TP6 bis

DÉTERMINATION D'UNE CONSTANTE D'ACIDITÉ

Objectif : Mettre en évidence l'existence d'une constante d'équilibre de la réaction d'un acide faible avec l'eau

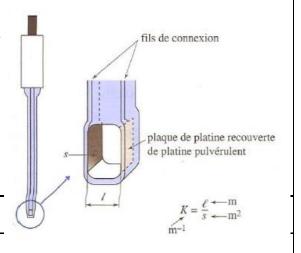
Document 1 : Conductivité d'une solution

La présence d'ions dans une solution assure le caractère conducteur de la solution. On parle d'électrolyte. La **conductivité** de la solution dépend de la nature de la solution ionique, de la concentration des ions et de la température de la solution.

Pour une solution ionique diluée contenant des ions X_i à la concentration $[X_i]$, la conductivité σ de la solution vaut :

$$\sigma = \sum_{i} \lambda_{i} \left[X_{i} \right]$$

avec σ en S.m⁻¹, λ_i conductivité ionique molaire en S.m².mol⁻¹, et $[X_i]$ en mol/m³ (= 1000 × $[X_i]$ en mol. L⁻¹). C'est la <u>loi de Kohlrausch</u>


Document 2 : Le conductimètre

Un conductimètre est un ohmmètre alimenté en courant alternatif. Il permet de mesurer la conductance G de la solution piégée dans la cellule de mesure. Celle-ci est constituée d'un corps en verre ou en plastique supportant deux plaques de platine parallèles. Ces plaques de surface S et distantes de ℓ délimitent le volume V de solution à étudier.

La **conductance** G de la solution électrolytique piégée dans la cellule de mesure du conductimètre s'exprime en fonction de la surface des électrodes et de la distance qui les sépare par la relation :

$$G = \frac{I}{U} = \sigma \cdot \frac{S}{\ell} = \frac{\sigma}{K}$$

Où K est la constante de cellule

Document 3: Matériel à disposition

Solution:

Acide éthanoïque à 0.10 mol.L⁻¹

Matériel:

- 4 béchers de 100 mL
- 1 pipette graduée de 20 mL
- Pipettes jaugée de 10 mL et 20 mL à 2 traits de jauge
- Fioles jaugées: 20 mL, 50 mL, 100 mL
- 1 propipette
- Conductimètre

I. Questions préliminaires

On s'intéresse à la réaction de l'acide méthanoïque de formule CH_3COOH avec la base H_2O .

- 1. Écrire l'équation de la réaction lors de la mise en solution de l'acide.
- 2. La transformation étant instantanée, dans quel état est-on assuré d'étudier le système ?

On introduit une quantité de matière n_i d'acide éthanoïque dans de l'eau, le volume total de la solution obtenue est V. On note C_i la concentration molaire en acide introduit dans la solution.

- 3. Établir le tableau d'avancement de la réaction en concentration en notant x_f l'avancement volumique final de la réaction.
- **4.** Exprimer le quotient de réaction à l'équilibre en fonction de C° , C_i et x_f .
- 5. On pose : $\lambda_t = \lambda_{CH_3COO^-} + \lambda_{H_3O^+}$. En vous aidant du document fourni, exprimer la conductivité σ_f de la solution à l'équilibre en fonction de λ_t et x_f .
- **6.** Déduire de la question précédente que le quotient de réaction final en fonction de $\sigma_f \lambda_t$, C_i et C° s'écrit :

$$Q_{r,f} = \frac{\left(\frac{\sigma_f}{\lambda_t}\right)^2}{\left(C_i - \frac{\sigma_f}{\lambda_t}\right) \times C^\circ}$$

II. Préparation des solutions étalons

On dispose de la solution mère S_0 d'acide éthanoïque de concentration en soluté $C_0 = 1,0.10^{-1}$ mol.L⁻¹.

1. Indiquer la verrerie nécessaire pour préparer à partir de cette solution mère, V = 100,0mL des solutions S_1 , S_2 et S_3 et justifier ce choix :

Solution fille	S_1	S_2	S_3
Concentration (mol.L ⁻¹)	$C_1 = 5,0.10^{-2} \text{ mol.L}^{-1}$	$C_1 = 2,0.10^{-2} \text{mol.L}^{-1}$	$C_1 = 1,0.10^{-2} \text{mol.L}^{-1}$
Volume de solution mère à prélever (mL)			

- 2. Réaliser les dilutions (une dilution par binôme).
- 3. Mesurer la conductivité de chacune des solutions et compléter le tableau suivant :

Concentration (mol.L ⁻¹)	C_1	C_2	C ₃
Conductivité σ (mS.cm ⁻¹)			

III. Préparation des solutions étalons

- 1. A l'aide de la question I.7, calculer pour chaque solution, la valeur du quotient de réaction à l'équilibre.
- 2. On appelle constante d'acidité K_a du couple $CH_3COOH/CH_3COO^ pK_a$ la valeur prise pour le quotient de réaction à l'équilibre. On définit ensuit le pK_a par : $pK_a = -\log K_a$. Calculer la valeur du pK_a obtenue pour les 3 solutions S_1 , S_2 et S_3 .
- 3. Comparer les valeurs obtenues entre elles puis avec la valeur théorique $pK_a(CH_3COOH/CH_3COO^-) = 4,76$

 $\underline{\textit{Donn\'ees}}: \textit{Conductivit\'es ioniques molaires limite}: \lambda_{H_3O^+} = 34,98~\text{mS.m}^2.\text{mol}^{-1}~;~\lambda_{CH_3COO^-} = 4,09~\text{mS.m}^2.\text{mol}^{-1}$

2