Données:

Masses molaires: $M(H) = 1 \text{ g.mol}^{-1}$; $M(C) = 12 \text{ g.mol}^{-1}$; $M(N) = 14 \text{ g.mol}^{-1}$; $M(O) = 16 \text{ g.mol}^{-1}$; $M(Na) = 23 \text{ g.mol}^{-1}$; $M(Mg) = 24 \text{ g.mol}^{-1}$; $M(S) = 32 \text{ g.mol}^{-1}$; $M(Cl) = 35 \text{ g.mol}^{-1}$; $M(Ca) = 40 \text{ g.mol}^{-1}$; M(Zn) = 65 g/mol; $M(Fe) = 56 \text{ g.mol}^{-1}$.

Constante des gaz parfaits : $R = 8,314 \text{ J.K}^{-1}.\text{mol}^{-1}$.

Nombre d'Avogadro : $Na = 6.02 \cdot 10^{23} \cdot mol^{-1}$

Pour un gaz parfait : PV = nRT (P en Pa ; V en m³ ; n en mol ; T en K)

Partie 1 : Description d'un système chimique

☐ Exercice 7.1 Calculer une masse volumique et une concentration

Compléter les valeurs manquantes du tableau pour les liquides donnés :

Liquides	M	ρ (kg.m ⁻³)	N	V(mL)	m (g)	С
	(g.mol ⁻¹)		(mol)			(mol.L ⁻¹)
Ethanol		0,79		15		
C_2H_6O						
Dichlorométhane		1,3	2,0 x 10 ⁻²			
CH_2Cl_2			10^{-2}			

☐ Exercice 7.2. Préparation d'un solution par dissolution

Une solution d'eau sucrée a été préparée par dissolution de $m_0=12$ g de saccharose $C_{12}H_{22}O_{11}$ pour obtenir un volume total de solution $V_0=100$ mL. La masse de la solution obtenue vaut $m_1=103,92$ g.

- 1 Calculer la masse volumique ρ de la solution d'eau sucrée.
- 2 Calculer la concentration en masse en saccharose C_m.
- 3 Calculer la concentration molaire en saccharose C.

$\hfill \square$ Exercice 7.3. Préparation d'un solution par dilution

On dissout 100g de soude $NaOH_{(s)}$ dans une fiole jaugée de V_0 = 100 mL et on souhaite préparer un volume V_1 = 200 mL de solution diluée 20 fois.

- 1 Calculer la concentration molaire en soude C.
- 2 Calculer le volume de soude à prélever pour réaliser cette dilution.

☐ Exercice 7.4. Mélange gazeux

On considère la salle de classe des PTSI, remplie d'air sous $T=25^{\circ}C$ et P=1,0 bar. En assimilant l'air du mélange à 80% $N_2+20\%$ O_2 (en fraction molaire).

- 1 Calculer la masse molaire M du mélange gazeux.
- $\bf 2$ En déduire la masse volumique ρ du mélange gazeux.
- **3** Calculer les pressions partielles en diazote P_{N_2} et en dioxygène P_{O_2} .
- **4** Calculer les concentrations molaires en diazote C_{N_2} et en dioxygène C_{O_2} .
- **5** Calculer les concentrations massiques en diazote η_{N_2} et en dioxygène η_{O_2} .

\square Exercice 7.5. Fraction massique et fraction molaire

On considère de l'eau de mer, la fraction massique de sel NaCl est $w_{NaCl} = 2.8\%$ (c'est-à-dire que 100g de ce mélange contient 2,8g de NaCl).

- 1 Calculer la fraction massique de l'eau dans ce mélange.
- 2 Calculer la fraction molaire de sel dans l'eau salée.

☐ Exercice 7.6. Exercice bilan

On veut préparer une solution à la concentration molaire $1,00\cdot 10^{-3}\,\mathrm{mol}\cdot\mathrm{L}^{-1}$ de sel de Glauber (sulfate de sodium pentahydraté $\mathrm{Na_2SO_4},10\mathrm{H_2O_{(s)}}$). On donne les masses molaires $M_\mathrm{Na}=23\,\mathrm{g}\,\cdot\mathrm{mol}^{-1}$ et $M_\mathrm{S}=32\,\mathrm{g}\,\cdot\mathrm{mol}^{-1}$. Quelle masse doit-on dissoudre dans une fiole jaugée de $100\,\mathrm{mL}$? Quelle est alors la concentration massique de la solution? La concentration molaire en ions $\mathrm{Na^+}$?

Partie 2 : Décrire l'évolution d'un système chimique

☐ Exercice 7.7. Tableau d'avancement 1

L'équation de la réaction entre 2,5 x 10^{-3} mol de diiode $I_{2(aq)}$ et 4,0 x 10^{-3} mol d'ions thiosulfates $S_2O_3^{2-}{}_{(aq)}$ est :

$$..I_{2(aq)} + ...S_2O_3^{2-}{}_{(aq)} = ..I_{(aq)} + ...S_4O_6^{2-}{}_{(aq)}$$

- 1 Compléter l'équation de la réaction ci-dessus :
- 2 Construire le tableau d'avancement associé.
- 3 Préciser si le mélange initial est stœchiométrique.
- **4** En supposant la réaction totale, déterminer la composition finale du mélange.

☐ Exercice 7.8. Tableau d'avancement 2

Pour chacune des transformations chimiques proposées :

- 1 Ecrire l'équation bilan de la réaction.
- 2 Dresser le tableau d'avancement associé.
- 3 Donner la composition chimique du système dans l'état initial et l'état final
- a) Transformation chimique totale entre l'acide sulfurique $H_2SO_{4(aq)}$ et l'eau qui forme des ions sulfate So_4^{2-} (aq) et des ions oxonium H_3O^+ (aq).

On introduit une quantité $n_0 = 1.0 \times 10^{-2}$ mol d'acide sulfurique dans 200 mL d'eau. (*Pour cette réaction, calculer le pH à l'état final.*)

b) Transformation détonante et totale entre le dihydrogène $H_{2(g)}$ et le dioxygène $O_{2(g)}$ qui produit de l'eau.

On réalise cette réaction avec initialement $n_1 = 3$ mol de dihydrogène et $n_2 = 2$ mol de dioxygène.

c) Equilibre chimique en phase gazeuse entre le dioxyde d'azote $NO_{2(g)}$ et le peroxyde d'azote $N_2O_{4(g)}$, réalisée dans une cuve ne contenant initialement que le dioxyde d'azote, de volume 1,0 m³ et à la température 300 K. La pression est initialement de 1,0 bar. Une fois la réaction finie elle se stabilise à 0,76 bar.

Partie 3 : Prévoir l'évolution d'un système chimique

☐ Exercice 7.9. Calculer une constante d'équilibre

On s'intéresse dans un premier temps à une solution aqueuse obtenue à 298 K par mélange d'acide éthanoïque $\mathrm{CH_3COOH}$ (concentration après mélange $c_1=0.10\,\mathrm{mol\cdot L^{-1}}$) et d'ions fluorure F⁻ (concentration après mélange $c_2=0.05\,\mathrm{mol\cdot L^{-1}}$). La réaction (1) susceptible de se produire s'écrit :

(1)
$$CH_3COOH(aq) + F^-(aq) = CH_3COO^-(aq) + HF(aq).$$

On donne les constantes d'équilibre K_2° et K_3° relatives aux équilibres (2) et (3) suivants à 298 K :

(2)
$$CH_3COOH(aq) + H_2O = CH_3COO^-(aq) + H_3O^+(aq)$$

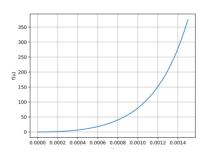
(3)
$$HF (aq) + H_2O = F^-(aq) + H_3O^+(aq)$$

$$K_2^{\circ} = 10^{-4.8} \text{ et } K_3^{\circ} = 10^{-3.2}.$$

- **1.** Calculer la constante d'équilibre à 298 K notée K_1° relative à l'équilibre (1) étudié (réaction entre l'acide éthanoïque et les ions fluorure).
- **2.** Déterminer l'état d'équilibre (état final) de la solution issue du mélange de l'acide éthanoïque CH₃COOH et des ions fluorure F⁻.

☐ Exercice 7.10. Rupture d'équilibre thermodynamique

On considère la dissociation du calcaire (carbonate de calcium) en chaux (oxyde de calcium) à la température $T=1100\,\mathrm{K}$:


$$CaCO_{3(s)} \rightleftharpoons CaO_{(s)} + CO_{2(g)}$$
 $K^0 = 0,358$

Dans un récipient préalablement vide de volume $V=10\,\mathrm{L}$, on introduit 2,0 mmol de calcaire à température fixée égale à $1100\,\mathrm{K}$. Déterminer le sens d'évolution et l'état final.

☐ Exercice 7.11. Equilibre en phase gazeuse (difficile)

On étudie la réaction $2\ NO_{(g)} + Br_{2(g)} = 2\ NOBr_{(g)}$. Considérons un réacteur fermé de volume constant V=2 L maintenu à température constante T=60 °C. À cette température, la constante thermodynamique de l'équilibre précédent vaut $K^\circ=13,2$. On y introduit $n_1=7\times 10^{-3}$ mol de NO et $n_2=3\times 10^{-3}$ mol de Br_2 . On donne R=8,314 J.K⁻¹.mol⁻¹.

- 1. Calculer la pression initiale p_0 dans le réacteur.
- 2. Construire le tableau d'avancement relatif à cette réaction. On ajoutera une colonne n_{tot} qui contient la quantité de matière totale de gaz.
- 3. Exprimer les pressions partielles des gaz en fonction de n_1 , n_2 , de l'avancement ξ et de la pression initiale p_0 .
- 4. Établir l'équation qu'il faudrait résoudre pour déterminer l'avancement ξ_f dans l'état final.
- **5.** En vous aidant du tracé de la fonction $f(u)=\frac{4u^2}{(n_1-2u)^2(n_2-u)}$ ci-contre (où u est en moles), déterminer la valeur de ξ_f .
- 6. Calculer la pression régnant dans le réacteur à l'équilibre.

