DS N°3 de physique-chimie

Durée: 3h

L'usage de calculatrices est autorisé.

AVERTISSEMENT

La **présentation**, la lisibilité, l'orthographe, la qualité de la **rédaction**, la clarté et la **précision** des raisonnements entreront pour une **part importante** dans **l'appréciation des copies**. En particulier, les résultats non justifiés ne seront pas pris en compte. Les candidats sont invités à encadrer les résultats de leurs calculs.

Exercice n°1: Oxydation du monoxyde de cobalt

Le tétraoxyde de tricobalt solide $Co_3O_{4(s)}$ est un intermédiaire important dans la synthèse de cobalt métallique. On l'obtient par réaction entre le monoxyde de cobalt solide $CoO_{(s)}$ et le dioxygène gazeux $O_{2(g)}$ (chauffage à l'air libre).

On peut approximer la composition de l'air à 20% en O_2 et 80% en N_2 (Les pourcentages sont des fractions molaires).

1. Ecrire et équilibrer l'équation de réaction permettant d'obtenir le tétraoxyde de tricobalt Co₃O_{4(s)}.

$$6 CoO_{(s)} + O_{2(a)} = 2Co_3O_{4(s)}$$

On se place dans à T_0 = 850 °C, la constante d'équilibre à cette température vaut K° = 0,75.

Dans un volume V_0 = 10,0 L initialement vide, on introduit une masse m_1 de 75 g de $CoO_{(s)}$ puis on branche un tuyau d'air comprimé (considéré comme un gaz parfait) jusqu'à équilibrer la pression à P_0 = 14 bar.

2. Calculer la masse molaire monoxyde de cobalt.

$$M(CoO) = 59+16 = 75 \text{ g.mol}^{-1}$$

3. Exprimer puis calculer la quantité de matière n₁ de monoxyde de cobalt initiale.

$$n_1 = m_1 / M(CoO) = 75/75 = 1,0 mol$$

4. Exprimer puis calculer la quantité de matière n_{air} introduite dans le récipient. En déduire la quantité de dioxygène introduite n₂.

$$\begin{split} P_0V_0 &= n_{air}RT_0\\ n_{air} &= \frac{P_0V_0}{RT_0}\\ n_{air} &= \frac{14\times 10^5\times 10\times 10^{-3}}{8,31\times (850+273)} = 1,50\ mol\\ n_2 &= x_{O_2}\times n_{air} = 0,20\times 1,50 = 0,30\ mol \end{split}$$

5. Etablir le tableau d'avancement (en quantité de matière) de la réaction.

	6 CoO _(s)	$O_{2(g)}$	$2Co_3O_{4(s)}$
EI	n_1	n_2	0
EI	$n_1-6\xi$	$n_2-\xi$	2 <i>ξ</i>
EF	$n_1 - 6\xi_f$	$n_2 - \xi_f$	$2\xi_f$

6. Exprimer puis calculer le quotient réactionnel à l'instant initial.

$$Q = \frac{\alpha_{Co_3O_{4(s)}}^2}{\alpha_{O_{2(g)}}^1\alpha_{CoO_{(s)}}^6}$$

$$Q = \frac{P^{\circ}}{P_{O_2}}$$

$$Q = \frac{P^{\circ}}{x_{O_2} \times P_0} = \frac{1}{0.2 \times 14} = 0.36$$

7. En déduire dans quel sens évolue le système chimique.

 $Q < K^{\circ}$, on déduit que le système évolue dans le sens direct.

8. Montrer que l'avancement à l'équilibre vaut $\xi_f=0.16~\mathrm{mol}.$

A l'équilibre:

$$Q = K^{\circ} = \frac{P^{\circ}}{P_{O_2,eq}}$$

$$P_{O_2,eq} = \frac{P^{\circ}}{K^{\circ}} = \frac{1}{0.75} = 1.3 \ bar$$

$$n_{O_2,eq} = \frac{P_{O_2,eq}V_0}{RT_0} = \frac{1.3 \times 10 \times 10^{-3}}{8.31 \times (850 + 273)} = 0.14 \ mol$$

On déduit ξ_f grâce au tableau d'avancement :

$$n_2 - \xi_f = n_{O_2,eq}$$

$$\xi_f = n_2 - \, n_{O_2,eq} = 0.3 - 0.14 = 0.16 \, mol$$

9. Déterminer la masse m₃ de tétraoxyde de tricobalt solide produite.

$$M(Co_3O_4) = 3\times59+4\times16 = 241 \text{ g.mol}^{-1}$$

 $m_3 = 2\xi_f \times M(Co_3O_4) = 2\times0,16\times241 = 77,1 \text{ g}$

10. Partant des mêmes quantités de matière initiales n_1 = 1,0 mol et n_2 = 0,30 mol à la même température T_0 , montrer que la réaction n'a pas lieu pour un volume de récipient $V > V_2$. Exprimer puis calculer V_2 .

La réaction n'a pas lieu si Q > K°:

$$\frac{P^{\circ}}{P_{O_2}} > K^{\circ}$$

$$\frac{V \times P^{\circ}}{n_{O_2} \times R \times T} > K^{\circ}$$

$$V > \frac{K^{\circ} \times n_{O_2} \times R \times T}{P^{\circ}}$$

$$V > \frac{0,75 \times 0,3 \times 8,31 \times (850 + 273)}{1}$$

$$V > V_2 = 20 L$$

La réaction n'a pas lieu pour un volume supérieur à $V_2 = 20$ L.

11. Partant des mêmes quantités de matière initiales $n_1 = 1,0$ mol et $n_2 = 0,30$ mol à la même température T_0 , montrer qu'il est possible d'aboutir à une rupture d'équilibre (le réactif solide est entièrement consommé avant que la réaction n'atteigne l'état d'équilibre) pour un volume de récipient $V < V_1$. Exprimer puis calculer V_1 .

Il y a rupture d'équilibre pour $\xi_{max} < \xi_{ea}$.

$$\begin{split} \frac{n_1}{6} &< \xi_{eq} \\ \frac{n_1}{6} &< n_2 - n_{O_2,eq} \\ \frac{n_1}{6} &< n_2 - \frac{P_{O_2,eq}V_0}{RT_0} \\ \frac{n_1}{6} &< n_2 - \frac{V}{RT_0} \frac{P^\circ}{K^\circ} \\ \frac{V}{RT_0} \frac{P^\circ}{K^\circ} &< n_2 - \frac{n_1}{6} \\ V &< (n_2 - \frac{n_1}{6}) \times \frac{T_0 RK^\circ}{P^\circ} \\ V &< V_1 = 9,3 L \end{split}$$

Il y a rupture d'équilibre pour un volume inférieur à $V_1 = 9.3$ L.

12. Représenter graphiquement l'avancement final en fonction du volume V de l'enceinte, toujours pour les mêmes quantités de matière et la même température. Indiquer les domaines correspondant à l'absence de réaction, à une réaction équilibrée, ou à une rupture d'équilibre.

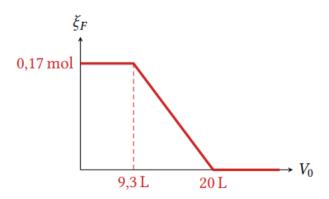
Pour les faibles volumes, inférieurs à 9,3 L, le CoO est totalement consommé, donc

$$\frac{n_1}{6} = \xi_{max} = 0.17 \ mol$$

Pour les volumes intermédiaires, la réaction est équilibrée. Les relations établies question 2 restent valables. La courbe est donc affine décroissante puisque :

$$\xi_f = n_2 - n_{O_2,eq} = n_2 - \frac{P_{O_2,eq}V}{RT_0} = n_2 - \frac{P^{\circ}}{RT_0K^{\circ}} \times V$$

Enfin, pour les grands volumes, supérieurs à 20 L la réaction ne peut pas avoir lieu et on a simplement $\xi_f=0$. On en déduit le tracé suivant.



Exercice n°2: Dismutation de l'eau oxygénée

1.
$$v = \frac{1}{\nu_{H_2O_2}} \frac{d[H_2O_2]}{dt} = -\frac{d[H_2O_2]}{dt} = k[H_2O_2]^p$$
, p étant l'ordre de la réaction, et k la constante de vitesse associée.

Dans le cas d'un ordre 1, on peut écrire v = k[H₂O₂] donc l'équation différentielle associée est :

$$\boxed{\frac{d[H_2O_2]}{dt} + k[H_2O_2] = 0}$$

La solution de cette équation est : $[H_2O_2](t) = [H_2O_2]_0 \exp(-kt)$, $[H_2O_2]_0$ étant la concentration initiale en eau oxygénée.

3. Dans l'hypothèse d'un ordre 2, on a $v = k[H_2O_2]^2$ et l'équation diffénretielle associée est :

$$\frac{d[H_2O_2]}{dt} + k[H_2O_2]^2 = 0$$

 $\boxed{\frac{d[H_2O_2]}{dt}+k[H_2O_2]^2=0}$ La solution de cette équation différentielle est : $\boxed{\frac{1}{[H_2O_2](t)}=\frac{1}{[H_2O_2]_0}+kt}$

4. Si la cinétique est d'ordre 1, alors on peut écrire :

$$\ln[H_2O_2](t) = \ln[H_2O_2]_0 - k \times t$$

Dans ce cas, le logarithme de $\ln[H_2O_2](t)$ est donc une fonction affine décroissante du temps. On identifie -k comme le coefficient directeur de cette droite.

Si la cinétique est d'ordre 2, l'inverse de la concentration en eau oxygénée est une fonction affine croissante du temps, où k est le coefficient directeur de cette droite.

Ainsi, on teste les deux hypothèses avec les données expérimentales en traçant les courbes $\ln[H_2O_2] = f(t)$ et $\frac{1}{[H_2O_2]} = g(t)$. Si

En testant les deux hypothèses, on verra que la courbe $ln[H_2O_2] = f(t)$ est bien une droite, donc p = 1k étant la pente, on peut le déterminer soit avec la calculatrice en faisant une régression linéaire, soit graphiquement en calculant la pente « à la main ». À la main, on trouve :

$$k = -\frac{-4,7 - (-2,6)}{35 - 0} = 0,060 \text{ min}^{-1}$$

5. Le temps de demi-réaction $t_{1/2}$ est le temps au bout duquel la moitiée du réactif (ici l'eau oxygénée) a été consommé.

À $t = t_{1/2}$, $[H_2O_2](t_{1/2}) = \frac{[H_2O_2]_0}{2}$. Soit $[H_2O_2]_0 \exp(-kt_{1/2} = [H_2O_2]_0$. Tout calcul fait, on trouve :

$$t_{1/2} = \frac{\ln 2}{k} = 12 \text{ min}$$

- 6. $\ln[H_2O_2](t_{1/2}) = \ln[H_2O_2]_0 kt_{1/2} = \ln[H_2O_2]_0 \ln 2 = -2, 6 0, 7 = -3, 3.$ On cherche le point de la droite d'ordonnée 3,3 puis on lit son abscisse : $t_{1/2} \simeq 11, 7 \text{ min}$. Le résultat expérimental est cohérent avec le résultat théorique.
- 7. La loi d'Arrhénius s'écrit : $k=Ae^{\frac{-E_a}{RT}}$, avec A le fracteur pré-exponentielle s $^{-1}$, Ea l'énergie d'activation J.mol⁻¹, R la constante des gaz parfait J.mol⁻¹.K⁻¹, T la température K.

8.

$$\frac{k'}{k} = e^{\frac{-E_a}{R}(\frac{1}{T_2} - \frac{1}{T_1})}$$

$$k' = 0.060 \times e^{\frac{-75 \times 10^3}{8.31}(\frac{1}{8 + 273} - \frac{1}{25 + 273})} = 9.6 \times 10^{-3} min^{-1}$$

$$t_{1/2} = \frac{\ln(2)}{k'} = \frac{\ln(2)}{9.6 \times 10^{-3}} = 72 \text{ min}$$

On conclut que le temps de demi réaction est multipliée par environ 7 en plaçant la bouteille au réfrigérateur, cependant 72 min n'est pas assez élevé pour concerver l'eau oxygénée à l'échelle temps du quotidien.

9. On ajoute de l'eau pour avoir un volume suffisant pour placer un agitateur magnétique dans la solution titrée. On ajoute de l'acide car la réaction consomme des ions H_30^+ .

10.

- **11.** Il s'agit d'un titrage colorimétrique, on repere l'équivalence par le passe de la solution du violet à l'incolore.
- **12.** Les proportions stoechiométriques : Les réactifs sont introduits dans les proportions de l'équation de l'équation de réaction.

A l'équivalence :

$$\frac{C_1V_1}{5} = \frac{C_2V_{eq}}{2}$$

13.

$$C_1 = \frac{5 \times C_2 V_{eq}}{2 \times V_1}$$

$$C_1 = \frac{5 \times 1,0 \times 10^{-3} \times 16,8}{2 \times 1} = 4,2 \times 10^{-2} \ mol. L^{-1}$$

14.

La difficulté dans ce titrage réside dans le fait qu'il doit être réaliser rapidement car l'eau oxygénée se dégrade.