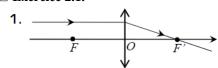
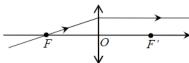
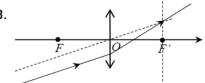
I] Exercices d'applications

\square Exercice 2.1.

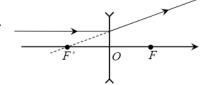




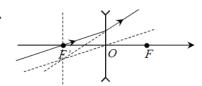
3.



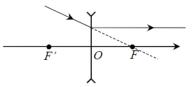
4



5.

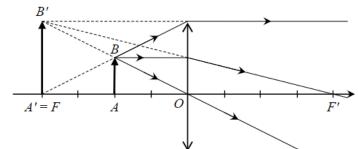


6.

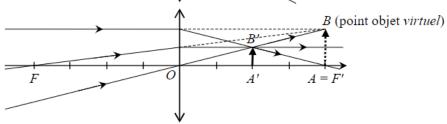


\square Exercice 2.2.

1.



2.



\square Exercice 2.3.

1. Les données sont : $\overline{AB} = +0.5$ cm, $\overline{OF'} = +20$ cm et $\overline{OA} = -30$ cm. Formule de Descartes :

$$\frac{1}{\overline{OA'}} - \frac{1}{\overline{OA}} = \frac{1}{\overline{OF'}} \quad \text{d'où } \overline{\overline{OA'}} = \frac{\overline{OA} \cdot \overline{OF'}}{\overline{OA} + \overline{OF'}}. \text{ AN } \overline{\overline{OA'}} = +60 \text{ cm} : \text{l'image est donc } \underline{\text{réelle}}.$$

La formule de grandissement donne $\overline{A'B'} = \frac{\overline{OA'}}{\overline{OA}} \cdot \overline{AB}$. AN $\overline{A'B'} = -1,0$ cm.

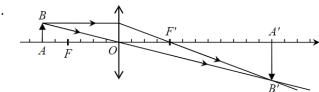
➡ Méthode 2.4

2. On utilise $\overline{FA} = \overline{FO} + \overline{OA} = -10 \text{ cm}$, et la formule de conjugaison conduit à $\overline{\overline{F'A'}} = -\frac{\overline{OF'}^2}{\overline{FA}}$

AN $\overline{F'A'} = +40 \text{ cm}$, ce qui est cohérent avec le résultat précédent, puisque $\overline{OA'} = \overline{OF'} + \overline{F'A'} = +60 \text{ cm}$. Ensuite on applique la formule de grandissement :

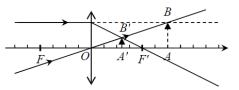
$$\overline{A'B'} = \frac{\overline{F'A'}}{\overline{F'O}} \cdot \overline{AB}$$
. AN $\overline{A'B'} = -1,0$ cm.

3.

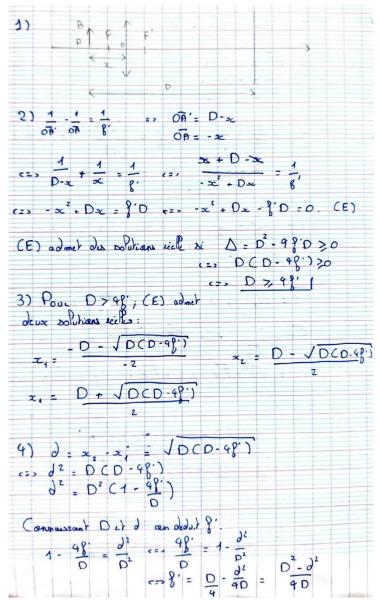


4. \overline{OA} = +30 cm donc, avec les formules littérales précédentes, on trouve cette fois $\overline{OA'}$ = +12 cm et $\overline{A'B'}$ = +0,2 cm.

L'image est donc <u>réelle, droite et plus petite</u> que l'objet.



\square Exercice 2.4.



\square Exercice 2.5.

- **1.** L'objet et l'image ayant la même taille, $\gamma = \frac{\overline{A'B'}}{\overline{AB}} = \frac{\overline{OA'}}{\overline{OA}} = -1$ et donc $\overline{OA'} = -\overline{OA}$. Objet et image sont donc symétriques par rapport à la lentille. Alors la formule de conjugaison entraîne que $\frac{1}{\overline{OA'}} + \frac{1}{\overline{OA'}} = \frac{1}{\overline{OF'}}$, soit $\overline{OA'} = -\overline{OA} = 2\overline{OF'}$. On en déduit donc $\overline{D = \overline{AA'} = 4f'}$.
- **2.** On reconnaît un cas particulier des calculs précédents, pour lequel d = 0 (c'est-à-dire que l'équation du second degré $x^2 Dx + Df' = 0$ a une racine double).

\square Exercice 2.6.

