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Introduction  
 

 En 1687, Isaac Newton publie les Principia Mathematica, ouvrage 
fondateur de la physique moderne.  
 Pour la première fois, les mouvements des corps terrestres et célestes y 
sont décrits par les mêmes lois mathématiques.  
 Newton y établit les trois lois de la dynamique ainsi que la loi de la 
gravitation universelle, unifiant la chute des corps, le mouvement des projectiles 
et celui des planètes.  
 
Complément : vidéo historique de la théorie de la gravitation réalisée par ScienceEtonnante :  
Du canon à la Lune : la découverte de la gravité. (lien : https://www.youtube.com/watch?v=lnEdBE7d_h0) 
 

I] Les Lois de la dynamique et l’interaction gravitationnelle 

1. 1ère loi de Newton : principe d’inertie 

a. Système isolé et pseudo-isolé 

 

Un système est isolé s’il n’est soumis à aucune force extérieure. 
 
Un système est pseudo-isolé s’il est soumis à des forces extérieures qui se compensent. 
 

b. Enoncé de la 1ère loi de Newton (principe d’inertie) 

 
1ère loi de Newton : Il existe une classe de référentiels, appelés référentiels galiléens, dans 
lesquels le mouvement d’un système isolé ou pseudo-isolé est rectiligne uniforme. 
 

Remarque : Par conséquent, tous les référentiels galiléens sont en translation rectiligne uniforme 
les uns par rapport aux autres. 
 

c. Exemples de référentiels supposés galiléens 

 
• Le référentiel terrestre peut être considéré comme galiléen pour des expériences de durées 
faibles devant 24 h et sur des distances faibles devant le rayon de la Terre. Il sera utilisé pour 
étudier le mouvement d’objets à la surface (ou à proximité) de la Terre. 
 
• Le référentiel géocentrique peut être considéré comme galiléen pour des expériences de 
durées faibles devant 1 année. Il sera utilisé pour étudier le mouvement des satellites autour de 
la Terre. Le phénomène des marées s’explique par la nature non galiléenne du référentiel 
géocentrique. 
 
• Le référentiel héliocentrique peut être considéré comme galiléen pour des expériences de 
durées allant jusqu’à plusieurs millions d’années. 
 

2. 2ème loi de Newton : Principe Fondamental de la Dynamique 

a. Centre d’inertie 

 
On définit le centre d’inertie (ou barycentre) G d’un système de points 𝑺 = {𝑴𝒊(𝒎𝒊)}𝒊∈[𝟏,𝒏] par : 

 

∀ le point origine du repère 𝑶 ∶ (∑𝒎𝒊

𝒏

𝒊=𝟏

)𝑶𝑮⃗⃗⃗⃗⃗⃗ = ∑𝒎𝒊

𝒏

𝒊=𝟏

𝑶𝑴⃗⃗⃗⃗⃗⃗  ⃗𝒊    ⇔   ∑𝒎𝒊

𝒏

𝒊=𝟏

𝑮𝑴⃗⃗⃗⃗⃗⃗  ⃗𝒊 = 𝟎⃗⃗  

Isaac Newton 
(1642-1727) 
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b. Quantité de mouvement  

 

La quantité de mouvement 𝒑(𝑴  )⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   d’un point matériel M de masse m animé d’une vitesse 

𝒗(𝑴  )⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   dans le référentiel   est définie par :  
 

𝒑(𝑴  )⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 𝒎𝒗(𝑴  )⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   
 
La norme ‖𝒑⃗⃗ ‖ de la quantité de mouvement s’exprime en kg.m.s-1. 
 

Remarque : Pour un système de points 𝑺 = {𝑴𝒊(𝒎𝒊)}𝒊∈[𝟏,𝒏] dans un référentiel , la quantité de 

mouvement est la somme des quantités de mouvement de chaque point : 
 

𝒑(𝑺  )⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = ∑𝒑(𝑴𝒊  )⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
𝒏

𝒊=𝟏

= ∑𝒎𝒊𝒗(𝑴𝒊  )⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
𝒏

𝒊=𝟏

 

 

De plus, la quantité de mouvement d’un système de point 𝒑(𝑺  )⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ peut s’exprimer en fonction 

de la masse totale 𝒎𝒕𝒐𝒕 et de la vitesse du centre d’inertie 𝒗(𝑮  )⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗. 
 

𝒑(𝑺  )⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = ∑𝒎𝒊

𝒅𝑶𝑴𝒊
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝒅𝒕
=∑

𝒅(𝒎𝒊𝑶𝑴𝒊
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)

𝒅𝒕

𝒏

𝒊=𝟏

𝒏

𝒊=𝟏

=
𝒅

𝒅𝒕
∑𝒎𝒊𝑶𝑴𝒊

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ =
𝒅

𝒅𝒕
∑𝒎𝒊

𝒏

𝒊=𝟏

𝑶𝑮⃗⃗⃗⃗⃗⃗ = ∑𝒎𝒊

𝒅𝑶𝑮⃗⃗⃗⃗⃗⃗ 

𝒅𝒕

𝒏

𝒊=𝟏

𝒏

𝒊=𝟏

 

 

𝒑(𝑺  )⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝒎𝒕𝒐𝒕𝒗(𝑮  )⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 
 

c. Principe fondamental de la dynamique 

 

2ème loi de Newton (Principe Fondamental de la dynamique) : La dérivée temporelle de la 

quantité de mouvement du système de points S dans le référentiel   galiléen est égale à la 
somme des forces extérieures s’exerçant sur le système. 
 

𝒅𝒑(𝑺/ )⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝒅𝒕
=∑𝑭𝒆𝒙𝒕⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⇔  

𝒅(𝒎 × 𝒗(𝑮/ )⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)

𝒅𝒕
=∑𝑭𝒆𝒙𝒕⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

 
Remarque :  Pour un système fermé, de masse constante, le PFD devient :  

 

𝒎𝒂(𝑮/ )⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = ∑𝑭𝒆𝒙𝒕⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

 

3. 3ème loi de Newton : Principe des actions réciproques 

 

Soient deux corps A et B en interaction : 

 — Le corps A exerce sur B la force 𝑭𝑨→𝑩⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  . 

 — Le corps B exerce sur A la force  𝑭𝑩→𝑨⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  . 
 

3ème loi de Newton : Les forces 𝑭𝑨→𝑩⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   exercée par A sur B et 𝑭𝑩→𝑨⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   exercée par B sur A sont : 
 

 • portées par la droite (AB) : 𝑭𝑨→𝑩⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   ∧ 𝑭𝑩→𝑨⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 𝟎⃗⃗ . 

 • opposées : 𝑭𝑩→𝑨⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = −𝑭𝑨→𝑩⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  . 
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4. Interaction gravitationnelle et poids 

 

Les corps massifs sont en interaction gravitationnelle.  
Le corp de masse mB, de centre d’inertie B subit la force 
gravitationnelle exercée par le corp de masse mA et de centre 
d’inertie A : 

𝑭𝑨→𝑩⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = −𝑮
𝒎𝑨 ×𝒎𝑩

𝒅𝟐
×
𝑨𝑩⃗⃗⃗⃗⃗⃗ 

𝑨𝑩
 

 

Avec 𝑮 = 𝟔, 𝟔𝟕 × 𝟏𝟎−𝟏𝟏𝒎𝟑. 𝒌𝒈−𝟏. 𝒔−𝟐, la constante universelle de la gravitation.  
 
Remarque : Lien entre la force gravitationnelle et le poids. 
 
En première approximation, la force d’attraction gravitationnelle exercée par la Terre sur un objet 
situé à la surface de la Terre est assimilée à son poids. Pour un point M, de masse m, situé à la 

surface de la terre (𝑹𝑻 = 𝟔, 𝟑𝟕 × 𝟏𝟎
𝟔𝒎) : 

𝑭𝑻→𝑴⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = −𝒎×
𝑮𝒎𝑻

𝑹𝑻
𝟐 ×

𝑻𝑴⃗⃗ ⃗⃗ ⃗⃗  

𝑻𝑴
    

De plus, en identifiant la force gravitationnelle exercée par la terre au poids de l’objet : 
  

𝑭𝑻→𝑴⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝑷⃗⃗ = 𝒎 × 𝒈⃗⃗  
 

Le vecteur 𝒈⃗⃗  est opposé au vecteur 𝑻𝑴⃗⃗ ⃗⃗ ⃗⃗  , il vient en considérant 𝒎𝑻 = 𝟓, 𝟗𝟕 × 𝟏𝟎𝟐𝟒𝒌𝒈 : 
 

𝒈 =
𝑮𝒎𝑻

𝑹𝑻
𝟐 =

𝟔, 𝟔𝟕 × 𝟏𝟎−𝟏𝟏 × 𝟓, 𝟗𝟕 × 𝟏𝟎𝟐𝟒

(𝟔, 𝟑𝟕 × 𝟏𝟎𝟔)𝟐
= 𝟗, 𝟖𝟏 𝒎. 𝒔−𝟐 

 

II] Mouvement dans un champs de pesanteur uniforme 

1. Chute libre 

 

Application : Chute libre sans frottement. 
 
On considère le mouvement d’un ballon de football modélisé par un point matériel M de masse 
𝒎 = 𝟒𝟎𝟎 𝒈, ne subissant que son poids (frottements négligés). On étudie ce système dans le 
référentiel terrestre supposé galiléen. On choisit (Oz) la verticale ascendante et (Oxy) le plan 
horizontal. A 𝒕 = 𝟎, le ballon est lancé depuis l’origine O du repère avec une vitesse initiale 𝒗𝟎⃗⃗⃗⃗  

contenue dans le plan (Oxz) de norme 𝒗𝟎 = 𝟐𝟓 𝒎. 𝒔
−𝟏 et faisant un angle 𝜶 =  𝟑𝟎° avec (Ox). 

 
1) Schématiser la situation. 
 
2) Après avoir définir le système, le référentiel et effectuer le bilan des forces, appliquer la 2ème 
loi de Newton pour déterminer le vecteur accélération 𝒂⃗⃗ . 

3) Par intégration successives, établir les équation horaires du mouvement : {

𝒙(𝒕) =
𝒚(𝒕) =

𝒛(𝒕) =

 

4) Etablir l’équation cartésienne z(x) de la trajectoire.  
 
5) Dessiner l’allure de la trajectoire. Représenter sur cette dernière les vecteurs vitesse et 
accélération à différents instants. 
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Solution : 
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2. Action d’un fluide  

a. Poussé d’Archimède 

 

Enoncé : Tout corps au repos ou en mouvement dans un fluide subit de la part de ce fluide une 

force égale au poids du volume de fluide déplacé : C’est la poussée d’Archimède 𝑨
⃗⃗ ⃗⃗  ⃗. 

 

La poussée d’Archimède est opposée au poids du fluide déplacé : 𝑨
⃗⃗ ⃗⃗  ⃗ = −𝒎𝒇𝒍𝒖𝒊𝒅𝒆 𝒅é𝒑𝒍𝒂𝒄é × 𝒈⃗⃗  

 
Dans le cas ou le fluide est homogène (corps uniquement dans l’eau, ou dans l’air, et pas entre 
deux fluides), la poussée d’Archimède s’écrit : 
 

𝑨
⃗⃗ ⃗⃗  ⃗ = −

𝒇𝒍𝒖𝒊𝒅𝒆
𝑽𝒇𝒍𝒖𝒊𝒅𝒆 𝒅é𝒑𝒍𝒂𝒄é × 𝒈⃗⃗  

 
Remarque : Condition de prise en compte de la poussée d’Archimède 
 
La poussée d’Archimède peut être négligée devant le poids lorsque la masse volumique du fluide 
est négligeable devant la masse volumique du système. Ainsi : 
 
 • La poussée d’Archimède peut être négligée pour un solide plein dans l’air. 
 
 • La poussée d’Archimède ne peut pas être négligée, pour un solide vide (par ex. ballon 
 de baudruche) dans l’air ou un solide quelconque dans un liquide. 
 

 

Application : la partie immergée de l’iceberg 
 

On considère un iceberg dont on peut voir un dessin sur la figure ci-contre. La ligne horizontale 
représente la surface de l’eau.  
 
On note V le volume total de l’iceberg, VI son volume immergé,  

𝝆𝒈  =  𝟎, 𝟗𝟐 × 𝟏𝟎
𝟑 𝒌𝒈.𝒎−𝟑 la masse volumique de la glace et  

𝝆𝑳  =  𝟏, 𝟎𝟐 × 𝟏𝟎𝟑 𝒌𝒈.𝒎−𝟑 celle de l’eau salée. 
 
1) Établir les expressions de la poussée d’Archimède et du 
poids, les forces qui s’appliquent sur l’iceberg. 
 
2) Déterminer la proportion volumique de glace immergée. 
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Solution : 

 
1)  

𝑷 = 𝒎× 𝒈 = 𝝆𝒈𝑽 × 𝒈 

 
𝑨 = 

𝒇𝒍𝒖𝒊𝒅𝒆
𝑽𝒇𝒍𝒖𝒊𝒅𝒆 𝒅é𝒑𝒍𝒂𝒄é × 𝒈 = 𝝆𝑳𝑽𝑰 × 𝒈 

 

2) En appliquant le PFD à l’iceberg dans le référentiel terrestre avec 𝒂⃗⃗ = 𝟎⃗⃗  : 
 

𝑷⃗⃗ +𝑨
⃗⃗ ⃗⃗  ⃗ = 𝟎⃗⃗ ⇒ −𝐏 +𝑨 = 𝟎 

𝝆𝑳𝑽𝑰 × 𝒈 − 𝝆𝒈𝑽 × 𝒈 = 𝟎 

 

𝝆𝑳𝑽𝑰 = 𝝆𝒈𝑽 ⇔
𝑽𝑰
𝑽
=
𝝆𝒈

𝝆𝑳
 

AN :  

𝑽𝑰
𝑽
=
𝟎, 𝟗𝟐 × 𝟏𝟎𝟑

𝟏, 𝟎𝟐 × 𝟏𝟎𝟑
= 𝟎, 𝟗𝟎 

 
La partie immergée de l’iceberg correspond à 90% du volume de ce dernier.  

 

b. Force de frottement fluide  

 

 Un corps en mouvement dans un fluide subit une force 

de trainée (ou force de frottement fluide) 𝒇⃗ . La trainée a pour 
direction celle du mouvement, elle est opposée au mouvement 
et sa norme est d’autant plus importante que la vitesse du corps 
est importante. 
 
 Il n’existe pas de « formule théorique » pour exprimer 
cette force. Cependant, des études expérimentales ont conduit 
à deux expressions selon le régime d’écoulement autour du 
fluide : 

- En régime laminaire, (vitesses faibles) : 𝒇⃗ = −𝟏𝒗⃗⃗        avec 𝟏 > 𝟎.  

- En régime turbulent, (vitesses importantes) : 𝒇⃗ = −𝟐‖𝒗⃗⃗ ‖𝒗⃗⃗        avec 𝟐 > 𝟎. 
 

Remarque : les coefficients 𝟏 et 𝟐 sont déterminés expérimentalement, ils dépendent du fluide 
et de l’objet en mouvement. 
 

Régime d’écoulement laminaire 

Régime d’écoulement turbulent 
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Application : Chute libre avec frottement. 
 
On s’intéresse à la chute d’un grêlon que l’on considère sphérique de rayon R = 10 mm et de masse 
m = 3,9 g. Son mouvement est repéré par la position G de son centre d’inertie. 
 
Etudions l’influence des frottements sur son mouvement dans le champ de pesanteur. On se place 
dans le référentiel terrestre supposé galiléen et on choisit (Oz) la verticale descendante et (Oxy) le 
plan horizontal, le repère (Oxyz) étant lié au référentiel terrestre. 
 

A t = 0, le grêlon a une vitesse nulle  𝒗(𝒕 = 𝟎)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  =   𝟎⃗⃗ , il se trouve à l’origine O du repère, à une 
hauteur h = 1,0 km du sol. 
 
Sur le site de Météo France, il est indiqué qu’un tel grêlon atteint le sol avec une vitesse de 75 
km.h-1.  
 
Partie 1 : Trainée linéaire en la vitesse 
 
 Dans un premier temps, considérons un régime d’écoulement laminaire autour du grêlon. 

La force de frottement fluide s’écrit 𝒇⃗ = −𝟔𝑹𝒗𝑼𝒛⃗⃗ ⃗⃗    , avec R le rayon du grêlon et η la viscosité 

du fluide dans lequel se produit le mouvement, on donne pour l’air : 𝜼𝒂𝒊𝒓  =  𝟏, 𝟕 × 𝟏𝟎
−𝟓𝑼𝑺𝑰. 

 
1) Déterminer l’unité SI de η ? 
 
2) Déterminer l’équation différentielle vérifiée par la composante verticale 𝒗𝒛 de la vitesse du 
grêlon. Qualifier cette équation différentielle. Pour quel système a-t-on déjà rencontré une 
équation différentielle de ce type ? 
 
3) A l’aide de l’équation précédente, exprimer la vitesse limite 𝒗𝒍𝒊𝒎,𝟏 atteinte par M et la 
constante de temps caractéristique 𝝉𝟏 d’évolution de la vitesse.  
 
4) Faire les applications numérique pour 𝒗𝒍𝒊𝒎,𝟏 et 𝝉𝟏. Commenter les valeurs et les courbes. 
 
Solution :  
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Partie 2 : Trainée quadratique en la vitesse 
 
 Nous considérons maintenant une modélisation des frottements quadratiques :  
 

𝒇⃗ = −
𝟏

𝟐
 𝒗𝟐𝑺𝑪𝒙𝑼𝒛⃗⃗ ⃗⃗    

 
-   est la masse volumique du fluide dans lequel se produit le mouvement (

𝒂𝒊𝒓
=

𝟏, 𝟑𝒌𝒈.𝒎−𝟑). 
 

- 𝑺 est la surface frontale du grêlon (projection orthogonale du volume de l’objet sur un 

plan perpendiculaire au déplacement). Dans le cas d’une sphère : 𝑺 = 𝑹𝟐. 
 

- 𝑪𝒙 ∈ [𝟎 ; 𝟏] est le coefficient de traînée adimensionné (Pour un sphère 𝑪𝒙 ≈ 𝟎, 𝟒𝟓). 
 
5) Vérifier que l’expression du coefficient 𝑪𝒙 est bien adimensionné. 
 
6) Etablir l’équation différentielle vérifiée par la composante verticale 𝒗𝒛 de la vitesse du grêlon. 
Qualifier cette équation différentielle. 
 
7) Sans la résoudre, exprimer puis calculer la vitesse limite 𝒗𝒍𝒊𝒎,𝟐 atteinte par le grêlon. 
Commenter. 
 

8) Etablir l’équation différentielle adimensionnée, vérifiée par 𝑽∗ =
𝒗𝒛

𝒗𝒍𝒊𝒎,𝟐
, la mettre sous la forme: 

𝝉𝟐
𝒅𝑽∗

𝒅𝒕
+ (𝑽∗)𝟐 = 𝟏 

 
𝐸𝑛 𝑑éduire l’expression et la valeur de la constante de temps 𝝉𝟐. 
 
Cette équation différentielle non linéaire peut être résolue numériquement à l’aide de Python. 
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9) Commenter la courbe 𝒗 = 𝒇(𝒕) obtenue (v est la norme de la vitesse). Quelle durée ∆𝒕𝟐 met le 
grêlon pour atteindre sa vitesse limite ? 

 

 
Solution : 
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3. Pendule simple   

c. Tension d’un fil  

 

La force de tension exercée par un fil tendu sur un objet accroché à une extrémités vaut : 
 

𝑻⃗⃗ = −𝑻𝑼𝒆𝒙𝒕⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   
 

- 𝑼𝒆𝒙𝒕⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   est le vecteur radial parallèle au fil, orienté vers l’extérieur du fil. 
 

- 𝑻 > 𝟎 est la norme de cette tension.  
 
Remarque : Si le fil n’est pas tendu, la tension est nulle.  
 

d. Mouvement du pendule simple 

 

Application : On considère un pendule simple constitué d’un point M de masse m accroché à 
l’extrémité d’un fil inextensible, sans masse et sans rigidité, dont l’autre extrémité O est fixe dans 

le référentiel  du laboratoire galiléen. On néglige les frottements dus à l’air. 
 
1. Quel est le mouvement du point M ? En déduire le système de coordonnées adapté et faire un 
schéma. 
 
2. Faire le bilan des forces et représenter les forces sur le schéma précédent. 
 
3. Appliquer le principe fondamental de la dynamique. 
 
4. Par une projection du PFD sur un vecteur de la base, Déterminer l’équation du mouvement ?  
 
Dans la suite, on se place dans le cadre des mouvements de faible amplitude ( ≪ 𝟏). 
 
5. Linéariser l’équation différentielle dans ce cas. A quel type de système déjà étudié cette année 
l’équation différentielle correspond-elle ? 
 

6. La résoudre avec les conditions initiales suivantes : (𝒕 = 𝟎) = 𝟎 et  ̇(𝒕 = 𝟎) = 𝟎. 
 

Solution : 
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4. Mouvement sur un support solide : frottements solides 

 

Quand un objet est au contact avec un support, ce dernier exerce sur l’objet une force appelée 

réaction du support notée 𝑹⃗⃗  .Cette force est liée à la répulsion des électrons du support et de 
l’objet (interaction électromagnétique). 
 

La réaction 𝑹⃗⃗  se décompose en deux parties : 

- Une composante normale au support notée 𝑹𝑵⃗⃗ ⃗⃗  ⃗ dirigée du 
support vers le point. 

- Une composante tangentielle au support notée 𝑹𝑻⃗⃗⃗⃗  ⃗ liée aux 
frottements solides. 
 

Le sens de 𝑹𝑻⃗⃗⃗⃗  ⃗ dépend de la situation envisagée. S’il n’y a pas de frottements dans le problème, 

𝑹𝑻⃗⃗⃗⃗  ⃗ = 𝟎⃗⃗ . 
 

Par contre 𝑹𝑵⃗⃗ ⃗⃗  ⃗ ≠ 𝟎⃗⃗  partir du moment ou un support existe. 
 

A priori, 𝑹𝑵⃗⃗ ⃗⃗  ⃗ n’a pas d’expression particulière et dépend des autres forces en présence. En 

revanche, il existe des relations entre 𝑹𝑵⃗⃗ ⃗⃗  ⃗ et 𝑹𝑻⃗⃗⃗⃗  ⃗ qui vous seront données dans les énoncés. 
 

Application : Un conducteur d’une voiture de 1200 kg, roulant sur une route horizontale à 90 
km.h−1, réalise un arrêt d’urgence. Malheureusement la voiture n’est pas équipée d’un système 
d’ABS et le conducteur bloque les roues en appuyant sur la pédale de frein.  
 

On note 𝑹𝑻⃗⃗⃗⃗  ⃗ et 𝑹𝑵⃗⃗ ⃗⃗  ⃗ les composantes tangentielle et normale de la force de frottement exercée par 

la route et 𝒇 le coefficient de frottement solide tel que 𝒇 =
‖𝑹𝑻⃗⃗ ⃗⃗  ⃗‖ 

‖𝑹𝑵⃗⃗⃗⃗⃗⃗ ‖ 
. 

 
On donne 𝒇 = 𝟏 (Sur une route sèche) et 𝒇 = 𝟎, 𝟓 (Sur une route mouillée). 
 
1) Calculer la distance d’arrêt sur route sèche et sur une route mouillée. 
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 Solution : 
 
Le système est la voiture assimilée à un point matériel. Le référentiel est le référentiel terrestre 
supposé galiléen. On prend comme repère un plan (Oxz), avec (Ox) l’axe horizontal dans le sens du 
mouvement de la voiture et (Oz) l’axe vertical ascendant, l’origine des temps et du repère d’espace 
étant considérées quand le conducteur commence à freiner. 
 

Les forces subies par la voiture sont le poids 𝑷⃗⃗ = 𝒎𝒈⃗⃗  et la réaction du support 𝑹⃗⃗ = 𝑹𝑻⃗⃗⃗⃗  ⃗ + 𝑹𝑵⃗⃗ ⃗⃗  ⃗. 
 
D’après le PFD : 
 

𝒎𝒂⃗⃗ =  𝑷⃗⃗ + 𝑹⃗⃗ ⇔

{
 

 𝒎
𝒅𝟐𝒙

𝒅𝒕𝟐
= −𝑹𝑻

𝒎
𝒅𝟐𝒛

𝒅𝒕𝟐
= 𝑹𝑵 −𝒎𝒈

 

 

Le mouvement est horizontal donc 
𝒅𝟐𝒛

𝒅𝒕𝟐
= 𝟎, on en déduit : 

 
𝑹𝑵 = 𝒎𝒈 

D’où : 
𝑹𝑻 = 𝒇𝑹𝑵 = −𝒇𝒎𝒈 

 
Finalement : 
 

𝒂𝒙 =
𝒅𝟐𝒙

𝒅𝒕𝟐
= −𝒇𝒈 

 

𝒗𝒙(𝒕) =
𝒅𝒙

𝒅𝒕
= −𝒇𝒈𝒕 + 𝒗𝟎 

 

𝒙(𝒕) = −
𝒇𝒈𝒕𝟐

𝟐
+ 𝒗𝟎𝒕 + 𝒙𝟎 

 

La condition d’arrêt est 𝒗𝒙(𝒕𝒇) = 𝟎 : 

 

−𝒇𝒈𝒕𝒇 + 𝒗𝟎 = 𝟎 ⇔ 𝒕𝒇 =
𝒗𝟎
𝒇𝒈

 

 
Finalement, la distance d’arrêt est donnée par : 
 

𝒅 = 𝒙(𝒕𝒇) − 𝒙𝟎 = −
𝒇𝒈𝒕𝒇

𝟐

𝟐
+ 𝒗𝟎𝒕𝒇 = −

𝒗𝟎
𝟐

𝟐𝒇𝒈
+
𝒗𝟎

𝟐

𝒇𝒈
=
𝟏

𝟐

𝒗𝟎
𝟐

𝒇𝒈
 

 
Application numérique :  
 

Sur route sèche : 𝒅𝟏 =
𝟏

𝟐
×

𝟐𝟓𝟐

𝟗,𝟖𝟏
= 𝟑𝟐 𝒎 

 

Sur route mouillée : 𝒅𝟐 =
𝟏

𝟐
×

𝟐𝟓𝟐

𝟎,𝟓×𝟗,𝟖𝟏
= 𝟔𝟒 𝒎 


