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Expérience introductive : circuit RLC série soumis à une excitation sinusoïdale 

 

On observe la tension 𝑢r(𝑡) aux bornes de la résistance 
dans un circuit RLC série alimenté par un GBF qui délivre 
un signal sinusoïdal. 
 

En faisant varier la fréquence d'excitation 𝑓 du GBF, on observe : 
 

- La tension aux bornes de la résistance est sinusoïdale à la même fréquence que 
l’excitation (il en est de même que toutes les grandeurs électriques du circuit). 

- L'amplitude et la déphasage dépendent de la fréquence (cf. illustrations ci-dessous) 
-  

 
On constate qu'il existe certaines fréquences d'excitation qui maximisent l'amplitude du signal 
de réponse. Si de telles fréquences existent, on parle alors de phénomène de résonance. 

 

Cadre de l’étude : 
 
La réponse d’un système linéaire soumis à une excitation sinusoïdale est décrit par une l'équation 
différentielle de la forme : 

∑𝒂𝒌
𝒅𝒌𝒖

𝒅𝒕𝒌
= 𝑬𝟎𝐜𝐨𝐬⁡(𝒕)

𝑘

,⁡⁡⁡⁡⁡⁡⁡⁡⁡avec⁡ = 𝟐𝒇 

La solution générale de cette équation différentielle linéaire est la somme de deux contributions: 
 

- La solution de l'équation homogène 𝑢𝐻(𝑡), qui tend vers 0 à la fin du régime transitoire. 
- La solution particulière 𝑢𝑃(𝑡), que l’on cherche de forme sinusoïdale à la pulsation 

imposée 𝜔, qui reste seule contribution de la réponse du système une fois le régime 
permanent atteint. 

 
Nous allons étudier le régime sinusoïdal forcé (RSF), c'est-à-dire le comportement au cours du 
temps du système en régime permanent (une fois le régime transitoire terminé).  
 
Dans ce régime, la réponse d’un système dépend de la fréquence d'excitation 𝑓 = 𝜔/2𝜋.  
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I] Première tentative de résolution : Exemple du circuit RLC série     

 

On considère le circuit RLC ci-dessous alimenté par 
un générateur idéal qui délivre une tension sinusoïdale : 

E(t) = E0 cos(t). 
 
On s’intéresse uniquement à la réponse (tension au borne de C) en régime permanent.  

 

Trouvons l’équation différentielle du circuit : 
 

{
 
 

 
 
𝒖 + 𝒖𝑳 + 𝒖 = 𝑬(𝒕)

𝒖𝑳 = 𝑳
𝒅𝒊

𝒅𝒕

𝒊 = 𝑪
𝒅𝒖

𝒅𝒕
𝒖 = 𝑹𝒊

 

 

𝑳𝑪
𝒅𝟐𝒖

𝒅𝒕𝟐
+𝑹𝑪

𝒅𝒖

𝒅𝒕
+ 𝒖 = 𝑬𝐜𝐨𝐬⁡(𝒕) 

 
Cherchons une solution particulière 𝒖(𝒕) (solution en régime permanent) de cette équation sous 
forme d’une fonction sinusoïdale à la même fréquence avec une amplitude 𝑼𝟎() et une phase 
à l’origine () qui dépendent de la fréquence. Cette solution s’écrit : 
 

𝒖(𝒕) = 𝑼𝒄𝒐𝒔(𝒕 + ) 
 
Dérivons la solution pour l’injecter dans l’équation différentielle :  
 

𝒅𝒖

𝒅𝒕
(𝒕) = −𝑼⁡𝒔𝒊𝒏(𝒕 + ) 

 

𝒅𝟐𝒖

𝒅𝒕𝟐
(𝒕) = −𝑼𝟐𝒄𝒐𝒔(𝒕 + ) 

 
On obtient : 
 

𝑳𝑪 × [−𝑼𝟐𝒄𝒐𝒔(𝒕 + )] + 𝑹𝑪 × [−𝑼⁡𝒔𝒊𝒏(𝒕 + )] + 𝑼𝒄𝒐𝒔(𝒕 + ) = 𝑬𝐜𝐨𝐬⁡(𝒕) 
 

Cette équation est difficile à résoudre (i.e. : trouver 𝑼() et ()) car elle fait intervenir des 
fonctions sinusoïdales avec des phases à l’origine différentes.  
 
Pour simplifier la mise en équation et la résolution, on va utiliser une outil mathématique efficace 
introduit par le physicien Heaviside (1850-1925), la représentation complexe.  
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II] Représentation complexe d’un signal sinusoïdal 

1. Définition 

On associe à un signal sinusoïdal réel 𝑠(𝑡) = Acos(𝜔𝑡+𝜑) d'amplitude 𝐴, de phase 𝜔𝑡+𝜑 et de 
moyenne nulle, une représentation complexe notée 𝒔, de module 𝐴 et d'argument 𝜔𝑡 + 𝜑 : 
 

𝒔(𝒕) = 𝑨𝒆𝒋(𝛚𝐭⁡+⁡𝛗⁡) 
 

On définit l'amplitude complexe du signal 𝑺 = 𝑨𝒆𝒋𝛗 comme étant la grandeur complexe 

contenant l’information d’amplitude A et de phase à l’origine 𝛗 du signal : 
 

𝒔(𝒕) = 𝑨𝒆𝒋(𝛚𝐭⁡+⁡𝛗⁡) = 𝑨𝒆𝒋𝛗𝒆𝒋𝛚𝐭 = 𝑺𝒆𝒋𝛚𝐭  

 
Pour retrouver la représentation temporelle du signal à partir de sa représentation complexe, on 
calcule le module A et l'argument 𝛗 de l’amplitude complexe : 
 

|𝒔(𝒕)| = |𝑺| = 𝑨 

 

𝒂𝒓𝒈(𝑺) = 𝝋 

 
Ainsi la connaissance de l’amplitude complexe 𝑺 donne accès aux deux grandeurs inconnues du 

signal s(t) : son amplitude A et sa phase à l’origine ϕ. 
 
La représentation complexe repose sur la linéarité. Son usage est donc à proscrire pour les 

grandeurs qui ne le sont pas comme les grandeurs énergétiques (Exemple : 𝐸𝐶 =
1

2
𝐶𝑈2). Pour 

calculer ce type de grandeur il faut impérativement retourner en représentation temporelle. 
 

2. Propriétés 

a. Dérivation 

En représentation complexe, l'opération de dérivée correspond à une multiplication par j𝜔 : 

𝒅

𝒅𝒕
(𝒔) = 𝒋𝛚𝒔 

 
 
Preuve : La dérivée d'un signal sinusoïdal, en représentation temporelle s'écrit : 
 

𝒅𝒔

𝒅𝒕
=
𝒅

𝒅𝒕
(𝑨𝒄𝒐𝒔(𝝎𝒕 + 𝝋)) = −𝑨𝝎𝒔𝒊𝒏(𝝎𝒕 + 𝝋) = 𝑨𝝎𝒄𝒐𝒔(𝝎𝒕 + 𝝋 +



𝟐
) 

 
On en conclut que l’opération de dérivée temporelle correspond à une multiplication de 
l'amplitude par 𝜔 et un ajout de déphasage 𝜋/2. En représentation complexe, en appliquant les 

même opération au signal 𝒔(𝒕) = 𝑨𝒆𝒋(𝛚𝐭+𝝋)⁡, il vient :  

 
𝒅

𝒅𝒕
(𝒔) =

𝒅

𝒅𝒕
(𝑨𝒆𝒋(𝛚𝐭+𝝋)⁡) = 𝒋𝛚𝐀𝒆𝒋(𝛚𝐭+𝝋) = 𝒋𝛚𝒔 
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b. Intégration 

De la même façon, en représentation complexe, primitiver un signal revient à le diviser par j𝜔 : 

∫𝒔⁡𝒅𝒕 =
𝟏

𝒋𝛚
⁡𝒔 

 
Enoncé : Démontrer cette propriété. 
 
Correction :  

∫𝒔⁡𝒅𝒕 =∫𝑨𝒆𝒋(𝝎𝒕+𝝋)⁡𝒅𝒕 =𝑨𝒆𝒋𝝋∫𝒆𝒋𝝎𝒕⁡𝒅𝒕 = 𝑨𝒆𝒋𝝋
𝒆𝒋𝝎𝒕

𝒋𝝎
=
𝟏

𝒋𝝎
𝒔⁡ 

 
a. Sommation  

La représentation complexe de la somme⁡𝒔(𝒕) de 𝒔𝟏(𝒕) ⁡= ⁡𝑨𝟏⁡𝒄𝒐𝒔(𝝎𝒕⁡ +⁡𝟏) et 𝒔𝟐(𝒕) ⁡=

⁡𝑨𝟐⁡𝒄𝒐𝒔(𝝎𝒕⁡ +⁡𝟐) est : 

 

⁡𝒔(𝒕) = 𝑨𝟏𝒆
𝒋(𝛚𝐭+⁡𝟏) + 𝑨𝟐𝒆

𝒋(𝛚𝐭+⁡𝟐) 

 

𝒔(𝒕) = (𝑨𝟏𝒆
𝒋𝟏 + 𝑨𝟐𝒆

𝒋𝟐)𝒆𝒋𝛚𝐭 

 

𝒔(𝒕) = (𝑺𝟏 + 𝑺𝟐)𝒆
𝒋𝛚𝐭 
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III] Loi d'Ohm généralisée : impédances complexes 

Pour des dipôles linéaires passifs (résistance, condensateur et bobine), la relation entre 𝑢(𝑡) et 
𝑖(𝑡) est une équation différentielle. La représentation complexe permet, en régime sinusoïdal 
forcé, de simplifier cette équation en une relation algébrique entre 𝑼 et 𝑰. 
 

1. Impédance complexe 

Pour ces dipôles en RSF, la tension complexe 𝑼 et l'intensité complexe 𝑰 sont reliées par la 

relation : 
𝑼 = 𝒁 × 𝑰 

 
Où⁡𝒁 est un nombre complexe appelé impédance complexe, homogène à une résistance (donc 
ayant pour unité le ohm Ω). Ceci généralise, en RSF et en représentation complexe, la loi d'Ohm 
à tout dipôle linéaire passif. 
 

2. Expressions courantes           

a. Résistance 

𝐮(𝐭) = ⁡𝐑 × 𝐢(𝐭) ⁡⁡⁡⇒ ⁡⁡⁡𝑼 = 𝑹 × 𝑰 ⁡⁡⁡⇒ ⁡⁡⁡ 𝒁𝑹 = 𝑹 

 
L’impédance de résistance est réelle, on en déduit que la tension à ses bornes et l’intensité la 
traversant sont en phase.  
 

b. Condensateur 

𝒊(𝐭) = ⁡𝐂
𝒅𝒖

𝒅𝒕
⁡⁡⁡⇒ ⁡⁡⁡ 𝑰 = 𝒋𝛚𝐂 × 𝑼⁡⁡⁡⇔ ⁡⁡⁡𝑼 =

𝟏

𝒋𝑪𝛚
× 𝑰 ⇒⁡⁡⁡ 𝒁𝑪 =

𝟏

𝒋𝑪𝛚
 

 
• Pour 𝛚 → 𝟎 (Basses fréquences), le régime sinusoïdal tend vers un régime stationnaire et le 
condensateur se comporte comme un interrupteur ouvert : 

|𝒁𝒄| =
𝟏

𝑪𝛚 𝛚→𝟎
→  ∞ 

• Pour 𝛚 → ∞ (Hautes fréquences), le condensateur se comporte comme un fil : 

|𝒁𝒄| =
𝟏

𝑪𝛚 𝛚→∞
→   𝟎 

 
c. Bobine idéale 

𝒖(𝐭) = ⁡𝐋
𝒅𝒊

𝒅𝒕
⁡⁡⁡⇒ ⁡⁡⁡𝑼 = 𝒋𝛚𝐋 × 𝑰 ⁡⁡⁡⇒ ⁡⁡⁡ 𝒁𝑳 = 𝒋𝑳𝛚 

• Pour 𝛚 → 𝟎 (Basses fréquences), le régime sinusoïdal tend vers un régime stationnaire et la 
bobine idéale se comporte comme fil : 

|𝒁𝑳| = 𝑳𝛚
𝛚→𝟎
→  𝟎 

• Pour 𝛚 → ∞⁡(Hautes fréquences), La bobine idéale se comporte comme un interrupteur ouvert.  

|𝒁𝑳| = 𝑳𝛚
𝛚→∞
→   ∞ 



Chapitre n°10           Oscillateurs en régime sinusoïdal forcé PTSI 

 

Chapitre n°10 – Oscillateurs en régime sinusoïdal forcé – PTSI  

Page 6/12 

Enoncé : Déterminer l’amplitude de la tension u dans les circuits ci-dessous aux basses et hautes 
fréquences.  
Tous les circuits sont alimentés par un générateur idéal de tension de f.é.m. e(t) = Ecos(ωt). 

 
 
Correction :  
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3. Généralisation des théorèmes : associations et ponts diviseurs 

Les théorèmes démontrés à partir de la loi d'Ohm peuvent être généralisées en régime sinusoïdal 
forcé avec la notation complexe (associations de dipôles équivalents et ponts diviseurs). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Enoncé : Pour chacun des circuits suivants, exprimer l’impédance complexe 𝒁𝑨𝑩 équivalente au 

dipôle AB. On notera ω la pulsation des grandeurs électriques. 

 
Correction : 
 
 

 
 

Enoncé : Etablir les expressions de 𝒖(𝒕) en fonction de 𝒆 = 𝑬𝟎𝒆
𝒋𝛚𝐭 pour les circuits ci-dessous.  

 

 

 

 

 

Correction : 
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III] Etude du RLC série en régime sinusoïdal forcé : résonance en tension    

1. Mise en équation           ★ 

 
On revient sur le problème du circuit RLC série 
alimenté par un générateur idéal qui délivre une 
tension sinusoïdale e(𝑡) = Ecos(𝜔𝑡). 
 
 
On s’intéresse à la réponse en tension 𝑢(𝑡) que l’on cherche sous la forme : 
 

𝒖(𝒕) = 𝑼𝒄𝒐𝒔(𝝎𝒕 + 𝝋) 
 
Pour poursuivre la résolution, on passe en représentation complexe (les grandeurs sont linéaires):  
  

𝒆(𝒕) = 𝑬𝒆𝒋𝛚𝐭 = 𝑬𝒆𝒋𝛚𝐭 

 

𝒖(𝒕) = 𝑼𝒆𝒋(𝛚𝐭+𝝋) = 𝑼𝒆𝒋𝛚𝐭,⁡⁡⁡avec⁡⁡⁡𝑼 = 𝑼𝒆𝒋𝝋⁡⁡⁡⁡⁡ 

 
On exprime l’amplitude complexe 𝑼⁡⁡grâce à un pont diviseur de tension : 

 

𝑼 =
𝒁𝑪

𝒁𝑳 + 𝒁𝑹 + 𝒁𝑪
× 𝑬⁡=

𝟏/𝒋𝑪

𝑹 + 𝒋𝑳+ 𝟏/𝒋𝑪
× 𝑬 =

𝟏

𝟏 − 𝑳𝑪𝟐 + 𝒋𝑹𝑪
× 𝑬⁡ 

 

On peut écrire ce résultat avec les paramètres canoniques 𝟎⁡et 𝑸 du RLC série :  
 

𝟎 =
𝟏

√𝑳𝑪
⁡⁡⁡⁡⁡et⁡⁡⁡⁡𝑸 = 𝟎

𝑳

𝑹
=
𝟏

𝑹
√
𝑳

𝑪
 

𝑼 =
𝟏

𝟏 − (

𝟎
)
𝟐

+ 𝒋

𝟎𝑸

× ⁡𝑬 

 

Pour alléger les calculs, on introduit la pulsation réduite 𝒙 =


𝟎
  (𝒙 est sans dimension et positif). 

 

𝑼 =
𝟏

𝟏 − 𝒙𝟐 + 𝒋
𝒙
𝑸

× 𝑬 

     

 

 

 

e(t) 
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2. Calcul d’amplitude et phase         ★ 

 
On étudie l'amplitude U(𝜔) et l'avance de phase 𝜑(𝜔) de la réponse en tension du RLC série : 
 
Calculons le module et l’argument de la tension complexe : 
 

𝐔 = |𝑼| =
𝟏

√(𝟏 − 𝒙𝟐)𝟐 + (
𝒙
𝑸)

𝟐

× ⁡𝑬 

 

𝝋 = 𝒂𝒓𝒈(𝑼) = −𝒂𝒓𝒈(𝟏 − 𝒙𝟐 + 𝒋
𝒙

𝑸
) 

On ne peut pas passer directement à l’arctangente pour calculer 𝒂𝒓𝒈(𝑼)⁡car la partie réelle de 

𝑼⁡peut-être négative, ainsi factorisons d’abord l’expression par 𝒋
𝒙

𝑸
 : 

 

𝝋 = −𝒂𝒓𝒈(𝒋
𝒙

𝑸
× (−𝒋𝑸

𝟏

𝒙
+ 𝒋𝑸𝒙 + 𝟏)) 

𝝋 = −𝒂𝒓𝒈(𝒋
𝒙

𝑸
× (𝟏 + 𝒋𝑸(𝒙 −

𝟏

𝒙
))) 

𝝋 = −𝒂𝒓𝒈(𝒋
𝒙

𝑸
) − 𝒂𝒓𝒈(𝟏 + 𝒋𝑸(𝒙 −

𝟏

𝒙
)) 

𝝋 = −


𝟐
− 𝒂𝒓𝒄𝒕𝒂𝒏(𝑸 (𝒙 −

𝟏

𝒙
)) 

 
 

3. Limites hautes et basses fréquences        ★ 

Enoncé : Déterminer les limites haute et basse fréquence de l’amplitude 𝐔 et de la phase 𝝋. 
 

Correction : 

Pour l’amplitude U : 
- A basse fréquence, soit 𝜔 ≪ 𝜔0 ou 𝒙 → 𝟎⁡, on a 𝐔 → 𝑬. Le condensateur se comporte 

comme un interupteur ouver et la réponse en tension « suit » l’excitation.  
- A haute fréquence, soit 𝜔 ≫ 𝜔0 ou 𝒙 →∞, on a 𝐔 → 𝟎. Le condensateur se comporte 

comme un fil et la réponse en tension tend vers 0. 
 
Pour l’avance de phase 𝝋 : 

- A basse fréquence, 𝝋 → 0 : la réponse u(t) est en phase sur e(𝑡). 
- A haute fréquence, 𝝋 → −𝜋 : la réponse u(t) est en opposition de phase sur e(𝑡). 

- Pour 𝜔 = 𝜔0 ou 𝒙 = 𝟏, on a 𝝋 = −


𝟐
 : la réponse u(t) est en opposition de phase sur e(𝑡). 
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4. Résonance           ★ 
 
Etudions les variations de l’amplitude U. Posons la fonction f(x) tel que : 
 

𝐔 =
𝑬

√𝒇(𝒙)
 

Soit :  

𝒇(𝒙) = (𝟏 − 𝒙𝟐)𝟐 + (
𝒙

𝑸
)𝟐 

 
Il y a résonance si 𝒇(𝒙) admet un minimum. Calculons sa dérivée et ses racines : 
 

𝒅𝒇

𝒅𝒙
= 𝟐(𝟏 − 𝒙𝟐)(−𝟐𝒙) +

𝟐𝒙

𝑸𝟐
= 𝟐𝒙(𝟐𝒙𝟐 +

𝟏

𝑸𝟐
− 𝟐) 

 
𝒅𝒇

𝒅𝒙
(𝒙𝒓) = 𝟎 ⇔ 𝒙𝒓

𝟐 = 𝟏 −
𝟏

𝟐𝑸𝟐
 

 
Il y a résonance si cette équation admet des solutions réelles, on en déduit la condition de 
résonance sur Q : 
 

𝟏 −
𝟏

𝟐𝑸𝟐
> 𝟎⁡⁡ ⇔⁡⁡

𝟏

𝟐𝑸𝟐
< 𝟏⁡⁡⇔ ⁡⁡𝟐𝑸𝟐 > 𝟏 

 

𝑸 >
𝟏

√𝟐
 

 
La pulsation de résonance 𝒓⁡est différente de la pulsation propre 𝟎 : 
 

𝒙𝒓 = √𝟏 −
𝟏

𝟐𝑸𝟐
⁡⁡⁡⇔ ⁡⁡𝒓 = 𝟎√𝟏−

𝟏

𝟐𝑸𝟐
 

 
Pour finir, on calcule la valeur du pic de tension à la résonance 𝐔𝒎𝒂𝒙 : 
 

𝐔𝒎𝒂𝒙 = 𝑼(𝒙𝒓) =
𝑬

√𝒇(𝒙𝒓)
 

 

𝒇(𝒙𝒓) = (𝟏 − (𝟏 −
𝟏

𝟐𝑸𝟐
))𝟐 +

𝟏

𝑸𝟐
(𝟏 −

𝟏

𝟐𝑸𝟐
) =

𝟏

𝑸𝟐
(𝟏 +

𝟏

𝟐𝑸𝟐
) 

 

𝐔𝒎𝒂𝒙 = 𝑸
𝑬

√𝟏 +
𝟏
𝟐𝑸𝟐

 

 
𝐔𝒎𝒂𝒙

𝑸≫𝟏
→  𝑸𝑬 
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On trace les évolutions de l’amplitude 𝐔 et de la phase 𝝋 en fonction de la pulsation 𝜔. 

 

IV] Etude du RLC série en régime sinusoïdal forcé : résonance en intensité (en exercice) 
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V] Analogie entre oscillateurs électrocinétique et mécanique 

 

Expérience de cours : 
 
On excite avec un déplacement sinusoïdal de la main un système masse-ressort. Appelons z(t) la 
position de la masse. 
 
On observe l’évolution de la position de la masse en fonction de la fréquence d’excitation : 
 

- A basse fréquence, la position de la masse suit le forçage. 
- A haute fréquence, la postions de la masse n’évolue pas. 
- Entre les deux, la masse oscille avec une amplitude maximale, il y a résonance en position. 

 
 
En rapprochant les équations différentielles des oscillateurs électrocinétiques et mécaniques, on 
peut dresser des analogies.  
 
La réponse en tension de l’oscillateur électrique est analogue à la réponse en position de 
l’oscillateur mécanique de même que la réponse en intensité est analogue à la réponse en vitesse.   
 

Grandeur Oscillateur mécanique Oscillateur électrocinétique 

Grandeurs 
cinématiques 

𝒛 𝒖 =
𝒒

𝑪
 

𝒛̇ =
𝒅𝒛

𝒅𝒕
 𝒊 =

𝒅𝒒

𝒅𝒕
 

Inertie 𝒎 𝑳 

Coefficient de 
rappel 

𝒌 
𝟏

𝑪
 

Coefficient de 
frottement 

𝜶 𝑹 

Equation 
différentielle 

𝒎
𝒅𝟐𝒛

𝒅𝒕𝟐
+ 𝜶

𝒅𝒛

𝒅𝒕
+ 𝒌𝒛 = 𝒌𝑨𝐜𝐨𝐬(𝒕) 

 

𝑳𝑪
𝒅𝟐𝒖

𝒅𝒕𝟐
+ 𝑹𝑪

𝒅𝒖

𝒅𝒕
+ 𝒖 = 𝑬𝐜𝐨𝐬(𝒕) 

 

Pulsation 
propre 𝟎 = √

𝒌

𝒎
 𝟎 =

𝟏

√𝑳𝑪
 

Facteur de 
qualité Q 𝑸 =

√𝒌𝒎

𝜶
 𝑸 =

𝟏

𝑹
√
𝑳

𝑪
 

Réponse en 
position 

𝒁 =
𝟏

𝟏 − 𝒙𝟐 + 𝒋
𝒙
𝑸

× 𝑨 𝑼 =
𝟏

𝟏 − 𝒙𝟐 + 𝒋
𝒙
𝑸

× 𝑬 

Réponse en 
vitesse 

𝑽 =
𝒋
𝒙
𝑸

𝟏 − 𝒙𝟐 + 𝒋
𝒙
𝑸

×
𝒌𝑨

𝜶
 𝑰 =

𝒋
𝒙
𝑸

𝟏 − 𝒙𝟐 + 𝒋
𝒙
𝑸

×
𝑬

𝑹
 

 


