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Exercices d’applications :

O Exercice 15.1. Freinage d’urgence % (Coordonnées cartésiennes, équations horraires)
Si on observe le mouvement rectiligne de la voiture sur un axe (Ox), en prenant pour origine des dates le
début du freinage, sa vitesse est alors donnée par v, (t) = @(t) = —at + v et son équation horaire par z(t) =
—at? / 2 + vot + xp. Elle s’arréte quand sa vitesse s’annule, soit pour une date t, telle que :

)
—at, +vg =0 fa:£:6.05
a

Ne pas oublier de convertir la vitesse en m.s™!!

A cette date, son abscisse est donc z(ts), et la distance de freinage est :

at? . v3
d=z(ty) —xg = ——2 +vot, soit |d= =T74m
2 2a

0 Exercice 15.2. Ballon-sonde % (Coordonnées cartésiennes, trajectoire)

1 - En traduisant I'énoncé, on obtient :

= - Z 5 = — :C = ij
UMy (®) = Uzl + U = X1, + 20, = P
- ¥z
2 - Par intégration :
Z=v, = |z(I)=uv,t (2.1)

ou on a utilisé la condition initiale z(# = 0) = 0. On injecte dans 1'équation en x :

Us 9
= (2.2)

i:uz; = x(t):%

(2.2) = t= 221 (i::'” z(x)=1,‘2uzq'x

4 — Par dérivation :

= t. -+ — Uy
UMj(%) T U7 W TUL = ayp) =T W

Exercices d’entrainements
0 Exercice 15.3. Basket-Ball %% (Coordonnées cartésiennes, trajectoire)
1. Le systeme possede une direction privilégiée, la direction du vecteur @. On choisit donc les coordonnées

cartésiennes.
2377
C . . . s d*OM — .
. On intégre deux fois par rapport au temps ’équation différentielle ——— = —gu. pour obtenir :
2. O t d fi t t 1 t diff tiell 72 bt
f2

r=1wptcosa et z=h4+vytsina — —

2

En « faisant disparaitre » le parametre ¢t en l'exprimant grace a la premiére équation, on obtient z(x),
I'équation de la trajectoire :

T
cosa soit |z(xr) =h+zrtana — 2 2

t= 202 cos at
20 202 cos? o

TD n°15 - Mécanique : Cinématique du point - PTST
Page 1/4




TD n°15 - Mécanique : Cinématique du point PTSI

3. a. On résout tout d’abord I'équation z = 0. On obtient :

3.2 o Fyr2 2
g . 2wp; 8in o cos o Zhuf cos™ a
—h=zxtana — 2—21'2 - 0 : o
2 cos® o q q

L'unique racine positive de cette équation du second degré s'éerit :

vE [ sin 20 sin2a\* 2 gh
r, = — - + + —5-cost o
q 2 2 vj

Pour établir I'altitude maximale, il est fructuenx de transformer Uexpression de la trajectoire pour y lire
directement ses caractéristiques : il faut faire apparaitre le développement du carré d'une somme. On a

alors : g
z—h=ztana — 2—21’2
2o cos® o
q 5 202 cos® atan o
T T 22 costa T *
0 g
. 2 9 .
q vE sin o cos o + vg sin® o
= — - T —-
203 cos? o q 2g
soit :

2 gin? 2 sin o e 2
P sin” o g , Y0 sin o cos o
z—\h = —— r— 0"
2q 203 cos? a q

Cette expression est de la forme
q
L” ( .

2
. — p—
207 cos? a )

g —

avee xy et 2. les coordonnées du sommet de la parabole. L'altitude maximale sera donc :

2 & i v sin’ a
ze=h+ atteinte pour |z, = ——

2g 2g

b. L’altitude z, est évidemment maximale pour une trajectoire verticale, ¢'est-a-dire avec o = #/2. On a
alors z, = h+ v3/2g. Quelque soit I'angle a, Ialtitude z, croit linéairement avec h.
2
; . v
¢. Pour h =0, on a 2, = v3 sin a/g , maximale pour 2a = 7/2 soit @ = 7/4 . oii elle vaut 2, = -2 .
g

0 Exercice 15.4. Carrousel Y% (Coordonnées polaires)

1. a. On a immédiatement . L’homme met le méme temps que le carrousel pour effectuer un tour

complet autour de O sa vitesse angulaire est done la méme et on a comime pour un point fixe

du carrousel.

&

On a cette fois-ci r = rg. En un temps At, lhomme a tourné de vAt fry par rapport au rayon du carrousel
sur lequel il se trouvait initialement, qui a lui-méme tourné de wt.

et on a

2. On a tonjours 7 = s+ rhg et @ = (7 — IBQ}F: + (‘Zf'l?; + JQ)EE

Sa vitesse angulaire est donc

— Dans le premier cas, on a :
T =i +vlwly et @ = —vlw T + 2w

— Dans le second. on a :

o 2
. . . T
3. Dans le premier cas, on exprime la norme a de @ en fonction de r : a = vw+/4 + (wt)? = vwy/d+ (—) .

Cette expression est croissante et maximale pour + = R, on résout alors a = g. On obtient

2
. v . .
Dans le second cas, on a directement a = ry (w + —) . On résout pour a = get on obtient | rg = R =4,5 m|

o
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0 Exercice 15.5. Cycloide %% (Coordonnées polaires, équations horraires)

1. 5i la roue ne glisse pas, son centre avance i chaque tour d'une longueur égale 4 son périmétre, soit 27 R.
Comme la roue a alors tourné de # = 2w, on a r. = x.9 + R#. Le choix d'origine du repére assure ici que
Ten = 0.

2. Ona (—)ji = O—if - ﬁ + (ﬂ avee H le projeté orthogonal de €' sur I'axe (Oy). Comme
CA = Rl-sin#i! — cos0)] , HC =a.a = ROT. ot OH = R,

on obtient alors :

OA = R[(1 — cos )i, + (0 — sin8)?]

3. La courbe de la eycloide est donnée ci-dessous.

05

4. On en déduit les expressions des vecteurs vitesse et aceélération dans le référentiel % dans lequel T et E:
sont fixes :

T = Rfsin H-E; + RO(1 — cosb)ir;

@ = R(fsind + 0% cos @)1, + R[B(1 — cos8) + 67 sin )i

5. Lorsque le point A repasse en 8 = 0[27], ¢’est-A-dire au contact avee le sol, on a T=0etd= Rﬁzf,:. La
vitesse coincide alors avee la vitesse du point du sol 4 Uinstant du contact : on dit qu’il v a roulement sans
glissement.

0 Exercice 15.6. Trajectoire elliptique d’une cométe Y % % (Coordonnées polaires, trajectoire)

1. La valeur maximale de r est

Tmax =

P
l1—-e

obtenue pour § = 7; la valeur minimale est

'min =

p
1+e

correspondant & # = 0 (c’est donc la valeur de r en P).

2. A titre culturel, pour une trajectoire elliptique quelconque, le point A est appelé aphélie, et le point P
périhélie.

Y

3. Dans la base polaire, 'accélération s’éerit :

TN = (¢ = )T + 0+ 2007
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Le fait que cette accélération soit radiale entraine qu'a chaque instant, r8 + 278 = 0. Pour montrer que r24
est une constante, calculons sa dérivée -

= (r20) =126 + 200 = r(ril + 206) = 0

soe s - Y . 2 A
Sa dérivée est bien nulle ce qui justifie que .

(avec r#(t =0) = 0), alors :

Initialement : rg = ry;, =

1+e
. _> -
T(M) =7t +r0T = 0 4 roabols = vpiy,

Ainsi : .
Up

fo =
Tmin

On en déduit :

C=r ‘b=p'b'

mntE 1+e F

Aux points A et P, 7 =0 et done vy = ';',;9:4 et vp = r'pfjp._ soit :

9;4 _ Tpva

0, rav,

Par ailleurs, la loi r26 = C en A et P donne :

Par identification, on trouve alors :

_ l1—e
T l4e

TAU4 =T, SOl |ug vy,

0 Exercice 15.7. Mouvement d’un avion % % % (Coordonnées sphériques)

1. (a) Pour un mouvement du nord vers le sud, I'angle ¢ reste constant. 11 décrit un cercle de rayon Ry

a la vitesse v uniforme. On a donc ﬁ - .
Ry
(b) C’est désormais l'angle # qui est constant et ¢ qui varie. Par ailleurs, le cercle décrit a pour rayon
d
Ry sin (0). On adonc —% = Y

dt  Rrsin(f)
2. Pour un mouvement a la surface d'une sphére, les composantes sphériques du vecteur vitesse sont :
vg = Ryl vy = Ry sin(#)¢.

Les informations sur la direction du vecteur vitesse assurent que vy = O et |v,/vg| = tan(w). Dans le
référentiel de la Terre, le Soleil décrit une révolution en T" = 24 h, d’est en ouest, ce qui correspond a
une vitesse angulaire ¢ = — %” L'avion doit avoir la méme vitesse angulaire pour suivre le Soleil. On

a donc :
; ; 1 27 R sin(9) 1
= 202 = v /1 + = 1+ —.
v=yfrg e =lve ".f fanZ(a) T T a2 ()

On vérifie que la norme v est bien maximale quand il croise I'équateur, c’est-a-dire pour # = 7 /2.
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