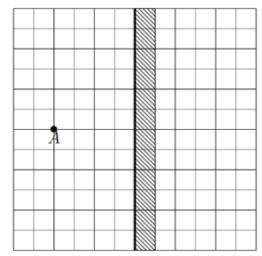
Chapitre 1 : Optique géométrique

Guide pour les constructions graphiques en optique

Cf: Tutoriel animé et interactif:

https://phyanim.sciences.univ-nantes.fr/optiqueGeo/lentilles/construction_lentille.php

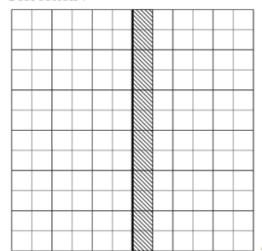

Savoir faire - Exercice 1

Construire l'image d'un objet (réel) par un miroir plan

Enoncé : Soit une source ponctuelle placée en un point A et un miroir plan.

- 1. Tracer la marche de trois rayons issus de A et frappant le miroir en trois points différents (la loi de Snell-Descartes pour la réflexion s'applique).
- 2. Tracer le prolongement en pointillés (ces rayons n'existent pas) des rayons réfléchis dans la partie arrière de (\mathcal{M}) . Commenter.
- **3.** Ajouter un point B à la verticale de A. Déterminer son image B' à travers le miroir. Que dire de l'image A'B' de l'objet AB (position, taille, sens?)

Correction:

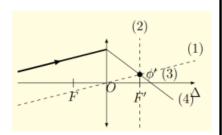

Savoir faire - Exercice 2

Construire l'image d'un objet (virtuel) par un miroir plan

Enoncé :

- Placer sur le schéma comportant un miroir plan, un objet virtuel A.
- 2. Construire son image à travers le miroir. Commenter.

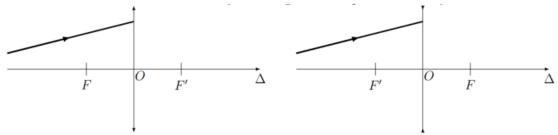
Correction :


GUIDICELLI P. Source : PAGES.G 1/6

Savoir faire - Construction du cheminement d'un rayon incident quelconque

Si on a un rayon incident dont on souhaite tracer le rayon émergent :

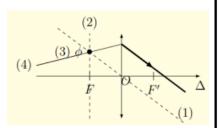
- 1. Tracer un rayon auxiliaire, en pointillés, parallèle au rayon incident inconnu, passant par O. Ce rayon auxiliaire n'est pas dévié.
- 2. Tracer en pointillés le plan focal image (plan transverse passant par F').
- Repérer l'intersection entre le rayon auxiliaire et le plan focal image, ce point est un foyer image secondaire ϕ' .
- 4. Le rayon incident inconnu et le rayon auxiliaire étant parallèle entre eux ils se croisent dans le plan focal image : au point ϕ' repéré


Il reste à tracer le rayon émergent issu du rayon incident passant par ce point ϕ' .

Exercice 4

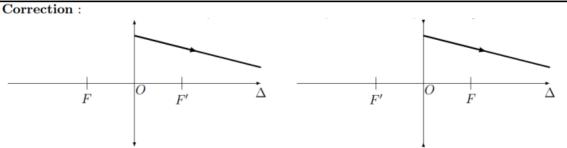
Énoncé: Tracer les rayons émergents correspondant aux rayons incidents.

Correction :



Savoir faire - Construction du cheminement d'un rayon émergent quelconque

Si on a un rayon émergent dont on souhaite tracer le rayon incident qui lui a donné naissance :


- 1. Tracer un rayon auxiliaire, en pointillés, parallèle au rayon émergent inconnu, passant par O. Ce rayon auxiliaire n'est pas dévié.
- 2. Tracer en pointillés le plan focal objet (plan transverse passant par
- Repérer l'intersection entre le rayon auxiliaire et le plan focal objet, ce point est un foyer objet secondaire ϕ .
- 4. Le rayon émergent inconnu et le rayon auxiliaire émergent de la lentille parallèlement, donc ils proviennent d'un même plan focal objet : le foyer secondaire objet ϕ .

Il reste à tracer le rayon incident passant par ce point objet ϕ qui donne le rayon émergent. .

Exercice 5

Énoncé : Tracer les rayons incidents correspondant aux rayons émergents.

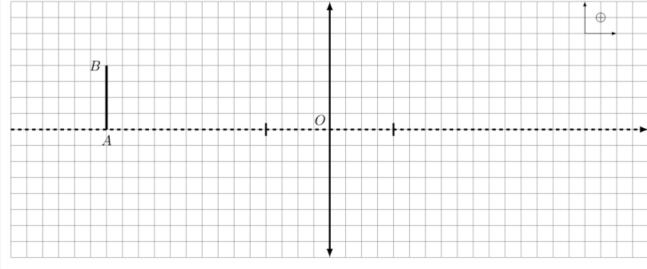
GUIDICELLI P. 2/6 Source: PAGES.G

Savoir faire - Construire une image étendue

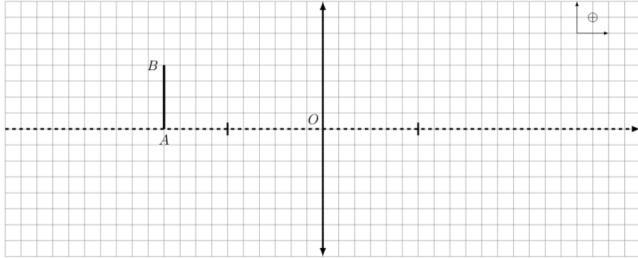
Pour représenter l'image A'B' d'un objet AB perpendiculaire à l'axe optique (Δ) avec A sur (Δ) et B hors de (Δ) , il faut tracer les trois rayons suivants issus de B afin de déterminer B':

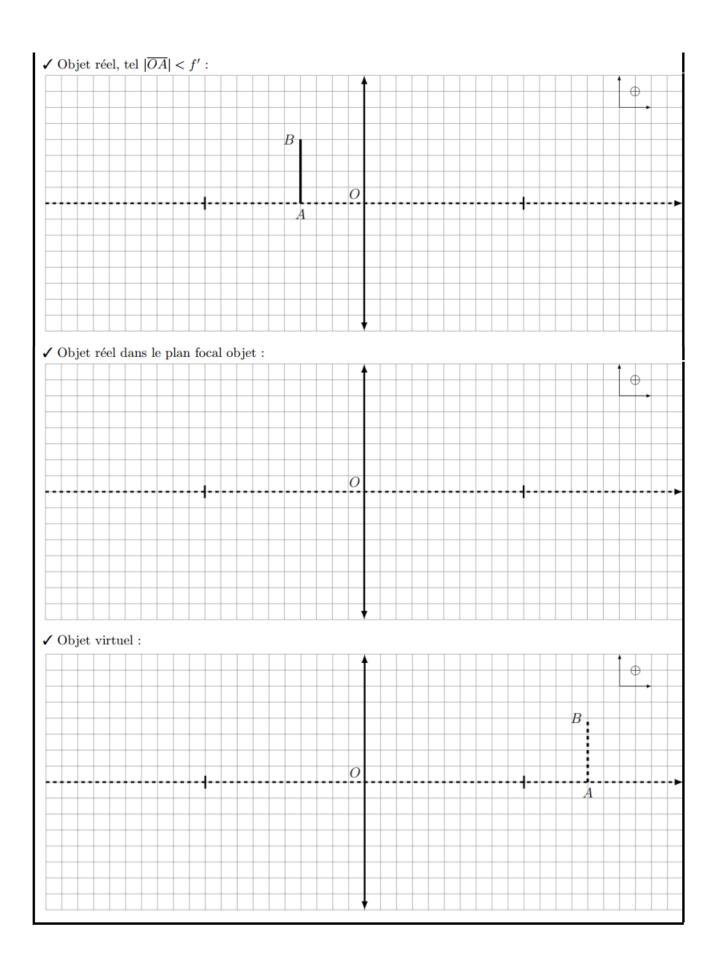
- 1. Le rayon passant par le centre optique O n'est pas dévié par la lentille.
- 2. Le rayon incident issu de B et parallèle à l'axe optique émerge en passant par F^\prime .
- Le rayon incident issu de B et passant par F émerge parallèlement à l'axe optique.

B' est à l'intersection de ces trois rayons, et on en déduit A' qui est le projeté orthogonal de B' sur (Δ) .


Savoir faire - Exercice 6 Application à la construction d'images avec une lentille convergente

Énoncé : On s'intéresse au tracé d'une image avec une lentille convergente.

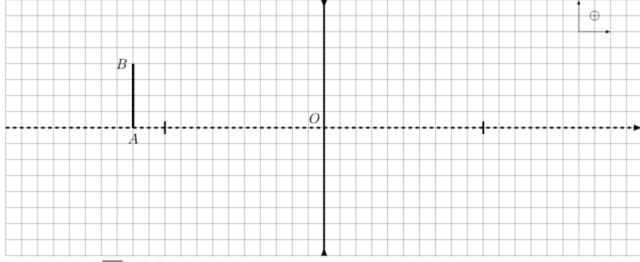

- 1. Réaliser les tracés ci-dessous.
- 2. Préciser pour chaque tracé la nature de l'objet (réel/virtuel) et la nature de l'image (réelle/virtuelle).
- 3. Préciser pour chaque tracé :
- image agrandie / image rétrécie / image de même taille / $|\gamma| > 1$ / $|\gamma| < 1$ / $|\gamma| = 1$
- image droite (même sens que l'objet) / image renversée (sens opposé à l'objet) / $\gamma > 0$ / $\gamma < 0$.


✓ Objet réel, tel $|\overline{OA}| > 2f'$:

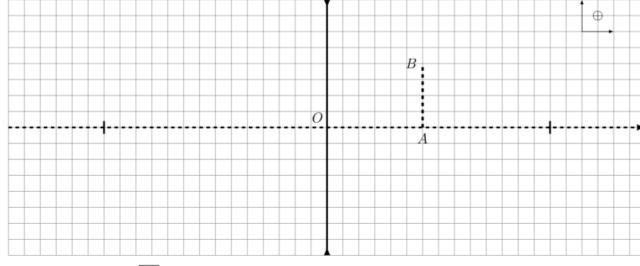
✓ Objet réel, tel $f' < |\overline{OA}| < 2f'$:

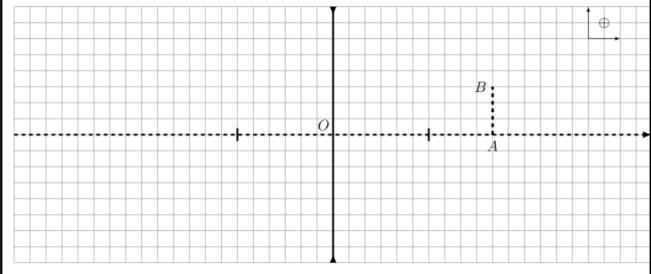
GUIDICELLI P. Source : PAGES.G 3/6

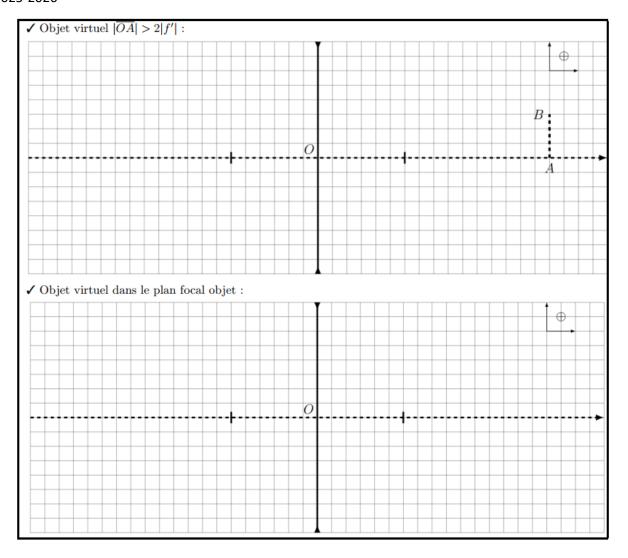
Savoir faire - Exercice 7


Application à la construction d'images avec une lentille divergente

Énoncé : On s'intéresse au tracé d'une image avec une lentille divergente.

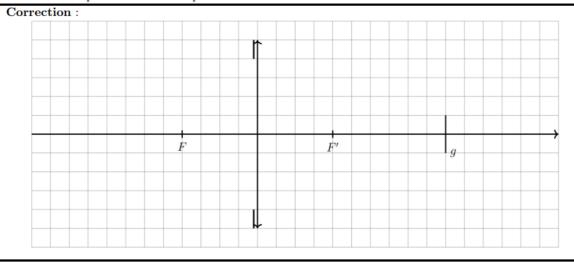

- 1. Réaliser les tracés ci-dessous.
- 2. Préciser pour chaque tracé la nature de l'objet (réel/virtuel) et la nature de l'image (réelle/virtuelle).
- 3. Préciser pour chaque tracé :
- image agrandie / image rétrécie / image de même taille / $|\gamma| > 1$ / $|\gamma| < 1$ / $|\gamma| = 1$
- image droite (même sens que l'objet) / image renversée (sens opposé à l'objet) / $\gamma > 0$ / $\gamma < 0$.


✓ Objet réel :



✓ Objet virtuel $|\overline{OA}| < |f'|$:

✓ Objet virtuel $|f'| < |\overline{OA}| < 2|f'|$:



Savoir faire - Exercice 12 Construire géométriquement la profondeur de champ pour un réglage donné d'un appareil photo

Énoncé: On souhaite déterminer graphiquement la profondeur de champ dans le cas où l'appareil photo est réglé pour photographier nettement le point A. On considère un capteur placé dans le plan de A', et un pixel de hauteur g centré sur l'axe optique.

- 1. Déterminer graphiquement la position du point objet A conjugué du point image A' situé sur la cellule du capteur et l'axe optique.
- 2. Déterminer graphiquement les positions des deux points image extrêmes, A_1' et A_2' qui apparaîtront nets sur l'écran.
- 3. Déterminer graphiquement les positions des deux points objets A_1 et A_2 conjugués par la lentille avec A_1' et A_2' .
- 4. Identifier la profondeur de champ.

GUIDICELLI P. Source : PAGES.G 6/6