Chapitre n°14 Mécanique : Dynamique du point PTSI

Introduction

En 1687, Isaac Newton publie les Principia Mathematica, ouvrage
fondateur de la physique moderne.

Pour la premiére fois, les mouvements des corps terrestres et célestes y
sont décrits par les mémes lois mathématiques.

Newton y établit les trois lois de la dynamique ainsi que la loi de la
gravitation universelle, unifiant la chute des corps, le mouvement des projectiles
et celui des planétes.

Isaac Newton

(1642-1727)

Complément : vidéo historique de la théorie de la gravitation réalisée par ScienceEtonnante :
Du canon a la Lune : la découverte de la gravité. (lien : https://www.youtube.com/watch?v=InEdBE7d h0)

I] Les Lois de la dynamique et l'interaction gravitationnelle
1. 1° loi de Newton : principe d'inertie
a. Systéme isolé et pseudo-isolé

Un systéme est isolé s’il n’est soumis a aucune force extérieure.
Un systéeme est pseudo-isolé s’il est soumis a des forces extérieures qui se compensent.

b. Enoncé de la 1¥™ loi de Newton (principe d'inertie)

1°¢ loi de Newton : Il existe une classe de référentiels, appelés référentiels galiléens, dans
lesquels le mouvement d’un systéme isolé ou pseudo-isolé est rectiligne uniforme.

Remarque : Par conséquent, tous les référentiels galiléens sont en translation rectiligne uniforme
les uns par rapport aux autres.

c. Exemples de référentiels supposés galiléens

e Le référentiel terrestre peut étre considéré comme galiléen pour des expériences de durées
faibles devant 24 h et sur des distances faibles devant le rayon de la Terre. Il sera utilisé pour
étudier le mouvement d’objets a la surface (ou a proximité) de la Terre.

e Le référentiel géocentrique peut étre considéré comme galiléen pour des expériences de
durées faibles devant 1 année. |l sera utilisé pour étudier le mouvement des satellites autour de
la Terre. Le phénomene des marées s’explique par la nature non galiléenne du référentiel
géocentrique.

* Le référentiel héliocentrique peut étre considéré comme galiléen pour des expériences de
durées allant jusqu’a plusieurs millions d’années.

2. 2% |oi de Newton : Principe Fondamental de la Dynamique
a. Centre d'inertie

On définit le centre d’inertie (ou barycentre) G d’un systéme de points § = {M;(m;) }ic[1,n] P2r :

n n n
V le point origine du repere O : Z m; |0G = Z m;0M; & z m;GM; =0
i=1 i=1 i=1
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b. Quantité de mouvement

La quantité de mouvement p(M/#) d’un point matériel M de masse m animé d’une vitesse
v(M/#) dans le référentiel # est définie par :

p(M/R) =mv(M/R)

La norme ||p|| de la quantité de mouvement s’exprime en kg.m.s™.

Remarque : Pour un systeme de points S = {M;(m;)}ic(1,n) dans un référentiel %, la quantité de
mouvement est la somme des quantités de mouvement de chaque point :

p(S/7) = ) p(M/F) = ) mv(M,/%)
i=1 i=

De plus, la quantité de mouvement d’un systéme de point p(S/ %) peut s’exprimer en fonction
de la masse totale m,,; et de la vitesse du centre d’inertie v(G/R).

doM, <~ d(m;0M,) d < d <
p(S/"F)_Zm‘ z dt _d_z ‘_d_z Zm‘ dt
i=1 i=1

i=1 i=1

p(S/#) = myv(G/R)

c. Principe fondamental de la dynamique

2°me |oi de Newton (Principe Fondamental de la dynamique): La dérivée temporelle de la
qguantité de mouvement du systéme de points S dans le référentiel % galiléen est égale a la
somme des forces extérieures s’exer¢ant sur le systéme.

dp(S/%) N dmxv(G/%)) -

Remarque : Pour un systéme fermé, de masse constante, le PFD devient :

maG/9) = ) Fex

3. 3% |oi de Newton : Principe des actions réciproques

Soient deux corps A et B en interaction : A Ox—
— Le corps A exerce sur B la force F4_,p. o
— Le corps B exerce sur A la force Fg_,4. T~—__B

3%me |oi de Newton : Les forces F 4_,p exercée par A sur B et Fg_, 4 exercée par B sur A sont :

e portées par la droite (AB) : Fy_,g A Fp_4 = 0.
e opposées : Fgp_,, = —F4_p.
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4. Interaction gravitationnelle et poids

My

Les corps massifs sont en interaction gravitationnelle.
Le corp de masse mg, de centre d’inertie B subit la force -——B
gravitationnelle exercée par le corp de masse ma et de centre
d’inertie A :

s my X mpg AB

Faop =~6—m— %15

Avec G = 6,67 x 10~ 11m3.kg=1. 572, la constante universelle de la gravitation.
Remarque : Lien entre la force gravitationnelle et le poids.
En premiére approximation, la force d’attraction gravitationnelle exercée par la Terre sur un objet

situé a la surface de la Terre est assimilée a son poids. Pour un point M, de masse m, situé a la
surface de la terre (R = 6,37 x 10°m) :

Le vecteur g est opposé au vecteur TM, il vient en considérant my = 5,97 x 10**kg :

Gmy 6,67 x107'! x 5,97 x 10**

=9,81m.s2
R,? (6,37 x 10)2 .S

g:

II] Mouvement dans un champs de pesanteur uniforme
1. Chute libre

Application : Chute libre sans frottement.

On consideére le mouvement d’un ballon de football modélisé par un point matériel M de masse
m = 400 g, ne subissant que son poids (frottements négligés). On étudie ce systéme dans le
référentiel terrestre supposé galiléen. On choisit (Oz) la verticale ascendante et (Oxy) le plan
horizontal. A t = 0, le ballon est lancé depuis 'origine O du repére avec une vitesse initiale vy
contenue dans le plan (Oxz) de norme vy = 25 m.s™! et faisant un angle @ = 30° avec (Ox).

1) Schématiser la situation.

2) Aprés avoir définir le systéme, le référentiel et effectuer le bilan des forces, appliquer la 2™
loi de Newton pour déterminer le vecteur accélération d.

x(t) =
3) Par intégration successives, établir les équation horaires du mouvement : S y(t) =

z(t) =

4) Etablir I’équation cartésienne z(x) de la trajectoire.

5) Dessiner l'allure de la trajectoire. Représenter sur cette derniére les vecteurs vitesse et
accélération a différents instants.
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Solution :
1.

o
0 a
X
@
Oy

2. Principe fondamental de la dynamique (PFD) :

7 —d? n? soit @ v ?’

T =T = =

dt dt

Ainsi 'aceélération du ballon est constante au cours du temps, orientée suivant —u_; .7 = ? = —QE;

3. Equations horaires : on remonte  la trajectoire de la balle en intégrant par rapport au temps et en
prenant en compte les conditions initiales sur la position et la vitesse :

HIZO
T = ay =10

a: = —yg

La vitesse s'obtient par intégration dans le temps :

v, =A=uvgcosex

7= ‘U'yZ.B:U

v, =—gt+C=—gt +ygsina

4. Equation de la trajectoire : pour avoir I'équation de la trajectoire z en fonction de x , il suffit de
remarquer a partir de z(f) que :
£
= ——
v COS ¢

En injectant cette derniére relation dans l'équation z(t), on obtient :

1 72 N vo(sin )z 1 z? + (tana)z
z=—= T2 |
29 vgcosa)2 T vy cosar 27 (v cos a)?

C'est I'équation d'une parabole!

Trajactoire du ballon pour vy = 100ms, a = 30°
400

307

300 4

250 4

Z(m)

200 4

150 1

191 La vitesse horizontale est constante dans le temps

o 100 200 300 200 500 600 700 Bsoo
x {m)

De méme en intégrant la vitesse par rapport au temps, on obtient 1'évolution du vecteur position (et done de
ses coordonnées) par rapport au temps :

(t) = v (cosa)t + D = vp (cosa)t
OM ={u(t)=0

1
z(t) = —Egt2 + vg (sina) ¢
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2. Action d'un fluide
a. Poussé d'Archiméde

Enoncé : Tout corps au repos ou en mouvement dans un fluide subit de la part de ce fluide une
force égale au poids du volume de fluide déplacé : C’est la poussée d’Archiméde H—,;.

La poussée d’Archiméde est opposée au poids du fluide déplacé : H—,; = —Mfuide déplacé X g

Dans le cas ou le fluide est homogeéne (corps uniquement dans I'eau, ou dans I'air, et pas entre
deux fluides), la poussée d’Archimede s’écrit :

—

I, = —pﬂuidevfluide déplacé X 9

Remarque : Condition de prise en compte de la poussée d’Archiméde

La poussée d’Archiméde peut étre négligée devant le poids lorsque la masse volumique du fluide
est négligeable devant la masse volumique du systéme. Ainsi :

® La poussée d’Archiméde peut étre négligée pour un solide plein dans I’air.

® La poussée d’Archimede ne peut pas étre négligée, pour un solide vide (par ex. ballon
de baudruche) dans I’air ou un solide quelconque dans un liquide.

Application : la partie immergée de I'iceberg

On considére un iceberg dont on peut voir un dessin sur la figure ci-contre. La ligne horizontale
représente la surface de I'eau. y

On note V le volume total de l'iceberg, Vison volume immergé,
py = 0,92 x 103 kg.m™3 la masse volumique de la glace et
pr = 1,02 x 103 kg.m™3 celle de I'eau salée.

1) Etablir les expressions de la poussée d’Archiméde et du
poids, les forces qui s’appliquent sur l'iceberg.

2) Déterminer la proportion volumique de glace immergée.
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Solution :

1)
P=mxg=p,VXxg

HA = pfluidevfluide déplacé X g = pLV, xXg
2) En appliquant le PFD a I'iceberg dans le référentiel terrestre avec d = 0:

PLVixg—pgVxg=0

VI pg
pilVi=p,V& —=—

V,_0,92><103_090
Vo 1,02x103

La partie immergée de 'iceberg correspond a 90% du volume de ce dernier.

b. Force de frottement fluide

Un corps en mouvement dans un fluide subit une force ==
de trainée (ou force de frottement fluide) f La trainée a pour %

direction celle du mouvement, elle est opposée au mouvement
et sa norme est d’autant plus importante que la vitesse du corps
est importante.

Régime d’écoulement laminaire

Il n'existe pas de « formule théorique » pour exprimer __,/’.@@
cette force. Cependant, des études expérimentales ont conduit :w

a deux expressions selon le régime d’écoulement autour du

fluide : Régime d’écoulement turbulent
- Enrégime laminaire, (vitesses faibles) : f = —ay¥U  avec @; > 0.
- Enrégime turbulent, (vitesses importantes) : f = —a,||V||[¥  avec ap > 0.

Remarque : les coefficients a4 et a, sont déterminés expérimentalement, ils dépendent du fluide
et de I'objet en mouvement.
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Application : Chute libre avec frottement.

On s’intéresse a la chute d’un grélon que I’on consideére sphérique de rayon R = 10 mm et de masse
m = 3,9 g. Son mouvement est repéré par la position G de son centre d’inertie.

Etudions I'influence des frottements sur son mouvement dans le champ de pesanteur. On se place
dans le référentiel terrestre supposé galiléen et on choisit (Oz) la verticale descendante et (Oxy) le
plan horizontal, le repére (Oxyz) étant lié au référentiel terrestre.

—

At =0, le grélon a une vitesse nulle v(t =0) = 0, il se trouve a l'origine O du repere, a une
hauteur h = 1,0 km du sol.

Sur le site de Météo France, il est indiqué qu’un tel grélon atteint le sol avec une vitesse de 75
km.h1,

Partie 1 : Trainée linéaire en la vitesse

Dans un premier temps, considérons un régime d’écoulement laminaire autour du grélon.

La force de frottement fluide s’écritf = —6ﬂnRvFZ , avec R le rayon du grélon et n la viscosité
du fluide dans lequel se produit le mouvement, on donne pour I'air : sy = 1,7 X 1075USI.

1) Déterminer l'unité Slde n ?
2) Déterminer I'équation différentielle vérifiée par la composante verticale v, de la vitesse du
grélon. Qualifier cette équation différentielle. Pour quel systéme a-t-on déja rencontré une

équation différentielle de ce type ?

3) A l'aide de I’équation précédente, exprimer la vitesse limite v;, atteinte par M et la
constante de temps caractéristique T4 d’évolution de la vitesse.

4) Faire les applications numérique pour vy;,, 1 et T;. Commenter les valeurs et les courbes.

Solution :

, dim(]| Fl) M.L.T=? et e L
1. dim(n) = R lw) =TI7-T = ML=, Ainsi, n est en kg.m™ .57,
2. Les forces subies par le grélon sont le poids ? =mg = mgi. et la force de frottement fluide ? = —ﬁm;H?.
Appliquons le PFD :

—}
mda =P + ?
et projettons-le suivant 'axe (0z) :
duv,

m— = myg — brnRv,
dt

dv
-m,—: + 6mnRv. = myg
dt

{
dv. 6mR
+ U, =g
et m

C’est une équation différentielle du premier ordre. On a déja rencontré ce genre d’équation différentielle dans
les cireuits RC.
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i

3. Par identification avee la forme canonique, on identifie 4 un temps caractéristique 7y le rapport | 7y = P -
R

La vitesse limite est atteinte i la fin du régime transitoire. vy, ; vérifie I'équation

Ulim.1

-
AN : |1 ~1,3.10% s |et [vjymq = 9,81 x 1,3.10° ~ 1,2.10* m.s™!

Graphiquement, on vérifie que le régime permanent est atteint aprés 4-5 7 et que la vitesse limite est de 'ordre
de 10* m.s~1. En revanche, la vitesse limite ne semble pas réaliste et ne correspond pas i la vitesse du grélon
au sol .

4. On injecte les définitions proposées dans 'équation différentielle

Ci(”lim__l X 'V’*) Uim,1 X V* _ Uim,1

d(t* x 1) 1 T

dv*
== 4+Vr=1
dt

La solution générale est de la forme :

V*=1—exp(—t*) ‘
La forme adimensionnée permet de s’intéresser & 1'évolution de la vitesse du grélon, indépendamment de la
valeur de vy, 1 et 7y, done indépendamment des parametres du probléeme (m, R, 7...)

Partie 2 : Trainée quadratique en la vitesse

Nous considérons maintenant une modélisation des frottements quadratiques :
f=- Ep v°SC,U,

- p est la masse volumique du fluide dans lequel se produit le mouvement (pair =
1,3kg.m™3).

- S est la surface frontale du grélon (projection orthogonale du volume de I'objet sur un
plan perpendiculaire au déplacement). Dans le cas d’une sphére : S = nR>.

- €, €[0;1] est le coefficient de trainée adimensionné (Pour un sphére C, = 0,45).
5) Vérifier que I'expression du coefficient C, est bien adimensionné.

6) Etablir I'équation différentielle vérifiée par la composante verticale v, de la vitesse du grélon.
Qualifier cette équation différentielle.

7) Sans la résoudre, exprimer puis calculer la vitesse limite vy, , atteinte par le grélon.
Commenter.
Vg

8) Etablir I'équation différentielle adimensionnée, vérifiée par V* = — la mettre sous la forme:
lim,2

*

T,—+ (V)2 =1

dt

En déduire I'expression et la valeur de la constante de temps T,.

Cette équation différentielle non linéaire peut étre résolue numériquement a I’aide de Python.
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9) Commenter la courbe v = f(t) obtenue (v est la norme de la vitesse). Quelle durée At, met le
grélon pour atteindre sa vitesse limite ?

i
— sans frottement — avec frottements quadratiques
14000 == avec frottements lindaires
12000 20
10000 N
Ky 15|
*
— J' —
w  BODDD ¥ [
E) ‘ E
-] " =
El U -
[ n 10
J
I
4000 i
'
1 5
2000/
[ o
0 1000 2000 3000 4000 5000 5000 T 0 2 4 3 8 10
t(s) t(s)
Solution :
dim(| 7| M.LT-?

1.

5. ‘ d'r n = = =
Ona dim(Ca) = S Gam(R2) x dim([ T~ ML= [2.I2.T-2
(', est bien sans dimension.

6. Les forces subies sont toujours le poids ? et la foree de frottement fluide, ici quadratique 7\
Appliquons le PED : m@ = P - ? , et projettons-le suivant 'axe (Oz) :

dv- 1
md—: = g — EPCI?TRQTJE,

dv 1 g
m—= + Epﬁrwﬂzv‘f = mg

dt
d,”z 1 2 9
dt + ﬁ,ﬂC‘IWR v, =g

7. La vitesse limite est atteinte 4 la fin du régime transitoire. On a done :

1 3 3 o 2myg
ﬂp(}ﬂrﬁ Vlim2 = § SOt I | Ulim2 = 4/ m

AN : | Vjmo = 20,4 m.s~! ~ 75 km.h~!|

La vitesse limite obtenue avec ce modele pourrait étre en accord avec les données de Météo France concernant
la vitesse des grélons au sol.

8. Partons de I'équation différentielle obtenue Q6 : dv 1
=

= + ﬁp(}mﬁﬁzvg =g
—d(V* z:‘“m"z) + ﬁpCITTRzV'z * 'uﬁm__z =g
T"lim__Q% + gV‘2 =g
Ulim,2 V™ Vot
g dt
< < < Ulim,2
Par identification, on note | 7 = % AN

9. La courbe proposée permet de vérifier que la vitesse atteint bien une limite correspondant 4 celle caleulée.
Par ailleurs, le régime permanent semble atteint au bout de quelques fois le temps caractéristique 7.
Chapitre n°14 - Mécanique : Dynamique du point - PTST
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3. Pendule simple
c. Tension d'un fil

La force de tension exercée par un fil tendu sur un objet accroché a une extrémités vaut :

— P —
T = _TUext
A
- Uyt est le vecteur radial parallele au fil, orienté vers I'extérieur du fil. T
- T > 0 est la norme de cette tension. + W

Remarque : Si le fil n’est pas tendu, la tension est nulle.

d. Mouvement du pendule simple

Application : On considére un pendule simple constitué d’un point M de masse m accroché a
I'extrémité d’un fil inextensible, sans masse et sans rigidité, dont I'autre extrémité O est fixe dans
le référentiel # du laboratoire galiléen. On néglige les frottements dus a I'air.

1. Quel est le mouvement du point M ? En déduire le systéme de coordonnées adapté et faire un
schéma.

2. Faire le bilan des forces et représenter les forces sur le schéma précédent.

3. Appliquer le principe fondamental de la dynamique.

4. Par une projection du PFD sur un vecteur de la base, Déterminer I’équation du mouvement ?
Dans la suite, on se place dans le cadre des mouvements de faible amplitude (6 < 1).

5. Linéariser I’équation différentielle dans ce cas. A quel type de systeme déja étudié cette année
I’équation différentielle correspond-elle ?

6. La résoudre avec les conditions initiales suivantes : 8(t = 0) = 6, et 8(t = 0) = 0.

Solution :

1. Le mouvement du point M est plan et se fait sur un are de cercle. On choisi done les o
coordonnées polaires.

2. Les forces présentes sont le poids P et la tension du fil T.

3. Daprés le PFD,onamx @ = ? + ?

4. Il va étre nécessaire de projetter suivant -35, permettant de « supprimer = U'inconnue T .

Ainsi : —
-m?.-ﬁ = P,Eg

méf = —mgsin

fj-}—%ﬁinf?:ﬂ

C'est une équation différentielle du deuxiéme ordre.
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5. Pou rles petites angles, sin # ~ # donc 'équation différentielle devient : 6+ %9 =0

On reconnait I'équation différentielle d'un oseillateur harmonique. de pulsation propre |wp = 4/ = |, oscillant

autour d'une position d'équilibre |#,, =0 |

On a déja rencontré 'oscillateur harmonique lors de 'étude d’'un ressort sans frottement ou lors de I'étude de
circuits sans résistances électriques (circuit LC').

6. La solution générale est de la forme ¢ = A cos(wypt) + B sin(wyt).

La condition initale sur #(0) permet de conclure que A = .

La deuxiéme condition initale permet de noter que by = 0, et ainsi que B =1().

Finalement : | # = ¢y cos(wot)

4. Mouvement sur un support solide : frottements solides

Quand un objet est au contact avec un support, ce dernier exerce sur I'objet une force appelée

réaction du support notée R .Cette force est liée a la répulsion des électrons du support et de
I'objet (interaction électromagnétique).

—

R
La réaction R se décompose en deux parties : ' 1 _-4
- Une composante normale au support notée E\; dirigée du R ﬁ
support vers le point. . ..' LT
- Une composante tangentielle au support notée Ry liée aux . . " R
frottements solides. R = RN + RT

Le sens de TT dépend de la situation envisagée. S’il n’y a pas de frottements dans le probleme,

RT = 0.
Par contre E\; i 6 partir du moment ou un Support existe.

e
A priori, Ry n’a pas d’expression particuliere et dépend des autres forces en présence. En
revanche, il existe des relations entre Ry et Ry qui vous seront données dans les énoncés.

Application : Un conducteur d’une voiture de 1200 kg, roulant sur une route horizontale a 90
km.h™L, réalise un arrét d’urgence. Malheureusement la voiture n’est pas équipée d’un systéme
d’ABS et le conducteur bloque les roues en appuyant sur la pédale de frein.

On note R_T) et E\; les composantes tangentielle et normale de la force de frottement exercée par
[ Rzl

la route et f le coefficient de frottement solide tel que f = TRl
N

On donne f = 1 (Sur une route séche) et f = 0,5 (Sur une route mouillée).

1) Calculer la distance d’arrét sur route seche et sur une route mouillée.

Chapitre n°14 - Mécanique : Dynamique du point - PTSI
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Solution :

Le systéeme est la voiture assimilée a un point matériel. Le référentiel est le référentiel terrestre
supposé galiléen. On prend comme repére un plan (Oxz), avec (Ox) I’axe horizontal dans le sens du
mouvement de la voiture et (Oz) I’axe vertical ascendant, I’origine des temps et du repére d’espace
étant considérées quand le conducteur commence a freiner.

Les forces subies par la voiture sont le poids P = mg et la réaction du support R = I—i; + ﬁ;

D’apreés le PFD :
d*x R
m [
ma=P+R&
d*z
mﬁ = Ry mg

. d?z Ly
Le mouvement est horizontal donc i 0, on en déduit :

Ry = mg
D’ou :
Ry = fRy = —fmg
Finalement :
d*x
ax=—7="1/9

dx
v(t) = = ~fgt+vq

fgt?
2

x(t) = — + vyt + x

La condition d’arrét est vx(tf) =0:

Vo
—fgtr+vo =0ty = —
f f fg
Finalement, la distance d’arrét est donnée par :
fgts? Vo2 vy 1wyl
d=x(t;) —x=— ! T Voly = — b=
2 2fg fg 2fg
Application numérique :
Sur route séche : dy = 1 x 25 = 32
ur route seche : dy =5 X 0 = m
i 1 252
Sur route mouillée :dy ==X ————=64m
27 0,5%9,81
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