. Y a une variance ssi Y a un moment d’ordre 2, alors VpY q “ EpY 2q ´ pEpY qq2 (formule de König-Huygens)
4. Si VpXq ą 0, alors X˚ “ X´EpXq

σpXq est centrée réduite, X˚ est appelée variable centrée réduite associée à X.

Proposition no 8 : propriétés de la variance

1. Si X et Y sont indépendantes et admettent des variances, alors X ` Y aussi et VpX ` Y q “ VpXq ` VpY q
2. Si X1, . . . , Xn sont indépendantes et admettent des variances, alors

n
ř

i“1
Xi aussi et V

ˆ

n
ř

i“1
Xi

˙

“
n
ř

i“1
VpXiq

Proposition no 9 : variance de la somme de variables aléatoires indépendantes

‚ Si X „ U pr a ; b sq, alors X admet une variance et VpXq “ pb ´ aq2

12
‚ Si X „ E pλq, alors X admet une variance et VpXq “ 1

λ2 .

Exemples de variances des lois usuelles

Soient X une variable aléatoire admettant une variance et a ą 0, alors Pp|X ´ EpXq| ě aq ď VpXq
a2

Théorème no 3 : inégalité de Bienaymé-Tchebychev
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5 Loi normale

On dit que X suit la loi normale centrée réduite si t ÞÑ 1?
2π

e ´ t2
2 est une densité de X. On note X „ N p0, 1q.

Définition de la loi normale centrée réduite

Si X „ N p0, 1q, alors X a une espérance, une variance et EpXq “ 0, VpXq “ 1 (d’où le nom de centrée réduite).
Proposition no 10 : espérance et variance de la loi normale centrée réduite

Remarques 8. ‚ On ne dispose pas d’expression de la fonction de répartition d’une loi normale : Φpxq “ 1?
2π

ż x

´8
e ´ t2

2 dt

ne se calcule pas. On peut soit utiliser une table de valeurs soit la calculatrice.
‚ Si X „ N p0, 1q, et x ą 0 alors PpX ď ´xq “ PpX ě xq.

On dit que X suit la loi normale de paramètres µ P R et σ ą 0 si t ÞÑ 1
σ

?
2π

e ´ pt´µq2

2σ2 est une densité de X. On

note X „ N pµ, σ2q.

Définition de la loi normale

Densité de la loi normale de paramètres σ et µ. Fonction de répartition de la loi normale de paramètres σ et
µ.

Si X „ N pµ, σ2q, alors X admet une espérance et une variance et EpXq “ µ et VpXq “ σ2.
Proposition no 11 : espérance et variance de la loi normale

Si X „ N pµ, σ2q, soit pa, bq P R˚ ˆ R, alors aX ` b „ N paµ ` b, a2σ2q. En particulier, X˚ “ X ´ µ

σ
„ N p0, 1q.

Proposition no 12 : translation et dilatation d’une loi normale

‚ Si X „ N pµ, σ2q et Y „ N pµ1, σ12q sont indépendantes, alors X ` Y „ N pµ ` µ1, σ2 ` σ12q.
‚ Si X1, . . . , Xn sont indépendantes et pour tout i P rr 1 ; n ss, Xi „ N pµi, σ2

i q, alors
n
ř

i“1
Xi „ N

ˆ

n
ř

i“1
µi,

n
ř

i“1
σ2

i

˙

Proposition no 13 : sommes de variables aléatoires normales indépendantes
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6 Tableau comparatif des trois types de variables aléatoires
Les variables aléatoires sont définies sur Ω muni d’une tribu T et d’une probabilité P.

Concept VA finie : XpΩq “ tx0, . . . , xnu fini VA discrète infinie : XpΩq “ txk | k P Nu VA à densité : PpX ď xq “ şx
´8 f avec f densité

Définition VA
Définition FX

Existence d’une
VA dont la loi est
imposée

Si ppkq0ďkďn P pR`qn`1 et
řn

k“0 pk “ 1, et
x0 ă x1 ă . . . ă xn, alors il existe X tel que
pour tout i, PpX “ xiq “ pi. En particulier,
FXpxkq “ řk

i“1 pi

Si
ř

pn SATP converge de somme 1 et
pxkqkPN strictement croissante, alors il
existe X tel que : @n P N, PpX “xnq“pn.
En particulier, FXpxkq “ řk

i“1 pi.

Si f positive, continue sauf un nombre fini de points,
ş

R f converge et vaut 1, alors il existe X tel que pour
tout x P R, FXpxq “ şx

´8 fptq dt.

SCE associé à X pX “ xkqkPrr 0 ; n ss pX “ xnqnPN Pas de SCE
Loi à partir de FX fpxq “ F 1

Xpxq si f continue en x, valeur arbitraire sinon

Continue sur R, C 1 sur R sauf un nombre fini de points

Def espérance EpXq “
n
ř

k“0
xkPpX “ xkq EpXq “

`8
ř

n“0
xnPpX “ xnq si ACV EpXq “

ż `8

´8
xfpxq dx si ACV

Propriétés de E

Formule transfert EpϕpXqq “
`8
ř

n“0
ϕpxnqPpX “ xnq ssi ACV EpϕpXqq “

ż

I

ϕpxqfpxq dx ssi ACV, ϕ définie sur I Ą
XpΩq, continue sur I privé d’un nombre fini de points

Def indépendance

Caractérisation de
l’indépendance

Pas de caractérisation

Variance

Markov/BT

Si X1, . . . , Xn in-
dépendantes

Loi de X ` Y si
X et Y indépen-
dantes

Si X (resp. Y ) a pour densité f (resp. g), alors X ` Y

a pour densité x ÞÑ
ż `8

´8
fptqgpx ´ tq dt.

X : Ω Ñ R tel que pour tout a P R, pX ď aq P T

La fonction de répartition FX est définie sur R par : FX : x ÞÑ PpX ď xq

PpX “ xkq “ FXpxkq ´ FXpxk´1q (presque une dérivée) pour k ą 0.

Propriétés FX

FX est croissante, FXpxq ÝÝÝÝÑ
xÑ´8 0, FXpxq ÝÝÝÝÑ

xÑ`8 1

Constante sur r xk ; xk`1 r, FX discontinue en xk ssi PpX “ xkq ą 0

Si X et Y ont des espérances, alors λX ` Y aussi EpλX ` Y q “ λEpXq ` EpY q, Epλq “ λ. X ě 0 ùñ EpXq ě 0. Y ď X ùñ EpY q ď EpXq
EpϕpXqq “

n
ř

i“0
ϕpxiqPpX “ xiq

EpϕpX, Y qq“ ř

0ďiďn
0ďjďp

ϕpxi, yjqPpX “ xi,Y “ yjq

Les VA pXnqnPN sont indépendantes si pour tout n P N, pour tout pI0, I1, . . . , Inq famille d’intervalles, P
ˆ

n
Ş

i“0
pXi P Iiq

˙

“
n

ś

i“0
PpXi P Iiq

pXnqnPN indépendantes ssi @n P N, @ px0, x1, . . . , xnq, P
ˆ

n
Ş

i“0
pXi “ xiq

˙

“
n

ś

i“0
PpXi “ xiq

Def : VpXq “ EpX ´ EpXqq2q si existence. KH : X a une variance ssi X2 a une espérance alors VpXq “ EpX2q ´ EpXq2. VpaX ` bq “ a2VpXq
Si a ą 0 et X positive admet une espérance, alors PpX ě aq ď EpXq

a
. Si X admet une variance, alors Pp|X ´ EpXq| ě aq ď VpXq

a2

Si les Xi ont des espérances, alors
n

ś

i“1
Xi aussi et Ep

n
ś

i“1
Xiq “

n
ś

i“1
EpXiq. Si les Xi ont des variances, alors

n
ř

i“1
Xi aussi et V

ˆ

n
ř

i“1
Xi

˙

“
n
ř

k“1
VpXiq

Si X et Y à valeurs dans N, PpX ` Y “ nq “
n
ř

k“0
PpX “ kqPpY “ n ´ kq



7 Tableau récapitulatif des lois usuelles
Les caractéristiques de ce tableau doivent être absolument connues par cœur pour ces variables aléatoires. Les quatre premières sont des variables aléatoires réelles
discrètes finies, les deux suivantes sont des variables aléatoires discrètes infinies, enfin, les quatre dernières sont des variables à densité.

Nom de la loi Paramètre Univers image Loi de probabilité Espérance Variance Interprétation
Constante a P R tau PpX “ aq “ 1 a 0 Constante
Bernoulli p P r 0 ; 1 s t0, 1u PpX “ 1q “ p

PpX “ 0q “ 1 ´ p
p pp1 ´ pq Succès vs échec

Binomiale pn, pq P N˚ ˆ r 0 ; 1 s rr 0 ; n ss PpX “ kq “
ˆ

n
k

˙

pkp1 ´ pqn´k

pour k P rr 0 ; n ss
np npp1 ´ pq Nombre de succès dans n Va de

Bernoulli de paramètre p indé-
pendantes

Uniforme n rr 1 ; n ss PpX “ kq “ 1
n

pour k P rr 1 ; n ss n ` 1
2

n2 ´ 1
12 Tirage équitable

Géométrique p P s 0 ; 1 r N˚ PpX “ kq “ pp1 ´ pqk´1 pour k P N˚ 1
p

1 ´ p

p2 Donne le premier succès dans
une suite de Va indépendantes de
Bernoulli de paramètre p

Poisson λ ě 0 N PpX “ kq “ λk

k! e ´λ pour k P N λ λ Désintégration radioactive, ar-
rivé dans une file d’attente, évè-
nements rares etc.

Nom de la loi Paramètre Univers image Densité Fonction de répartition Espérance Variance

Uniforme a ă b r a ; b s t ÞÑ 1r a ; b sptq
b ´ a

x ÞÑ x ´ a

b ´ a
1r a ; b spxq ` 1s b ; `8 rpxq a ` b

2
pb ´ aq2

12

Exponentielle λ ą 0 R` t ÞÑ λe ´λt1R` ptq x ÞÑ p1 ´ e ´λxq1R` pxq 1
λ

1
λ2

Normale centrée réduite R t ÞÑ 1?
2π

e ´ t2
2 Φ: x ÞÑ

ż x

´8
e ´ t2

2?
2π

dt 0 1

Normale µ P R, σ ą 0 R x ÞÑ 1
σ

?
2π

e ´ pt´µq2

2σ2 x ÞÑ
ż x

´8
1

σ
?

2π
e ´ pt´µq2

2σ2 dt µ σ2

Stabilité par somme de variables aléatoires indépendantes :
‚ Si X1, . . . , Xn sont indépendantes suivant toutes une Bppq, alors

n
ř

i“1
Xi „ Bpn, pq.

‚ Si X1, . . . , Xn sont indépendantes et pour tout i P rr 1 ; n ss, Xi „ Bpni, pq, alors
n
ř

i“1
Xi „ B

ˆ

n
ř

i“1
nk, p

˙

(pas au programme)

‚ Si X1, . . . , Xn sont indépendantes et pour tout i P rr 1 ; n ss, Xi „ Ppλiq, alors
n
ř

i“1
Xi „ P

ˆ

n
ř

i“1
λi

˙

‚ Si X1, . . . , Xn sont indépendantes et pour tout i P rr 1 ; n ss, Xi „ N pµi, σ2
i q, alors

n
ř

i“1
Xi „ N

ˆ

n
ř

i“1
µi,

n
ř

i“1
σ2

i

˙
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8 Tracés des lois et des fonctions de répartition de variables discrètes

a

1

Loi de la variable aléatoire X constante égale à a

a

1

Fonction de répartition de la variable aléatoire X constante
égale à a

1

1

Loi de X „ Bp3{4q
1

1

Fonction de répartition de X „ Bp3{4q

1

1

Loi de X „ U prr 1 ; 4 ssq.
1

1

Fonction de répartition de X „ U prr 1 ; 4 ssq

1

1

Loi de X „ Bp4, 1{2q
1

1

Fonction de répartition de X „ Bp4, 1{2q

1

1

Loi de X „ Bp4, 3{4q
1

1

Fonction de répartition de X „ Bp4, 3{4q

1

1

Loi de X „ Pp2q
1

1

Fonction de répartition de X „ Pp2q

1

1

Loi de X „ G p0.5q
1

1

Fonction de répartition de X „ G p0.5q
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