Chapitre n°10 Oscillateurs en régime sinusoidal forcé PTSI

Expérience introductive : circuit RLC série soumis a une excitation sinusoidale

R L

. 7 . - I_I
On observe la tension ur(t) aux bornes de la résistance ity —— "m__l_
dans un circuit RLC série alimenté par un GBF qui délivre E() TC) o Ium
un signal sinusoidal. —|_

En faisant varier la fréquence d'excitation f du GBF, on observe :

- La tension aux bornes de la résistance est sinusoidale a la méme fréquence que
I'excitation (il en est de méme que toutes les grandeurs électriques du circuit).
- L'amplitude et la déphasage dépendent de la fréquence (cf. illustrations ci-dessous)

On constate qu'il existe certaines fréquences d'excitation qui maximisent I'amplitude du signal
de réponse. Si de telles fréquences existent, on parle alors de phénomeéne de résonance.
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Cadre de I'étude :

La réponse d’un systeme linéaire soumis a une excitation sinusoidale est décrit par une I'équation

différentielle de |la forme :
k

u
a;, —— = Eycos (wt), avec w = 2rx
detk ocos (o) f

La solution générale de cette équation différentielle linéaire est la somme de deux contributions:

- La solution de I'équation homogeéne ux(t), qui tend vers 0 a la fin du régime transitoire.

- La solution particuliere ur(t), que I'on cherche de forme sinusoidale a la pulsation
imposée w, qui reste seule contribution de la réponse du systeme une fois le régime
permanent atteint.

u

. --- forcage

. . —— régime permanent
’ . - régime transitoire
. ——  réponse totale

Nous allons étudier le régime sinusoidal forcé (RSF), c'est-a-dire le comportement au cours du
temps du systeme en régime permanent (une fois le régime transitoire terminé).

Dans ce régime, la réponse d’un systeme dépend de la fréquence d'excitation f = w/2m.
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Chapitre n°10 Oscillateurs en régime sinusoidal forcé PTSI

I] Premiére tentative de résolution : Exemple du circuit RLC série

R L
-— 1]
On considere le circuit RLC ci-dessous alimenté par ad ""“\1
un générateur idéal qui délivre une tension sinusoidale :  E(#) TC) C Iu(f)
E(t) = Eo cos(mt). —|_
7777

On s’intéresse uniquement a la réponse (tension au borne de C) en régime permanent.
Trouvons I'équation différentielle du circuit :

(u+uL+u=E(t)

_Ldi
M=
. Cdu
T
u=Ri
et e u-k ¢
e at u = Ecos (wt)

Cherchons une solution particuliere u(t) (solution en régime permanent) de cette équation sous
forme d’une fonction sinusoidale a la méme fréquence avec une amplitude Uy(@) et une phase
a l'origine ¢(w) qui dépendent de la fréquence. Cette solution s’écrit :

u(t) = Ucos(at + @)

Dérivons la solution pour I'injecter dans I’équation différentielle :

du .
E(t) = —-Uowsin(ot + @)

d*u
W(t) = —Ua*cos(at + @)

On obtient :

LC x [-Ud*cos(at + )] + RC X [-Uw sin(wt + ¢)] + Ucos(wt + @) = Ecos (ot)

Cette équation est difficile a résoudre (i.e. : trouver U(w) et @(w)) car elle fait intervenir des
fonctions sinusoidales avec des phases a I'origine différentes.

Pour simplifier la mise en équation et la résolution, on va utiliser une outil mathématique efficace
introduit par le physicien Heaviside (1850-1925), la représentation complexe.
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Chapitre n°10 Oscillateurs en régime sinusoidal forcé PTSI

II] Représentation complexe d'un signal sinusoidal

1. Définition

On associe a un signal sinusoidal réel s(t) = Acos(wt+¢) d'amplitude A, de phase wt+¢ et de
moyenne nulle, une représentation complexe notée s, de module A et d'argument wt + ¢ :

s(t) = Aef/(@t+ @)

On définit I'amplitude complexe du signal § = Ae/® comme étant la grandeur complexe
contenant I'information d’amplitude A et de phase a |'origine ¢ du signal :

s(t) = Ae/@t+ @) = geivelot = geiot

Pour retrouver la représentation temporelle du signal a partir de sa représentation complexe, on
calcule le module A et I'argument ¢ de I'amplitude complexe :

Is®)| =|s|=4

arg(s) =¢

Ainsi la connaissance de I'amplitude complexe § donne accés aux deux grandeurs inconnues du
signal s(t) : son amplitude A et sa phase a |'origine .

La représentation complexe repose sur la linéarité. Son usage est donc a proscrire pour les
. . - 1

grandeurs qui ne le sont pas comme les grandeurs énergétiques (Exemple : E. = ECUZ). Pour

calculer ce type de grandeur il faut impérativement retourner en représentation temporelle.

2. Propriétés
a. Dérivation

En représentation complexe, I'opération de dérivée correspond a une multiplication par jw :

d .
2 (&) =jws

Preuve : La dérivée d'un signal sinusoidal, en représentation temporelle s'écrit :

ds d . T

s d (Acos(wt + ¢)) = —Awsin(wt + @) = Awcos(wt + ¢ + E)

On en conclut que l'opération de dérivée temporelle correspond a une multiplication de
I'amplitude par w et un ajout de déphasage m/2. En représentation complexe, en appliquant les
méme opération au signal s(t) = Ae/(@*9) il vient :

%(5) — %(Aej(mt'“p)) :ijej(wH"p) =j(l)§
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Chapitre n°10 Oscillateurs en régime sinusoidal forcé PTSI

b. Intégration

De la méme fagon, en représentation complexe, primitiver un signal revient a le diviser par jw :

1
fsdtz,—s
S jo 2

Enoncé : Démontrer cette propriété.

Correction :
) . . _elwt 1
js dt = f Ae/@t+o) q¢ =Ae1"’f et dt = Aef—=—5
- Jow  Jo~—

a. Sommation

La représentation complexe de la somme s(t) de s1(t) = A;cos(wt + @) et s(t) =
A; cos(wt + @,) est:

S(t) = Alej(wH' ¢’1) + Azej("’t+ ¢’2)
s(t) = (A1€/71 + A,/ %) el

s(t) = (S1 + Sp)e/

Enoncé : E, w, 7, wg, @ sont des réels positifs.
1. Donner le signal complexe associé au signal suivant et identifier 'amplitude complexe : e(t) = E cos(wt+7/3)
2. Donner le signal réel associé au signal d’amplitude complexe suivant : U, = Upe™37/3 .

E
3. Donner le module du complexe ci-contre : U,,, = ———
— 14+ jwr B
4. Donner I’expression de tan(¢) avec ¢ 'argument de U, : U,, = ————.
— 14 jwr

Correction :

1. |e — Eel(wttn/3) |: Eei“t, avec |E = Eei™/3 |

2. L’amplitude est U, et la phase —7/3, donc le signal réel s’écrit |uL(t) = U,, cos(wt — 7/3) l .

8. | |Upn| =
' 1+ (wr)?
4. |tan(¢) = —wT | — | ¢ = arctan(—wr) |
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Chapitre n°10 Oscillateurs en régime sinusoidal forcé PTSI

III] Loi d'Ohm généralisée : impédances complexes

Pour des dipdles linéaires passifs (résistance, condensateur et bobine), la relation entre u(t) et
i(t) est une équation différentielle. La représentation complexe permet, en régime sinusoidal
forcé, de simplifier cette équation en une relation algébrique entre U et I.

1. Impédance complexe

Pour ces dip6les en RSF, la tension complexe U et l'intensité complexe I sont reliées par la
relation :

U=2ZxI

Ou Z est un nombre complexe appelé impédance complexe, homogéne a une résistance (donc
ayant pour unité le ohm Q). Ceci généralise, en RSF et en représentation complexe, la loi d'Ohm
a tout dipdle linéaire passif.

2. Expressions courantes

a. Résistance

u(t) = Rxi(t) = U=RxI =|Zzr=R

L'impédance de résistance est réelle, on en déduit que la tension a ses bornes et l'intensité la
traversant sont en phase.

b. Condensateur

du . 1
— = I=joCxU & U=—XI>|Z;=7—7

_ 1
i =Cq AT jCw

* Pour w — 0 (Basses fréquences), le régime sinusoidal tend vers un régime stationnaire et le
condensateur se comporte comme un interrupteur ouvert :

Z

N %)
Cw w—0

® Pour w — oo (Hautes fréquences), le condensateur se comporte comme un fil :

Z|=——0
Zel T Cor oo

c. Bobine idéale

di
dt
* Pour w — 0 (Basses fréquences), le régime sinusoidal tend vers un régime stationnaire et la
bobine idéale se comporte comme fil :

u(t) = L = U=joLxI =|Z, =jlo

|ﬂ =Lw‘;>)0

* Pour w — oo (Hautes fréquences), La bobine idéale se comporte comme un interrupteur ouvert.

|ﬂ =Lw—

wW—00
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Chapitre n°10 Oscillateurs en régime sinusoidal forcé PTSI

Enoncé : Déterminer I'amplitude de la tension u dans les circuits ci-dessous aux basses et hautes
fréquences.

Tous les circuits sont alimentés par un générateur idéal de tension de f.é.m. e(t) = Ecos(wt).

R R

L R
- L |
PT ——Clu eT L |u , FTC\;M\ — R |u

Correction :

N 3 1 . ,
A BF : Z(- = CL - 0o : c'est un A HF : Z(_' = C_ X — 0 : ¢’est un fil
L interrupteur ouvert R
R R 0 0

f’-T —clu (,T c (’T C u

u est la tension aux bornes d’un fil :

Loi des mailles :

A BF Z; = Lw — 0 : la bobine est A HF. Z, = Lw — oo : la bobi

2. un fil R est un interrupteur ouvert
R
R 0
e L u
p_T L |u T EJT L |u
u est la tension aux bornes d'un fil,
done [u =0 Loi des mailles :
A BF A HF
3 R L
L R L |
e C Riu ‘"T u
ET I nI
[ . i - . ! 1
Pont diviseur de tension : u = — u est la tension aux bornes d'un fil,

donc u =10
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Chapitre n°10 Oscillateurs en régime sinusoidal forcé

3. Généralisation des théorémes : associations et ponts diviseurs

Les théorémes démontrés a partir de la loi d'Ohm peuvent étre généralisées en régime sinusoidal
forcé avec la notation complexe (associations de dipéles équivalents et ponts diviseurs).

Série Dérivation
g B — Zl 1
Zl Zo 1 1
{ | {1} L’{: J
u) uo 2 7‘_,
Impédance équivalente : Impédance équivalente :
Zeg=21+Z 1 1ilez, =2k
v Zy, T D T Lt

Pont diviseur de courant :
1
Zy . Zy .
= — u hh = 4
= ZLi+2Zy -1 L1

Pont diviseur de tension :

Enoncé : Pour chacun des circuits suivants, exprimer I'impédance complexe Z 45 équivalente au

dipdéle AB. On notera w la pulsation des grandeurs électriques.

Y Y Y
L
C
R c R L
A |_}§ A B A B
—1—] — 1 Ll
Correction :
2y -pet oLiiCo  gay Rl _p JRY e _joslt® Lo
= jCaw jCw R+ jLw 1+jkw “AB ™ 1/iCw + jLeo ~ 1 — LCw?

Enoncé : Etablir les expressions de u(t) en fonction de e = Ee/®* pour les circuits ci-dessous.

R L

@) C::Iu(t) 3 DI N | 1

Correction :
u= —1 Eoej“"" " u= Eoej“’t
= 1+ jRCw o1+ %w
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Chapitre n°10 Oscillateurs en régime sinusoidal forcé PTSI

IIT] Etude du RLC série en régime sinusoidal forcé : résonance en tension

1. Mise en équation *
R L
On revient sur le probléeme du circuit RLC série 1(t) |
alimenté par un générateur idéal qui délivre une gt TC) c [u(t)
tension sinusoidale e(t) = Ecos(wt). _|_

7777

On s’intéresse a la réponse en tension u(t) que I'on cherche sous la forme :
u(t) = Ucos(wt + )
Pour poursuivre la résolution, on passe en représentation complexe (les grandeurs sont linéaires):
e(t) = Ee/*t = Ee/*t
u(t) = Ue/@H9) = gei®t, avec U = Uel?
On exprime I"amplitude complexe U grace a un pont diviseur de tension :

Zc 1/jCw 1
U=—-——XE = . — X E = . X
~ Z,+Zp+Z; T R+jLot+1/jCo 1-LCa” +jRCw

E

On peut écrire ce résultat avec les parameétres canoniques @ et Q du RLC série :

1 L 1 |L
a)ozﬁ et Qza)OE:E C
U= 12 X E
1—(@20) +1WQ)Q

, . . . , . a . . e
Pour alléger les calculs, on introduit la pulsation réduite x = — (x est sans dimension et positif).
0

U= 1 X E
o 1—x2+j%
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Chapitre n°10 Oscillateurs en régime sinusoidal forcé PTSI

2. Calcul d'amplitude et phase *

On étudie I'amplitude U(w) et I'avance de phase ¢@(w) de la réponse en tension du RLC série :

Calculons le module et I'argument de la tension complexe :

1
Uu=|U|= X E

Ja-=2+ @

Q= arg(g) = —arg(1— x? +]%)

On ne peut pas passer directement a I'arctangente pour calculer arg(g) car la partie réelle de
U peut-étre négative, ainsi factorisons d’abord I'expression parj% :

X 1

0= —arg(gx (~jo; +iex+1))
X 1

Q= —arg(ia X <1 +jQ (x —;)))

ool (s )

Q= —g— arctan(Q (x - ;))

3. Limites hautes et basses fréquences *

Enoncé : Déterminer les limites haute et basse fréquence de I'amplitude U et de la phase .

Correction :

Pour I'amplitude U :
- A basse fréquence, soit w <K wo ou x > 0, on a U — E. Le condensateur se comporte
comme un interupteur ouver et la réponse en tension « suit » I'excitation.
- A haute fréquence, soit w > wo ou x > ©, on a U — 0. Le condensateur se comporte
comme un fil et la réponse en tension tend vers 0.

Pour I'avance de phase ¢ :
- Abasse fréquence, @ — 0: la réponse u(t) est en phase sur e(t).
- Ahaute fréquence, ¢ — -1 : la réponse u(t) est en opposition de phase sur e(t).
- Pourw=wooux=10na¢@=— g: la réponse u(t) est en opposition de phase sur e(t).
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4. Résonance *

Etudions les variations de I'amplitude U. Posons la fonction f(x) tel que :

E

it)

f) =(1-x%)?2+ (%)2

Soit :

Il'y a résonance si f(x) admet un minimum. Calculons sa dérivée et ses racines :

df 2x 1
T 2(1 —x¥)(—2x) + - 2x(2x% + oz 2)
ﬂ(xr):0<:>xr2 :1—i

dx 2Q?

Il y a résonance si cette équation admet des solutions réelles, on en déduit la condition de
résonance sur Q :

1 1 >0 1 <1 20%2>1
- & — =
2Q2 2Q? Q

S L
C>7

La pulsation de résonance @, est différente de la pulsation propre @y :

i))Z +i(1_i> _i(1+i)
2Q? Q? 2%/ @* 2Q?

E

f)=1-Q1-

Upax = Q 1

14202

Umax QT>1> QE
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Oscillateurs en régime sinusoidal forcé

PTSI

On trace les évolutions de 'amplitude U et de la phase ¢ en fonction de la pulsation w.

U

. '.':.l--lﬁrh
LR S —

w(rad s}

@ (rad)

0

/2

IV] Etude du RLC série en régime sinusoidal forcé : résonance en intensité (en exercice)
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Chapitre n°10 Oscillateurs en régime sinusoidal forcé PTSI

V] Analogie entre oscillateurs électrocinétique et mécanique

Expérience de cours :

On excite avec un déplacement sinusoidal de la main un systéme masse-ressort. Appelons z(t) la
position de la masse.

On observe I’évolution de la position de la masse en fonction de la fréquence d’excitation :
- A basse fréquence, la position de la masse suit le forcage.

- A haute fréquence, la postions de la masse n’évolue pas.
- Entreles deux, la masse oscille avec une amplitude maximale, il y a résonance en position.

En rapprochant les équations différentielles des oscillateurs électrocinétiques et mécaniques, on
peut dresser des analogies.

La réponse en tension de l'oscillateur électrique est analogue a la réponse en position de
I'oscillateur mécanique de méme que la réponse en intensité est analogue a la réponse en vitesse.

Grandeur Oscillateur mécanique Oscillateur électrocinétique
q
z u=—
Grandeurs 4
cinématiques . dz . dq
Z=— i=—
dt dt
Inertie m L
Coefficient de K 1
rappel C
Coefficient de
a R
frottement
Equation 'z + dz + kz = kAcos(wt) Lcdzu + Rcdu + Ecos(wt)
m—+a— z = kAcos(w —_— — 4+ u = Ecos(w
différentielle de? ~ —dt dt? dt
Pulsation k o = 1
propre @ = I ° " VIC
Facteur de vkm 1 |L
qualité Q Q=— =%zt
1 1
Réponse en Z=ﬁxA U= » —< < E
position 1-x +1§ 1-x +16
. X . X
Réponse en V= /0 Xk_A [ = ’Q xE
vitesse = 2.:X7 «a - 2,:;X R
1-x*+j5 1-x*+j5
¥ g ’Q
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