Exercices d'application

☐ Exercice 6.1. Vérification d'homogénéité

- 1 Homogène
- 2 Non homogène, il y a une résistance en trop au numérateur.
- 3 Non homogène, il manque une résistance au dénominateur.
- 4 Homogène
- **5** Non homogène, le premier terme est l'unique tension, il semble qu'il manque une résistance au dénominateur.

☐ Exercice 6.2. Détermination de constante de temps

La réponse indicielle vaut 63% de la valeur finale en $t = \tau$. On lit graphiquement pour le système 1 : $\tau = 2s$.

La réponse indicielle a perdu 63% de la valeur initiale en $t = \tau$. On lit graphiquement pour le système $2: \tau = 2s$.

☐ Exercice 6.4. Conditions initiales et régime permanent

1. Par continuité du courant dans une bobine : $\left[i_4(0^+) = i_4(0^-) = 0\right]$ (car l'interrupteur était initialement ouvert).

De plus, pour t < 0, l'interrupteur étant ouvert depuis longtemps, le circuit est en régime permanent (continu) et la bobine horizontale est équivalente à un fil et court-circuite la résistance R. Par conséquent la loi des mailles permet d'obtenir $i_1(0^-) = i_3(0^-) = \frac{E}{2R}$; par

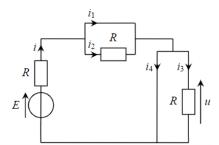
continuité du courant dans une bobine, on en déduit $i_1(0^+) = i_1(0^-) = \frac{E}{2R}$

Avec des lois des nœuds, on a $i = i_1 + i_2 = i_3 + i_4$ (1), soit $i(0^+) = i_3(0^+)$ (2). La loi des mailles donne $E = Ri + Ri_2 + Ri_3$ donc en $t = 0^+$, en utilisant (2) et en remplaçant i, $E = R(i_1 + i_2) + Ri_2 + R(i_1 + i_2) = 2Ri_1(0^+) + 3Ri_2(0^+)$, d'où on déduit $i_2(0^+) = 0$.

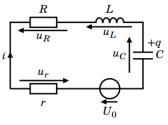
La loi des nœuds donne $i(0^+) = i_1(0^+) = \frac{E}{2R} = i_3(0^+)$. La tension vaut $u(0^+) = Ri_3(0^+) = \frac{E}{2R}$

2. Quand t tend vers l'infini, le régime établi est atteint et les bobines sont équivalentes à des fils. Alors deux des résistances sont court-circuitées : $[i_2(\infty) = i_3(\infty) = 0]$ et $[u(\infty) = Ri_3(\infty) = 0]$.

La loi des mailles permet d'obtenir $i(\infty) = \frac{E}{R}$, et la loi des nœuds permet de conclure par $i_1(\infty) = i_4(\infty) = i(\infty) = \frac{E}{R}$.



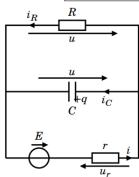
☐ Exercice 6.4. Détermination d'équations différentielles



$$\begin{cases} U_0 - u_r - u_R - u_L - u_C = 0 & (1) \text{ Maille} \\ u_r = ri & (2) \text{ Ohm} \\ u_R = Ri & (3) \text{ Ohm} \\ u_L = L \frac{\mathrm{d}i}{\mathrm{d}t} & (4) \text{ bobine idéale} \\ i = \frac{\mathrm{d}q}{\mathrm{d}t} = C \frac{\mathrm{d}u_C}{\mathrm{d}t} & (5) \text{ condensateur parfait} \end{cases}$$

En injectant (2), (3) et (4) dans (1) il vient :

$$(r+R)\,i + L\frac{\mathrm{d}i}{\mathrm{d}t} + u_C = U_0 \quad \stackrel{(5)}{\Rightarrow} \quad \boxed{LC\frac{\mathrm{d}^2 u_C}{\mathrm{d}t^2} + (r+R)\,C\frac{\mathrm{d}u_C}{\mathrm{d}t} + u_C = U_0}$$



En remarquant que u est à la fois la tension aux bornes de R et de C, on écrit :

$$\begin{cases} i = i_C + i_R & (1) \text{ Nœuds} \\ E - u_r - u = 0 & (2) \text{ Maille} \\ u = Ri_R & (3) \text{ Ohm} \\ u_r = ri & (4) \text{ Ohm} \\ i_C = \frac{dq}{dt} = C \frac{du}{dt} & (5) \text{ condensateur parfait} \end{cases}$$

$$ri + u = E \quad \Rightarrow \quad ri_C + ri_R + u = E \quad \Rightarrow \quad rC \frac{du}{dt} +$$

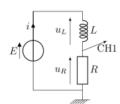
$$(2) \stackrel{(4)}{\Rightarrow} ri + u = E \stackrel{(1)}{\Rightarrow} ri_C + ri_R + u = E \stackrel{(3),(5)}{\Rightarrow} rC\frac{\mathrm{d}u}{\mathrm{d}t} + \frac{r}{R}u + u = E$$

$$\boxed{rC\frac{\mathrm{d}u}{\mathrm{d}t} + \left(1 + \frac{r}{R}\right)u = E}$$

Exercices d'entrainement

☐ Exercice 6.5. Circuit RL

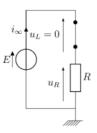
1.



2.

 $i_{\infty}=\lim_{t\to\infty}i(t)=\frac{E}{R}$. À la fin du régime transitoire, un nouveau régime permanent est atteint, la bobine est alors équivalent à un fil : la loi des mailles donne:

$$E = Ri_{\infty} \Leftrightarrow \boxed{i_{\infty} = \frac{E}{R}}$$



3. Loi des mailles :
$$E=u_R+u_L \Leftrightarrow E=R_i+L\frac{di}{dt} \Leftrightarrow \boxed{\frac{di}{dt}+\frac{R}{L}i=\frac{E}{L}}$$

4. Solution générale de l'équation différentielle : $i(t) = i_H(t) + i_P$, avec

$$\bullet~i_H(t)=Ke^{\left(-\frac{t}{\tau}\right)}$$
, la solution générale de l'équation homogène ;

• i_P une solution particulière recherchée sous la forme du 2nd membre, c'est-à-dire constant ici : $i_P=\frac{E}{D}$.

Donc
$$i(t) = Ke^{\left(-\frac{t}{\tau}\right)} + \frac{E}{R}$$

À
$$t = 0^- : i(0^-) = 0$$
.

Or l'intensité du courant à travers une bobine étant une fonction continue du temps, donc $i(0^+) = i(0^-) = 0$.

Ainsi
$$K=-\frac{E}{R}$$
, ainsi
$$\boxed{i(t)=\frac{E}{R}\left(1-e^{\left(-\frac{t}{\tau}\right)}\right)}$$

5. t_m est tel que : $i(t_m) = 0.95i_{\infty}$ (l'intensité correspond à 95 % de l'intensité finale à $t = \infty$).

$$\frac{E}{R}(1 - e^{\left(-\frac{t_m}{\tau}\right)}) = 0.95 \frac{E}{R} \Leftrightarrow e^{-\frac{t_m}{\tau}} = 0.05 \Leftrightarrow \boxed{t_m = -\tau \ln(0.05)}$$

6. Far fecture graphique:
$$- \left[i_{\infty} = 0.44 \text{ mA} \right], \text{ or } \frac{E}{R} = \frac{1.0 \text{ (V)}}{2.10^3 \text{ (\Omega)}} = 0.5 \text{ mA} .$$

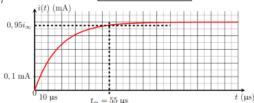
En pratique, $i_{\infty}=\frac{E}{R_{tot}}$ et on peut alors déterminer $r_L+r_{GBF}=R_{tot}-R=270~\Omega$.

$$-0.95i_{\infty} = 0.475 \ mA \Rightarrow t_m = 55 \ \mu s \Rightarrow \boxed{\tau = \frac{-t_m}{\ln(0.05)} = 18.4 \ \mu s} \ .$$

Or $\frac{L}{R}=19,98.10^{-6}~s$. On constate que $\tau<\frac{L}{R}$, cela peut s'expliquer par la non prise en compte de la résistance interne de la bobine et de celle du générateur.

En pratique $\tau = \frac{L}{R_{tot}}$ avec $R_{tot} = r_L + r_{GBF}$ la résistance totale dans le circuit.

On en déduit que $R_{tot} = \frac{L}{\tau} = 2,3.10^3 \ \Omega$, donc $r_L + r_{GBF} = 300 \ \Omega$



7. Pour obtenir un bilan de puissance, il faut multiplier la loi des mailles par i :

$$u_L \times i + u_B \times i = E \times i$$

$$L\frac{di}{dt} \times i + Ri^{2} = Ei$$
Puissance dissipée par effet Joule Puissance fournie par le générat

☐ Exercice 6.6. Décharge d'un condensateur dans un autre

1. Courant traversant le condensateur 1 : $i_1 = C \frac{du_1}{dt}$. Et pour le second : $i_2 = C \frac{du_2}{dt}$. Mais ces deux courants sont les mêmes, donc en simplifiant par $C: \frac{du_1}{dt} = \frac{du_2}{dt}$

On a donc $\frac{d(u_1 - u_2)}{dt} = 0$, donc $u_1 - u_2 = \text{cst} = U_0$ (on trouve la constante en prenant t = 0).

2. Loi des mailles : $u_1 + u_R + u_2 = 0$, avec $u_R = Ri = RC \frac{du_1}{dt}$ et $u_2(t) = u_1(t) - U_0$ on obtient :

$$\boxed{u_1 + RC\frac{du_1}{dt} + u_1 - U_0 = 0 \text{ , soit } \frac{du_1}{dt} + \frac{u_1}{\tau} = \frac{U_0}{2\tau}}$$

avec
$$\tau = \frac{RC}{2}$$
.

3. En régime stationnaire, $\frac{du_1}{dt} = 0$ et l'équation donne $u_1 = \frac{U_0}{2}$

On a donc aussi $u_2 = u_1 - U_0 = -\frac{U_0}{2}$

4. Initialement $\mathcal{L}_i = \frac{1}{2}Cu_1^2 = \frac{1}{2}CU_0^2$.

À la fin :
$$\mathcal{E}_f = \frac{1}{2}Cu_1^2 + \frac{1}{2}Cu_2^2 = 2 \times \frac{1}{2}C\left(U_0/2\right)^2 = \frac{1}{4}CU_0^2$$
.

Bilan : il manque $\frac{1}{2}CU_0^2 - \frac{1}{4}CU_0^2 = \frac{1}{4}CU_0^2$, c'est-à-dire la moitié de l'énergie intiale, qui a été dissipée par effet

☐ Exercice 6.7. Résolution de problème

— Dimensionnement de C:

Durée d'un aller-retour : 14 minutes ; puissance $P = 2 \times 100 \times 735$ W ; énergie $\mathcal{E} = \mathcal{P} \times \Delta t = 1, 23 \times 10^8$ J. Énergie stockée par les condensateurs : $\frac{1}{2}C_{tot}U^2$ avec U = 400 V.

Il faut donc
$$\frac{1}{2}C_{\rm tot}U^2=\mathcal{E}$$
, d'où $\boxed{C_{\rm tot}=\frac{2\mathcal{E}}{U^2}=1543~{\rm F}}$.

Or N = 100 condensateurs, donc 15,4 F par condensateur.

— Dimensionnement de R :

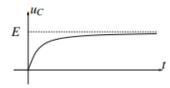
Le temps de charge est de l'ordre de $t = 5\tau = RC_{\text{tot}}$. En prenant t = 4 min, il faut donc $R = \frac{t}{5C_{\text{tot}}} = 0,031 \ \Omega$

$$R = \frac{t}{5C_{\text{tot}}} = 0,031 \ \Omega$$

Pour réviser le chapitre :

Exercice 6.8. Circuit à condensateur

- 1. Pour un temps infini, on obtient le régime permanent qui est ici continu. Par conséquent, les dérivées temporelles sont nulles soit i = 0.
- En écrivant la loi des mailles avec i = 0, on a u_C = E.
- 3. Dans ces conditions, la capacité C se comporte comme un interrupteur puisqu'il n'y a pas de courant.
- **4.** En écrivant une loi des mailles ainsi que la relation $i = C \frac{du_C}{dt}$, on obtient $\frac{du_C}{dt} + \frac{u_C}{RC} = \frac{E}{RC}$.
- 5. La quantité τ est homogène à un temps dit caractéristique donc τ s'exprime en secondes.
- 6. En résolvant l'équation différentielle avec la condition initiale u_C = 0, on obtient u_C = $E\left(1 - \exp\left(-\frac{t}{RC}\right)\right)$ et $u_C = E$ pour un temps infini.
- 7. On a une asymptote u = E et l'allure est la suivante :



- 8. L'équation de la tangente à l'origine s'écrit $u_C = \frac{du_C}{dt}(t=0)t + u_C(0) = \frac{E}{RC}t$.
- **9.** L'intersection avec l'asymptote $u_C = E$ s'obtient pour $t = \tau$.
- **10.** Il faut résoudre l'équation $u_C(t) = 0.99E$. On obtient $t_1 = RC \ln 100$.
- 11. L'intensité s'obtient par la relation $i = C \frac{du_C}{dt} = \frac{E}{R} \exp\left(-\frac{t}{RC}\right)$.
- 12. L'énergie emmagasinée dans C s'écrit $E_C = \int_0^{+\infty} u_C(t)i(t)dt = \frac{CE^2}{2}$.
- 13. L'énergie dissipée par effet Joule est $E_J = \int_0^{+\infty} Ri^2(t) dt = \frac{CE^2}{2}$.
- **14.** L'énergie fournie par le générateur vaut $E_G = \int_0^{+\infty} Ei(t) dt = CE^2$.
- **15.** On constate que $E_G = E_C + E_J$, ce qui traduit la conservation de l'énergie.
- **16.** On a $\rho = \frac{CE^2}{2CE^2} = 0.5$.