TD n°16 - Mécanique : Dynamique du point PTSI

Mouvements de chute libre :

0 Exercice 16.1. Le bond du capitaine Haddock % (Coordonnées cartésiennes, trajectoire)
1. On étudie le mouvement du capitaine Haddock, modélisé par un point matériel M de masse m en évolution
dans le référentiel lunaire %, supposé galiléen. Il n’est soumis qu’a son propre poids ? = m_t;_f .
D’apres la deuxieme loi de Newton,
—_— —_—
ma(M/R) = = mgt soit a(M/%)= g7
Le mouvement étant uniformément accéléré, il va étre plan, le repérage le plus naturel pour I'étudier est un
repérage cartésien dont un axe est confondu avec 'accélération et I'origine a la position initiale du capitaine
Haddock. On peut alors construire le schéma ci-dessous, ot on représente a la fois la situation initiale pour
introduire les notations et une situation quelconque.

z
M(t)
o T
Mt =0)ee—L2 ¥ T
| a
\f

En projection, la deuxiéme loi de Newton donne (les constantes se déterminent a partir des conditions
initiales) :

{:}‘,=0 A {i:t!gcosct x(t) = vpcost
s01t

. . . d’'oli L, .
i=—gr Z=—grt +vgsina z(t) = —Eg;_t + v sin at

2. D’apres 'équation du mouvement en i,

T
t= —cosa
(X))

En insérant ce résultat dans 'équation sur z, on trouve I'équation de la trajectoire

gL

—272;}:2 + rtan o
2ug cos? a

z =

w

La distance L parcourue par la capitaine Haddock en sautant est telle que z(L) = 0, c’est-a-dire

0=L|{- Q'Q—LQL + tan o
2v; cos® o
Mathématiquement, L = 0 est bien solution, mais c¢’est bien sfir le point de départ du bond. La solution qui
nous intéresse est telle que
— EQ—L L+tana =10
2v; cos? a

On en déduit ainsi, grice 4 l'identité trigonométrique 2 sin a cos a = sin 2¢q,

v3 sin 20

gL

4. La distance que parcourerait le capitaine Haddock sur Terre serait de
2 sin 20

ar

L'=

Ainsi,

L= —6L'=9m
gL
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0 Exercice 16.2. Coup franc ! % % (Coordonnées cartésiennes, trajectoire, frottements fluides)

1. La seule force exercée sur le ballon pendant son mouvement est son poids. Ainsi, d’aprés la deuxiéme loi de
Newton, @ = g. Par projection, cela donne :

z(t) = vg cos(a)t
1 5 .
y(t) = —§gt + vg sin(o )t

En remplacant ¢ par x via I’équation du mouvement selon (Ox), I'équation de la trajectoire est :

9

2
9 2214 tan(a)z
2u3 cos? () * wn(c)z

y(z) =~

2. Le ballon passe au-dessus du mur si y(xp,,) > 1,90. Apres calcul :

ly(:.':mu,) =2,17m (le ballon passe au-dessus). |

3. Le tir est cadré si y(zpu) < 2,44. Apres calcul :

|y(3:but) =1,73m (le tir est cadré). |

4. En tenant compte de la force de frottement F , la deuxiéme loi de Newton devient :

m&':ﬁ—f—F

Les équations différentielles pour x et y s’écrivent :

Apres intégration et prise en compte des conditions initiales :
v, () = vg cos(a)e /T, v, (t) = (vosin(a) + g7) e~ —gr

Les expressions horaires deviennent, apres prise en compte des conditions initiales :

z(t) = v cos(a)(1 —e /7)), y(t) = (voT sin(ar) + g'rz)(l —e Ty —grt

5. L’équation de la trajectoire est :

Y (e

vg cos(a) voT cos(a)

6. Le ballon passe au-dessus du mur : |y(1:mur) =217Tm |

7. Le tir est cadré : ‘y(;rl,ut) =1.73m ‘ On constate que les frottements ont peu d’influence sur ce mouvement

(car il n’est pas trés rapide donce la force de frottement est restée assez faible).
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0 Exercice 16.3. Viscosimétre a bille %% (Coordonnées cartésiennes, frottements fluides)
Par homogénéité de la loi de force,

U1 =lorlx I X RIx[e]  sot [l = o=
D’aprés le PFD,
[f] = [mlla] = kg xm s~
donc
kg-m-s2

[n] = ;o osoit |[g] =kg-mtos7

l*xmxm-s"

La bille étant de rayon R, son poids vaut F= ixRp, . et comme elle est complétement immergée la poussée
d’Archimeéde s'exercant sur la bille est = —47mR*p, F. Ainsi, la force résultante de la poussée d'Archiméde et du
poids s"écrit

1)

4 .
SFi= iR -7

ce qui donne un poids apparent de la forme indiquée par I'énoncé.
EI o Systéme : bille:
« Référentiel galiléen : terrestre;

* Repérage : la bille descend et le mouvement est unidimensionnel, on prend donc un axe (Oz) vertical vers le
bas, d'on )
o=, T=Lz -0z w=LIz- g,
dr de? dt
+ Bilan des forces :
= poids et poussée d’Archimede de résultante

- 4 4
F = 27R(pa = )G = 37R (pa = pr)g e,
» force de Stokes
? = —6mnRuE, .
« PFD :

4 .
s F+ ?= E’TR_‘(Pa_Ph)?_S?“TR?

et en exprimant la masse et en projetant

4 . do 4 _,
37y = 378 (pu— pu)g - 67N Ro

El Par définition, lorsque la vitesse limite oy, est atteinte, la vitesse de bille demeure constante, donc

_2R(p—pulg

4
0= —?IRJEPQ — Pu)g — 61 R0l d’oit Dlimm
3 9

Le temps caractéristique pour |'atteindre s'obtient en écrivant I'équation différentielle sous forme canonique,

do 9 U_,Oa—Ph

==y

—+
dr — 2R%p, Pa

On identifie alors

_2R%ps
r= on

La distance pour que cette vitesse limite soit atteinte est de I'ordre de § = vy, 7, tout en étant inférieure : ce serait
la distance parcourue pendant 7 a la vitesse v}j,, mais la bille démarre plus lentement, et parcourt donc forcément
moins de distance pendant la durée 7. Ainsi,

P 4R pi(pa—pn)g
81p%

En toute rigueur, pour atteindre vraiment la vitesse limite il faudrait un temps de chute de 5t ou 7t,
mais nous verrons dans la suite de l'exercice que ce n'est pas crucial et que cet ordre de grandeur assez
approximatif nous permet de conclure.

E] Supposons la vitesse limite atteinte. Elle vaut alors

=— =140-10 2 1
o) ,40 - m-s-.
- At

Ainsi,

) 2R (pa—pn)g

=107kg -m™' 57!
9 Vlim &

E] Pour confirmer que la vitesse mesurée est bien la vitesse limite, il faut que la profondeur h = 5 cm du premier
repére soit supérieure 4 la distance § définie précédemment. A partir de la valeur de viscosité mesurée, on estime

5=28-10"m < h.

Compte tenu de la valeur de 4, la bille atteint en fait sa vitesse limite presque dés le début de la chute : la durée
du régime transitoire est trés courte. Pour s'en assurer expérimentalement, on peut par exemple diviser en deux
ou trois l'intervalle de longueur L et s’assurer que la bille met le méme temps a parcourir chaque troncon : c’est le
signe qu'elle n'accélére plus.
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Mouvements sur un support solide :

0 Exercice 16.4. Brique sur un plan incliné % (Coordonnées cartésiennes, frottements solides)

Ru
&
7
-
R
u, '
o
p
']')
1. a. La brique est soumise a son poids ? = —mgsin au, —mg cos a, et a la réaction uniquement normale

m =R NE; (pas de frottements). On applique le PFD & la brique, dans le référentiel terrestre galiléen :
md = }—3 + I_i’_\r
En projetant selon I'axe (Ox), on obtient
I = —gsina

On intégre deux fois cette expression avec les conditions initiales #(0) = vg et z(0) =0

g sin o

(t) = —gtsina + vy soit |z = 2 + vpt

b. La date d’arrét de la brique est telle que #(¢,) = 0 soit :

‘tu =wvg/gsina=0,71s

et la distance parcourue par la brique jusqu’a son arrét est :

2
v
(ta 2gsin o

=0,86 m

2. Dans ce cas, la deuxiéme loi de Newton s’écrit de la méme fagon, mais la projection sur 'axe (Oz) inclut la
composante tangentielle de la réaction du support, soit R, = —Ry = —fRy. On obtient done

—mgsina + R, = mi
et on aura, par ailleurs, besoin de la projection sur (Oy) :
—mgcosa+y =0& Ay = mgcosa

On en déduit
¥=——(sina+ fcosa)g

puis on integre deux fois avee les mémes conditions initiales, pour obtenir

1 .
z(t) = —§(sina + feosa)gt? + vot

La date d’arré est obtenue de la méme fagon, on a donc

' o
= —— =(,46 8
g(sina + feosa) 0,465
et
4 =z(t) = % =0.55
= ta T 2g(sina+ fcosa) T T "

Comme on pouvait le prévoir, les frottements ralentissent encore plus la brique et elle s’arréte évidemment
plus tot que dans le premier cas.
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0 Exercice 16.5. Descente de ski %% % (Coordonnées cartésiennes, frottements solides)
1. La deuxieme loi de Newton appliquée & la skieuse dans le référentiel terrestre galiléen s'éerit :
mi=P+N+T+F

En projetant cette relation sur l'axe (Oy), on obtient :

—mgcos(a) + N =0 =b-‘ N =mgcos(a) et T = fingcos(a). |

L

La projection sur 'axe (Ox) donne :
mysin(w) — A — fmgcos(a) = mi,

ce qui s'éerit sous la forme :
F—at =b,

A
avec a = — et b= g(sin(o) — fecos(e)).
m
La solution est donc : b
@(t) = — + Ke™™,
a

. . b
oit K est une constante déterminée par les conditions initiales. Avec #(0) = 0, on trouve K = ——, et done :
a

i(t) = %(sin(u} — feos(a))(1— '-f-‘“."m}_

En intégrant cette équation avec x(0) =0, on obtient :

x(t) = %(Sin(u) — feos(er)) (g + %E:—.Jlffm _ %) .

3. La vitesse limite est donnée par :

v = %[Hin(u} — freos(n)).

Numériquement :

v
4. La date #; telle que () = E{ = ] —g=M1/m _

Numériquement : [ty = 6, 3s.

5. En choisissant une nouvelle origine des temps £’ = 0 et de Uespace z'(0) = 0, la vitesse initiale est i'(0) = —.
Le PFD projette suivant s devient :
mygsin(a) — 20 fmg cos(er) = mi',

et en intégrant, on trouve que i'(#') s’annule pour :
U(
2(—gsin(a) + 20 fg cos(a))

’

ty =

La distance parcourue est donnée par :

3
!J{

8g(20f cos(a) — sin(a))”

() =

s om i -
Numériquement : | z'(t5) = 650 m.
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Mouvements circulaires :

0 Exercice 16.6. Oscillation d’un pendule simple % % (Coordonnées polaires, oscillateur amorti)
1. Le systéme étudié est un point matériel M de masse m. Le PFD s'éerit -
ma=P+T+ _JF

Par projection dans la base polaire (s, uj) :

. o -

i+ =+ Lsin(0) =0

m L

Pour des petits angles 8, I'équation devient :

i+Zd+%0=0
+=0+ 5

™

)

2m q
En posant |7 = — |et |wp = It on obtient 'équation demandé.

2. a. L'équation caractéristique est

5 2 .
-r2+—'r+m{‘;=ﬂ
T

Le régime est pseudo-périodique si |wy > — | (diseriminant négatif).
T

b. 7 est un temps de relaxation, indiquant la durée du régime transitoire.

_ bt) \_T
5‘m(w+ﬂ)‘7

T=1J0q47=1m0%|u=aax1w2@ﬁl

3. L'amortissement logarithmique :

4. Les valeurs numériques : |4 = 0,110 |,
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0 Exercice 16.7. Glissade sur un igloo %% (Coordonnées polaires, réaction d’un support solide)

1. Le systéme étudié est Uenfant esquiman, en mouvement dans le référentiel terrestre. Il est soumis 4 son poids
et a la réaction Ry de l'igloo, qui est sans frottement. Dans la base polaire, voir figure ci-dessus, on a

—
Ry = Ryl et T—g = —imngcos 0 + mg sin [y
Exprimons 'aceélération de 'enfant. Comme l'igloo est sphérique, alors r = R =cste.
OM = R’ ¥ = Réu, @ =—R*% + R}

D’apres le PFD, on a

—mR#* = Ry —mgcosf et mR# = mgsinb
L'équation du mouvement est celle projetée sur iy, L'équation projetée . contient en effet une force inconnue
By, et ne permet done pas de déterminer le mouvement... Par contre elle permet de déterminer cette force.

=

L’équation du mouvement s’éerit
§—Lsing=0
R

ce qui donne en multipliant par ¢

66 — %sinﬁ'ézﬂ

Intégrons cette équation par rapport au temps :

2 g

— 4+ Zcosfl=C

2 R
Comme lenfant s'élance de § = 0 sans vitesse (6(0) = 0), alors C = g/R. On obtient finalement le résultat
donné dans enoneé

6 = 2—}:‘;’l[l — cosH)

La méthode pour passer d'une équation sur 4 une équation portant sur 62 est i retenir. Clest la méme
méthode qui permet d’établir le théoréme de 'énergie cinétique a partir du PFD.

3. D’aprés la projection radiale du PFD,

—mRO? = Ry —mgcosf done Ry =mg(3cosf — 2)

L

L’enfant décolle de l'igloo si la force Ry de la liaison avee ligloo s’annule, done pour un angle 84 tel que
Jeosly=2=0don:

2 &
g = arccos — ~ 48
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Ressorts et positions d’équilibres :
0 Exercice 16.8. Oscillations verticales % (Oscillateur harmonique)

1. La masse est soumise & son poids P= +mge_; et 4 la force de rappel F =—k(x- xﬂje__; du

ressort. A I*équilibre, on peut écrire le PFD : P+F=ma=0. Projection sur 'axe (Ox) :

: m
—k(xsq — x0) +mg =0, et on obtient | xg, = xg +Tg ]
2. On applique 4 nouveau la deuxiéme loi de Newton 4 un instant quelconque du mouvement

_k

. . - 9 5
ot1 la longueur du ressort est x : —k(x —xp) +mg = m¥ . soit |¥ + 0¥ = 0f¥x |avec|® .
i

=T

3. a) Cette équation différentielle admet une solution du type x(r) = 4cos(myr +B)+ Xeq. A et

B ¢tant des constantes a déterminer avec les conditions initiales 1 x(0) = dcos B + x;y =x,, donc

e . . v
cosB =0 et on peut prendre B = et x(0)=—-egdsinB=—mpd=vy.dol 4= -0
& Log)

-

&
o ™
. m . k
soit |x(t) = xgq + Vou[—sin| J—2 ||
k m

0 Exercice 16.9. Suspension de voiture % % (oscillateur amorti)

3
. v, T vy .
On a done trouvé x(r) = x,, ——-cos| gt +— ‘=xéq +—Lsin(@gt)
@ 2 0y

1. On étudie le chissis du vehicule, assimilé & un point matériel de masse 1\, dans le référentiel
terrestre supposé galiléen. Forces appliquées a4 A4 (2 I'équilibre) : son poidzs P=Mg=—Mru_ ;
quatre tensions identiques ?=—.{'(I., —L;.]E. Le FFD donne alors : J»f% +4T=0. Projection

— X ey
sur w ¢ =M —4k(L -L=0dob L =1, —4—‘%. =L+ R donc|z, =L;.—_1—;—R

& Vows wn'aver gquand méme pas oublié ls factewr 4 7 1l est cité pas meins de froiz
foiz deavs énonce...

# A Iéquilibre il n'y a pas de force de frottement des amortisseurs, puisque la
vitesse ext nulle.

2. a) Quatre forces de frottements 7 =—Av(M)=—lfu. & 'ajoutent maintenant avx précé-
dentes: Mg+4T+4F =Ma. Projection sur u, - —Mg—4k(z—R—-L)—41i=M: d'oi
R Moy, SfEM
£ —ﬁz' —£f=—g—E(R+L_,} =£E¢ . En posant o, = ?_1'% et [O=—T=2—"| on

T4 23

= Méthode 132

b) Le retour & 'équilibre le plus bref correspond au régime critigue. Le discriminant de

(=1
et

I"éguation caractéristique ¥l +%r+m& =0 est alors ol A =%—4m§ =0 d'oi 0==,

hs m— r m—

soit f'ma]ement_ SfEM .

= Méthode 133

c] L éguation caractéristique a pour racine double = — oo, La solution générale est alors
)=z, + (At + Bexp(—wyt) . Conditions initiales : z{(0) =z, -h=z.+F donc B=-h;
{0 =0=4-w,B donc 4=—o,hi.Finalement : z(f)=z, — Aoy +1) exp{—l:ug!}|_

d) Evolution temporelle - I A
Iyq========s========<
s -/_
0 g
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