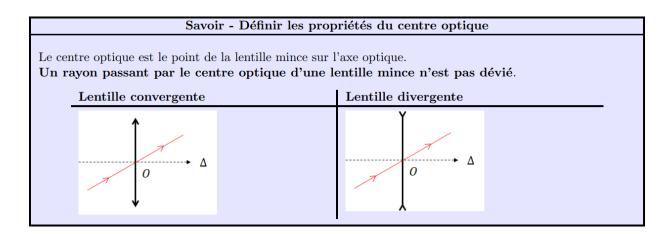

Chapitre 1 : Optique géométrique

II] Systèmes optiques 4) Les lentilles

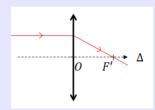
Définition:



Lentilles convergentes	Lentilles divergentes
Bords minces (plus épaisse au centre qu'au bord)	Bords épais (plus épaisse au bord qu'au centre)
Formes:	Formes :
Symbole:	Symbole:
<u>o</u> <u>\(\Delta\) \(\Delta\)</u>	

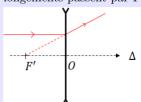
Savoir - Définir les propriétés de la distance focale et la vergence

- La distance focale image est la distance algébrique $f' = \overline{OF'}$ (en mètre).
- La distance focale objet est la distance algébrique $f = \overline{OF}$ (en mètre), avec f = -f'.
- La vergence $V = \frac{1}{f'}$ (en dioptrie $\delta = m^{-1}$).
- La distance focale image f' et la vergence d'une lentille convergente sont positives .
- La distance focale image f' et la vergence d'une lentille divergente sont négatives .


GUIDICELLI P. Source: PAGES.G 1/2

Savoir - Définir les propriétés des foyers principaux

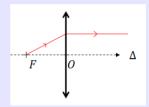
Le foyer principal image, noté F', est le point image situé sur l'axe optique de la lentille, dont le point objet conjugué est situé à l'infini sur l'axe optique.


Lentille convergente

Les rayons qui émergent par F' sont incidents parallèlement à l'axe optique.

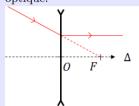
Lentille divergente

Les rayons incidents parallèles à l'axe optique donnent des rayons émergeants dont les prolongements passent par F^\prime .



Savoir - Définir les propriétés des foyers principaux

Le foyer principal objet, noté F, est le point objet situé sur l'axe optique de la lentille, dont le point image conjugué est situé à l'infini sur l'axe optique.

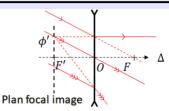

Lentille convergente

Les rayons issus de F émergent parallèlement à l'axe optique.

Lentille divergente

Les rayons incidents dont les prolongements passent par F émergent parallèlement à l'axe optique.

Savoir- Définir les propriétés des foyers secondaires

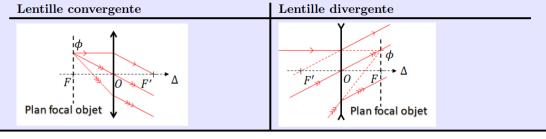

On appelle plan focal image le plan transverse passant par le foyer principal image F'.

Les foyers secondaires image, notés ϕ' , sont les points du plan focal image différents de F'.

Un foyer secondaire image est un point image dont le point objet conjugué est situé à l'infini hors de l'axe optique : les rayons incidents sont parallèles entre eux et inclinés par rapport à l'axe optique.

Lentille convergente $\frac{\phi'}{F} \qquad \Delta$ Plan focal image

Lentille divergente



Savoir- Définir les propriétés des foyers secondaires

On appelle **plan focal objet** le plan transverse (perpendiculaire à l'axe optique) passant par le foyer principal objet F.

Les foyers secondaires objet, notés ϕ , sont les points du plan focal objet différents de F.

L'image d'un foyer secondaire objet est située à l'infini hors de l'axe optique : les rayons émergeants sont parallèles entre eux et inclinés par rapport à l'axe optique.

GUIDICELLI P. Source : PAGES.G 2/2