I] Exercices d'application

☐ Exercice 3.1. Optique de l'œil

Le cristallin de l'œil est assimilable à une lentille mince de centre optique O. On modélise l'œil par une lentille mince convergente de centre optique O, dont la vergence V est variable. L'image se forme sur la rétine, qui dans la réalité est à la distance $d_{r\acute{e}el}=15$ mm de O mais que l'on considérera égale à d=11 mm pour compenser le fait qu'on néglige la présence du corps vitreux entre le cristallin et la rétine.

- 1. Un observateur doté d'une vision « normale » regarde un objet \overrightarrow{AB} placé dans un plan de front à 1 m devant lui, et tel que $\overline{AB} = 10$ cm.
 - a. Préciser si l'image formée par le cristallin est réelle ou virtuelle, droite ou renversée.
- **b.** On note $\overrightarrow{A'B'}$ l'image de \overrightarrow{AB} sur la rétine. Calculer le grandissement $\gamma = \frac{A'B'}{\overline{AB}}$, et en déduire la taille de l'image $\overline{A'B'}$.
 - **c.** Calculer la vergence V du système.

☐ Exercice 3.2. Pouvoir séparateur de l'oeil

Le pouvoir séparateur d'un œil emmétrope est $\alpha_{min} = 3,0 \cdot 10^{-4} \text{ rad}$, c'est-à-dire que deux points peuvent être vus distinctement si leur écart angulaire est supérieur à cette valeur.

- Jusqu'à quelle distance cet œil peut-il distinguer deux traits parallèles séparés de d = 2.0 mm?
- 2. Quelle doit être la taille d'une lettre d'un panneau autoroutier pour être lue à 250 m ? (Faire l'étude avec la lettre E.)
- **3.** Si on assimile l'œil à une lentille convergente associée à un écran (rétine) placé à une distance fixe L = 20 mm derrière, quelle est la taille moyenne d'un récepteur de la rétine ?

☐ Exercice 3.3. Défauts de l'oeil.

On modélise un oeil par une lentille convergente, de vergence variable, placée à 15 mm de la rétine.

- 1. Calculer le domaine dans lequel cette vergence varie, sachant qu'un oeil normal accommode de 25 cm à l'infini.
- **2.** Un oeil de myope a la même vergence, mais la distance lentille-rétine est de 15,2 mm. Déterminer le PR et le PP de cet oeil. Quelle est la vergence de la lentille de contact à utiliser pour corriger cet oeil?

On appelle PP(punctum proximum) le point le plus proche visible par l'œil. On appelle PR(punctum remotum) le point le plus éloigné visible par l'œil.

3. Un oeil d'hypermétrope est tel que la distance lentille-rétine est de 14,8 mm. Répondre aux mêmes questions qu'en 2.

☐ Exercice 3.4. Appareil photographique

Madame Michu utilise encore son vieil appareil photographique argentique, avec une pellicule de taille $24~\text{mm} \times 36~\text{mm}$.

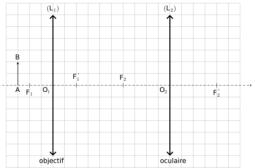
L'objectif de l'appareil est assimilable à une lentille convergente de focale f' = 5.0 cm, et la pellicule est située derrière la lentille, à une distance d, réglable, de son centre O. d peut varier entre 50 mm et 55 mm.

- 1. Madame Michu veut photographier un arbre de 10 m de haut, situé à une distance de 50 m. Quelle sera la hauteur de l'image de l'arbre sur la pellicule?
- 2. Jusqu'à quelle distance peut-elle s'approcher pour avoir toujours l'arbre en entier sur la pellicule?
- 3. Montrer qu'il existe une distance minimale en deçà de laquelle il n'y aura pas d'image.

☐ Exercice 3.5. Projection d'une image

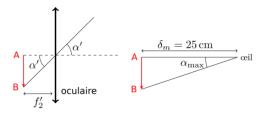
- 1. On veut projeter sur un mur l'image d'une diapositive de taille 24 mm × 36 mm à l'aide d'une lentille de focale f' = 8,0 cm. Le mur étant à 5,0 m derrière la lentille, préciser la position de la diapositive et les dimensions de l'image nette obtenue sur le mur.
- **2.** On souhaite à présent obtenir une image 40 fois plus grande que l'objet. Ce dernier restant fixe, indiquer dans quel sens et de quelle distance il faut déplacer la lentille et l'écran.

II1 Exercices d'entrainement


☐ Exercice 3.6. Microscope

Un microscope est conçu pour fournir à l'œil une image agrandie d'un petit objet. Il est constitué de deux éléments optiques : l'objectif et l'oculaire.

Le microscope modélisé dans cet exercice porte les indications suivantes : « Objectif 40x; Oculaire 10x; Ouverture numérique ON = 0.65; Intervalle optique = 16 cm ».


La mise au point est effectuée sur une lamelle contenant l'échantillon à étudier. Afin de ne pas fatiguer l'œil, l'ensemble est réglé pour que l'image de l'échantillon soit à l'infini.

1. On note A_0B_0 l'image de l'objet AB par l'objectif. Pour que la condition ci-dessus soit remplie, dans quel plan faut-il que l'image A_0B_0 se situe?

 ${f 2.}$ Compléter le tracé sur le schéma ci-dessus. AB a été placé tel que la condition précédente soit bien vérifiée.

On s'intéresse à l'oculaire seul. L'indication 10x donne la valeur du grossissement commercial $G_2=\alpha'/\alpha_{\rm max}$, où : α' est l'angle sous lequel est vue l'image d'un objet placé dans le plan focal objet de l'oculaire ; $\alpha_{\rm max}$ est l'angle sous lequel est vu ce même objet à l'œil nu à une distance minimale de 25 cm. Ces deux situations sont schématisées ci-contre.

- 3. Pourquoi est-il intéressant d'utiliser l'angle $\alpha_{\rm max}$ comme référence pour le grossissement commercial?
- 4. Montrer que la distance focale image de l'oculaire vaut $f_2' = 2,5$ cm.

On s'intéresse ensuite au microscope dans son ensemble. L'indication 40x portée sur l'objectif est la valeur absolue du grandissement transversal γ_1 de la lentille de l'objectif . L'intervalle optique Δ correspond à la distance $\overline{F_1'F_2}$.

- **5.** Donner en le justifiant le signe de γ_1 .
- 6. En utilisant le théorème de Thalès ou des relations impliquant les tangentes d'angles bien choisis, montrer que $\gamma_1 = -\frac{\Delta}{f!}$.
 - 7. En déduire la distance focale image de l'objectif f'_1 , littéralement puis numériquement.
- 8. Montrer que la distance $\overline{O_1A}$ où l'objet doit être placé pour obtenir une image à l'infini en sortie du microscope vaut :

$$\overline{O_1 A} = -\frac{f_1'(\Delta + f_1')}{\Delta} \ .$$

Commenter le signe obtenu.

Le grossissement commercial G du microscope complet est le rapport entre d'une part l'angle sous lequel on voit l'image à l'infini d'un objet de taille finie à travers le microscope et l'angle sous lequel on le voit à l'œil nu s'il est placé à la distance minimale de vision distincte $\delta_m = 25$ cm.

- 9. Exprimer le grossissement commercial d'abord en fonction de δ_m , γ_1 et f_2' , littéralement puis numériquement.
- 10. Comment déduire ce grossissement des indications portées sur l'objectif et l'oculaire?

Indications exercice 3.6. Microscope

- 2. Tracer les rayons pertinents partants du point B pour former B_0 . Trouver l'image A_0B_0 puis tracer les rayons issus de B_0 à la sortie de l'occulaire.
- **4.** Exprimer α' et α_{\max} , puis repartir de la définition de G_2 pour déduire f_2'
- **5.** Comment sont orientés AB et A_0B_0 ?
- 8. Utiliser le Théorème de Thalès mettant en jeu leslongueurs $\overline{AO_1}$, $\overline{O_1A_0}$, \overline{AB} et $\overline{B_0A_0}$
- **9.** Exprimer α_{max} en fonction de \overline{AB} et δ_m , puis α en fonction de $\overline{B_0A_0}$ et f_2' .
- 10. Remplacer f_2' par une relation entre δ_m et G_2 .