I] Approche phénoménologique

1. Caractérisation d'un signal harmonique

Savoir - Caractériser le mouvement en utilisant les notions d'amplitude, de phase, de période, de fréquence, de pulsation

Un signal harmonique s'écrit : $s(t) = S_m \cos(\omega t + \phi) + s_{\text{éq}}$

- S_m est l'amplitude : $S_m = \frac{s_{\max} s_{\min}}{2}$. C'est une grandeur positive de même dimension que s.
- ω est la **pulsation**, en rad/s.
- ϕ est la phase à l'origine des temps, en radians.
- $\langle s(t) \rangle = s_{\text{éq}} = \frac{s_{\text{max}} + s_{\text{min}}}{2}$ est la valeur moyenne de s: c'est la valeur autour de laquelle oscille s.

Savoir - Liens entre fréquence f, période T, et pulsation ω

La période T est la plus petite durée non nulle entre deux vibrations identiques. Elle s'exprime en seconde

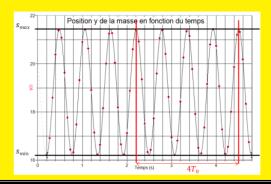
La **fréquence** est définie par $f = \frac{1}{T}$. Elle s'exprime en hertz (Hz).

$$\omega = 2\pi f = \frac{2\pi}{T}$$

Énoncé:

On a filmé les oscillations de la masse m en fonction du temps. Sur la vidéo nous avons défini une échelle (pour faire le lien entre pixel et cm), ainsi que l'origine du repère, qui a été placée au point d'attache du ressort. On a pu pointer la position de la masse m en fonction du temps, et on a obtenu la courbe ci-contre.

Pour les oscillateurs harmoniques mécaniques et électriques, on parle de **pulsation propre**, notée ω_0 et de **période propre**, notée T_0 , car elles sont propres au système, et indépendantes du milieu extérieur.



- 1. Déterminer graphiquement l'amplitude.
- 2. Déterminer graphiquement la valeur moyenne.
- **3.** Déterminer graphiquement la période propre, notée T_0 .
- 4. Déterminer la valeur de la pulsation propre ω_0 .
- 5. Déterminer la valeur de la phase à l'origine des temps ϕ . Attention : la valeur de la phase à l'origine des temps ϕ ne se lit pas directement sur le graphe de y(t).

Correction:

- 1. Graphiquement, on lit $y_{\text{max}} = 21, 5 \text{ cm}$ et $y_{\text{min}} = 16, 2 \text{ cm}$ donc $Y_m = 2, 65 \text{ cm}$

2. On a donc
$$y_{\rm eq} = 18,85 \, {\rm cm}$$
.
3. Graphiquement, $4T_0 = 2,3 \, {\rm s} \, {\rm donc} \, T_0 = 0,575 \, {\rm s}$.
4. $\omega_0 = \frac{2\pi}{T_0} \, {\rm donc} \, \omega_0 = \frac{2\pi}{0,575} = 1,13 \, {\rm rad.s}^{-1}$.

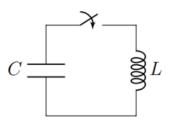
5. À
$$t = 0$$
, on lit $y(t = 0) = 20, 3$ cm. Or, $\cos(\phi) = \frac{y(0) - y_{\text{eq}}}{Y_m}$, donc : $\phi = \arccos\left(\frac{y(0) - y_{\text{eq}}}{y_m}\right)$

A.N:
$$\phi = \arccos\left(\frac{20, 3 - 18, 85}{2, 65}\right) = \underline{0, 99 \text{ rad}}$$
.

II] Mise en équation

1. Oscillateur harmonique électrique

On étudie le circuit ci-contre constitué d'un condensateur de capacité C et d'une bobine idéale d'inductance L. Le condensateur a été chargé sous une tension E.



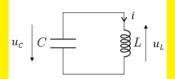
A l'instant t = 0, on ferme l'interrupteur, ce qui connecte le condensateur à la bobine en série.

Énoncé :

- 1. Établir l'équation différentielle vérifiée par la tension aux bornes du condensateur.
- 2. La mettre sous la forme canonique et identifier la pulsation propre de l'oscillateur électrique.

Correction:

- 1. Loi des mailles : $u_c(t) + u_L(t) = 0$;
- Relation du condensateur : $i(t) = C \frac{du_c}{dt}$
- Relation de la bobine : $u_L(t) = L \frac{di}{dt}$



En combinant, on obtient : $u_C(t) + LC \frac{d^2 u_C}{dt^2} = 0$

2. Ainsi :
$$\frac{d^2 u_C}{dt^2} + \frac{1}{LC} u_C(t) = 0$$

On identifie la pulsation propre comme étant égale à : $\omega_0 = \sqrt{\frac{1}{LC}}$

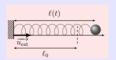
2. Oscillateur harmonique mécanique

a. Modélisation physique d'un ressort

Savoir - Expression de la force de rappel élastique

La force de rappel élastique exercée par un ressort de longueur à vide ℓ_0 , de constante de raideur k et de longueur instantanée $\ell(t)$ s'écrit :

$$\overrightarrow{f_{\text{\'elastique}}} = -k(\ell(t) - \ell_0)\overrightarrow{u_{\text{ext}}}$$

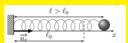


avec $\overrightarrow{u_{\mathrm{ext}}}$ le vecteur unitaire dirigé du point d'attache du ressort vers la masse m, c'est-à-dire vers l'extérieur du ressort.

b. Equation différentielle

Énoncé :

On considère une masse m, assimilée à un point matériel, liée à un ressort, et se déplaçant sans frottement sur un support horizontal, comme sur le schéma ci-contre.



- 1. Commencer l'étude générale du système mécanique.
- 2. Énoncer le Principe Fondamental de la Dynamique (2ème loi de Newton) en référentiel galiléen.
- 3. L'appliquer au système étudié.
- 4. Le mouvement se faisant selon l'axe horizontal (Ox), projeter l'équation précédente selon \overrightarrow{u}_x afin d'obtenir une relation entre $\frac{d^2x}{dt^2}$ et x: c'est une équation différentielle.
- 5. Mettre l'équation différentielle sous la forme canonique :

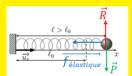
$$\frac{d^2x}{dt^2} + \omega_0^2 x = \omega_0^2 x_{\text{\'eq}}$$

et donner l'expression de ω_0 en fonction de k et m.

6. Déterminer la dimension et l'unité (dans le système international) de ω_0 .

Correction:

1. Système : $\{\text{masse}\}$; Référentiel : terrestre supposé galiléen; repère d'espace : cartésien (axe (Ox)) . Les forces subies sont le poids, la force de rappel élastique et la réaction (normale) du support.



2. Dans un référentiel galiléen, la quantité de mouvement d'un point matériel obéit à la loi d'évolution :

$$\boxed{\frac{d\overrightarrow{p}}{dt} = m\frac{d\overrightarrow{v}}{dt} = \sum \overrightarrow{F}} \text{ où } \sum \overrightarrow{F} \text{ est la somme des forces subies par le point matériel.}}$$

3.
$$m\frac{d\overrightarrow{v}}{dt} = \overrightarrow{R} + \overrightarrow{P} + \overrightarrow{f_{\text{élastique}}} \Rightarrow \boxed{m\frac{d^2x}{dt^2}\overrightarrow{u_x} = R\overrightarrow{u_z} - mg\overrightarrow{u_z} - k(\ell - \ell_0)\overrightarrow{u}_x = -k(\ell - \ell_0)\overrightarrow{u}_x}$$
.

- **4.** En projettant suivant \overrightarrow{u}_x , on about it à : $m\frac{d^2x}{dt} = -k(\ell-\ell_0)$. En notant qu'ici : $x(t) = \ell(t)$, on about it
- à l'équation différentielle : $\boxed{m\frac{d^2x}{dt^2} + kx = k\ell_0}$
- **5.** On divise l'équation précécente par $m: \frac{d^2x}{dt^2} + \frac{k}{m}x = \frac{k}{m}\ell_0$

On identifie à la forme canonique $\frac{d^2x}{dt^2} + \omega_0^2 x(t) = \omega_0^2 x_{\text{éq}}$ avec $\omega_0 = \sqrt{\frac{k}{m}}$ et $x_{\text{éq}} = \ell_0$.

6.
$$[\dim(\omega_0)] = \dim\left(\frac{k}{m}\right)^{(1/2)} = \left(\frac{\dim(k)}{\dim(m)}\right)^{1/2} = \left(\frac{M.T^{-2}}{M}\right)^{1/2} = [T^{-1}]$$

 ω_0 à donc la dimension de l'inverse d'un temps et s'exprime en rad.s⁻¹.

III] Résolution

1. Solution générale

Savoir - Solution générale de $\ddot{y} + \omega_0^2 y = 0$

La solution générale de l'équation différentielle $\ddot{y} + \omega_0^2 y = 0$ s'écrit :

$$y_H(t) = A\cos(\omega_0 t) + B\sin(\omega_0 t)$$

$$y_H(t) = Y_m\cos(\omega_0 t + \phi)$$

 $g_H(v) = I_m \cos(\omega_0 v + \psi)$ avec $(A, B) \in \mathbb{R}^2$ et $(Y_m, \phi) \in \mathbb{R}^+ \times [-\pi, \pi]$, les deux constantes d'intégration.

Remarque : grâce aux formules de trigo, $Y_m \cos(\phi) = A$ et $-Y_m \sin(\phi) = B$; $A^2 + B^2 = Y_m^2$; $\tan(\phi) = -B/A$.

Savoir faire - Résoudre l'équation différentielle $\frac{d^2y}{dt^2} + \omega_0^2 y = b$

1. Écrire la solution générale y_H de l'équation homogène sans second membre ($\ddot{y}_H + \omega_0^2 y_H = 0$) :

$$y_H(t) = A\cos(\omega_0 t) + B\sin(\omega_0 t)$$

- 2. Déterminer une solution particulière de l'équation différentielle étudiée, recherchée sous la forme du second membre, constant ici : y_p telle que $\frac{dy_P}{dt}=0$, alors $\omega_0^2y_P=b\Rightarrow y_P=\frac{b}{\omega_0^2}$.
- 3. Écrire la solution générale comme la somme de la solution homogène et de la solution particulière :

$$y(t) = y_H(t) + y_P$$

$$y(t) = A\cos(\omega_0 t) + B\sin(\omega_0 t) + y_P$$

- 4. Déterminer les deux constantes d'intégration (A, B) à l'aide des deux conditions initiales $y(t = 0) = y_0$ et $\frac{dy}{dt}(t = 0) = v_0$.
 - a) D'après la solution $y(0) = A + \frac{b}{\omega_0^2}$, or d'après la CI $y(0) = y_0$. Ainsi $A + \frac{b}{\omega_0^2} = y_0$, donc $A = y_0 \frac{b}{\omega_0^2}$
 - b) On calcule $\frac{dy}{dt} = -A\omega_0 \sin(\omega_0 t) + B\omega_0 \cos(\omega_0 t)$.

Puis on exprimer la valeur en t=0: $\dot{y}(0)=B\omega_0$. Et on en déduit $B\omega_0=v_0$, d'où $B=\frac{v_0}{\omega_0}$

5. Conclure sur l'expression de y(t).

2. Oscillateur électrique

Énoncé: On reprend le circuit étudié II.2. Déterminer les valeurs de u_c , i et $\frac{du_C}{dt}$ à l'instant $t = 0^+$ (juste après la fermeture de l'interrupteur).

Correction:

Avant la fermeture de l'interrupteur, on a, à $t=0^-$: $u_c=E$, i=0. Par continuité de la tension aux bornes du condensateur : $u_c(t=0^+)=E$. La continuité de l'intensité du courant à travers la bobine est telle que

$$i(t=0^+)=0$$
]. Par ailleurs, $q(t)=Cu_c(t)$ donc $du_c(t=0^+)=\frac{1}{C}\frac{dq}{dt}(t=0^+)=\frac{i}{C}(t=0^+)=0$.

Énoncé :

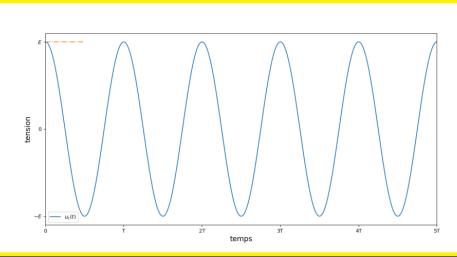
- 1. Résoudre l'équation différentielle $\frac{d^2u_c}{dt^2} + \omega_0^2u_c = 0$ en utilisant les conditions initiales déterminées précédemment.
- 2. Représenter l'allure de u_c en fonction du temps.

Correction:

1. La solution générale de l'équation de l'oscillateur harmonique électrique est : $u_c(t) = A\cos(\omega_0 t) + B\sin(\omega_0 t)$.

Avec les conditions initiales, on obtient : A = E et B = 0 . Finalement : $u_c(t) = E \cos(\omega_0 t)$.

2.



3. Oscillateur mécanique

Énoncé: Résoudre l'équation différentielle de l'oscillateur harmonique $\frac{d^2x}{dt^2} + \omega_0^2 x = \omega_0^2 x_{\text{éq}}$ en tenant compte des conditions initiales suivantes et représenter x(t) dans les différents cas.

1. On étire le ressort depuis sa position d'équilibre d'une distance a et on lâche la masse sans vitesse initiale : $x(0) = x_{\text{éq}} + a$ et $\frac{dx}{dt}(0) = 0$.

2. Depuis la position d'équilibre, on communique une vitesse initiale à la masse : $x(0) = x_{\text{éq}}$ et $\frac{dx}{dt}(0) = v_0$.

Correction: La solution générale est $x(t) = A\cos(\omega_0 t) + B\sin(\omega_0 t) + x_P = A\cos(\omega_0 t) + B\sin(\omega_0 t) + x_{\text{éq}}$. Il faut déterminer A et B avec les conditions initiales.

1. On a $x(0) = x_{\text{\'eq}} + a = A + x_{\text{\'eq}}$ d'où A = a.

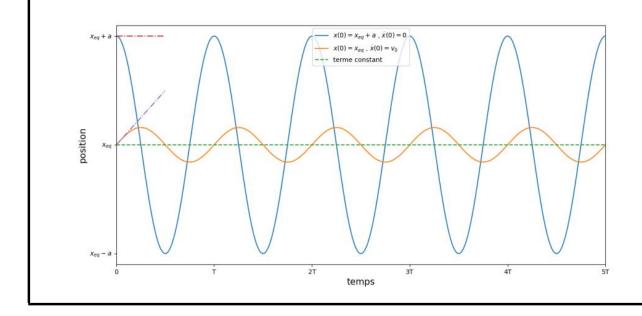
Par ailleurs: $\dot{x}(t) = -a\omega_0 \sin(\omega_0 t) + B\omega_0 \cos(\omega_0 t)$, donc $\dot{x}(0) = B\omega_0 = 0$, d'où B = 0.

Finalement: $x(t) = a\cos(\omega_0 t) + x_{\text{éq}}$

2. On a $x(0) = x_{\text{éq}} = A + x_{\text{éq}}$ d'où A = 0.

Par ailleurs : $\dot{x}(t) = B\omega_0 \cos(\omega_0 t)$, donc $\dot{x}(0) = B\omega_0 = v_0$, d'où $B = \frac{v_0}{\omega_0}$.

Finalement : $x(t) = \frac{v_0}{\omega_0} \sin(\omega_0 t) + x_{\text{éq}}$



4. Propriétés de l'oscillateur harmonique

 \star

- Les oscillations, sinusoïdales, persistent indéfiniment dans le temps sans atténuation.
- La période des oscillations est égale à $T=\frac{2\pi}{\omega_0}$ quelle que soit la condition initiale imposée en particulier quelle que soit l'amplitude des oscillations. On parle d'isochronisme des oscillation.
- Il y a équirépartition de l'énergie. (Cf : Partie IV)

IV] Aspect énergétique

Oscillateur électrique

Exercice 10 - Savoir faire : Réaliser un bilan énergétique

Énoncé :

- 1. Effectuer un bilan de puissance du circuit LC. L'interpréter.
- 2. En utilisant les résultats de l'exercice 8, représenter l'allure des énergies stockées par le condensateur et la bobine au cours du temps.

Correction:

1. Multiplions la loi des mailles par $i: 0 = u_c \times i + L\frac{di}{dt} \times i$, ainsi $: 0 = \underbrace{u_c \times i}_{dt} + \underbrace{L\frac{di}{dt} \times i}_{dt} \times i$ $\frac{d}{dt} \left(\frac{1}{2}Cu_c^2\right) - \underbrace{\frac{di}{dt} \times i}_{dt}$

Finalement : $\mathcal{P}_L + \mathcal{P}_C = 0$. La puissance algébriquement reçue par la bobine compense à chaque instant la puissance algébriquement reçue par le condensateur. Dans ce modèle, il n'y a pas d'effet dissipatif (pas d'effet

- 2. Nous avons d'une part : $\mathcal{E}_C = \frac{1}{2}Cu_c^2 = \frac{1}{2}CE^2\cos^2(\omega_0 t)$.
- D'autre part, $\mathcal{E}_L = \frac{1}{2}Li^2 = \frac{1}{2}LC^2E^2\omega_0^2\sin^2(\omega_0t) = \frac{1}{2}CE^2\sin^2(\omega_0t)$.

On note qu'à chaque instant : $\mathcal{E}_L + \mathcal{E}_C = \frac{1}{2}CE^2$.

2. Oscillateur mécanique

Savoir - Expression des énergies cinétique, potentielle de pesanteur, élastique et mécanique

• L'énergie cinétique d'un point matériel M de masse m, ayant la vitesse \overrightarrow{v} s'écrit :

$$\mathcal{E}_c = \frac{1}{2} m \|\overrightarrow{v}^2\|$$

 \bullet L'énergie potentielle de pesanteur d'un point matériel de masse m, repéré par son altitude z:

$$\mathcal{E}_{\rm pp} = \pm mgz + K$$

avec $\ll + \gg \text{si}(Oz)$ est ascendant; $\ll - \gg \text{si}(Oz)$ est descendant; K une constante;

• L'énergie potentielle élastique d'un point matériel accrochée à un ressort est :

$$\mathcal{E}_{\text{p,\'elastique}} = \frac{1}{2}k\left(\ell - \ell_0\right)^2 + K_0$$

avec K_0 une constante;

Plus la longueur ℓ du ressort est différente de la longueur à vide ℓ_0 , plus l'énergie emmagasinée par le système est importante.

 \bullet On appelle énergie mécanique, notée \mathcal{E}_m , la somme de ses énergies cinétique E_c et potentielles \mathcal{E}_p :

$$\mathcal{E}_m = \mathcal{E}_c + \mathcal{E}_p$$

Toutes les énergies s'expriment en Joule (J), avec 1 $J = 1 \text{ kg.m}^2 \cdot \text{s}^{-2}$.

Énoncé : Considérons le cas général d'un oscillateur mécanique horizontal caractérisé par l'évolution de la position au cours du temps telle que $\ell(t) = x(t) = X_m \cos(\omega_0 t + \phi) + x_{\text{éq}}$.

- 1. Exprimer l'énergie potentielle élastique $\mathcal{E}_{p,\text{élastique}}$ en fonction de $X_m,\,\omega_0,\,\phi,\,k,\,t$. On choisira K_0 telle que $\mathcal{E}_{p,\text{élastique}}=0$ pour $\ell=\ell_0$.
- **2.** Exprimer l'énergie cinétique en fonction de X_m , ω_0 , ϕ , m, t; puis en fonction de X_m , ω_0 , ϕ , k, t.
- 3. Exprimer l'énergie mécanique en fonction de k et X_m , puis en fonction de m, ω_0 et X_m . Commenter.
- **4.** Tracer l'allure de l'évolution temporelle des trois énergies avec les conditions initiales : $x(0) = x_{\text{éq}} + a$ et $v(0) = 0 \text{ m.s}^{-1}$.

Correction:

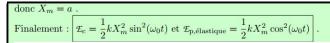
1. Pour l'oscillateur harmonique horizontal, $x_{\text{éq}} = \ell_0$. Ainsi : $\mathcal{E}_{\text{p,6lastique}} = \frac{1}{2}kX_m^2\cos^2(\omega_0t + \phi)$

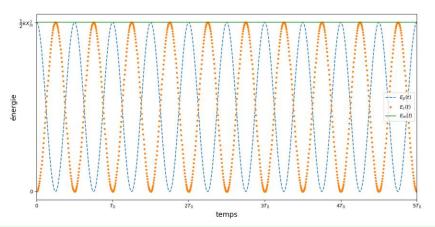
$$\mathbf{2.}\ v(t) = \dot{x}(t) = -\omega_0 X_m \sin(\omega_0 t + \phi) \text{ d'où } \boxed{ \mathcal{E}_c = \frac{1}{2} m X_m^2 \omega_0^2 \sin^2(\omega_0 t + \phi) } \text{. On a vu par ailleurs que } \omega_0^2 = \frac{k}{m}$$

donc
$$m = \frac{k}{\omega_0^2}$$
. Ainsi :
$$\boxed{\mathcal{E}_c = \frac{1}{2}kX_m^2\sin^2(\omega_0t + \phi)}$$

$$\mathbf{3.} \boxed{\mathcal{I}_m} = \mathcal{I}_c + \mathcal{I}_p = \frac{1}{2} k X_m^2 \sin^2(\omega_0 t + \phi) + \frac{1}{2} k X_m^2 \cos^2(\omega_0 t + \phi) = \boxed{\frac{1}{2} k X_m^2 = \frac{1}{2} X_m^2 m \omega_0^2} \text{. L'énergie mécanique est ici une constante du mouvement.}$$

4. Avec
$$v(0) = 0 = -\omega_0 X_m sin(\phi)$$
, on a nécessairement $\phi = 0$. Par ailleurs $x(0) = x_{\text{éq}} + a = x_{\text{éq}} + X_m$





On note que la période des énergies est la moitié de celle de l'oscillateur harmonique T_0 , ce qui se comprend en linéarisant les termes \sin^2 et \cos^2 . En effet : $\cos^2 x = \frac{1+\cos 2x}{2}$ et $\sin^2 x = \frac{1-\cos 2x}{2}$, aussi :

$$\mathcal{E}_{c} = \frac{1}{4}kX_{m}^{2}\left(1 - \cos(2\omega_{0}t)\right) \text{ et } \mathcal{E}_{p,\text{\'elastique}} = \frac{1}{4}kX_{m}^{2}\left(1 + \cos(2\omega_{0}t)\right)$$

Oscillateur mécanique

position x(t)

vitesse
$$v_x(t) = \frac{dx}{dt}$$

Équation différentielle
$$m\frac{d^2x}{dt^2} + kx = kx_{\text{éq}}$$

Constante de raideur du ressort k

Masse m

Pulsation propre
$$\omega_0 = \sqrt{\frac{k}{m}}$$

$$\mathcal{E}_p = \frac{1}{2}kx^2$$

$$\mathcal{E}_c = \frac{1}{2}mv^2$$

Oscillateur électrique LC série

Charge du condensateur q(t)

Intensité du courant
$$i(t) = \frac{dq}{dt}$$

Équation différentielle
$$L\frac{d^2q}{dt^2} + \frac{q}{C} = 0$$

Capacité du condensateur $\frac{1}{C}$

Inductance L

Pulsation propre
$$\omega_0 = \sqrt{\frac{1}{LC}}$$

$$\mathcal{E}_{\text{stock\'ee dans C}} = \frac{1}{2} \frac{q^2}{C}$$

$$\mathcal{E}_{\text{stock\'ee dans L}} = \frac{1}{2}Li^2$$