TD n°16 - Mécanique : Dynamique du point PTSI

Mouvements de chute libre :

0 Exercice 16.1. Le bond du capitaine Haddock % (Coordonnées cartésiennes, trajectoire)

Dans l'album de Tintin On a marché sur la Lune, le capitaine Haddock s'étonne de pouvoir faire un bond
beaucoup plus grand que sur la Terre. Le but de cet exercice est de déterminer la longueur de ce bond.

Sur la Lune!..Cest prodigieux!..
Je me promene sur la Lunel..
Je marche..je cours...je saute...

@, par exemple!...
¢ Quel bord !

On assimile le mouvement du capitaine Haddock a celui de son centre d’inertie. Il saute depuis le sol lunaire
avec une vitesse initiale vy faisant un angle a = 30° avec le sol. On note g, 'accélération de la pesanteur a la
surface de la Lune, environ six fois plus faible que sur Terre.

1. Etablir I'équation du mouvement.
2. En déduire I’équation de la trajectoire du centre d’inertie du capitaine Haddock.
3. Exprimer la distance L qu’il a parcourue en sautant en fonction de vy, a et gr.

4. En supposant que le capitaine Haddock est capable de sauter 1,5 m sur Terre et en admettant qu’il n’est
pas géné par son scaphandre, déterminer numériquement la distance L.

0 Exercice 16.2. Coup franc ! % (Coordonnées cartésiennes, trajectoire, frottements fluides)

On étudie, dans le référentiel terrestre de repére fixe Oxyz un coup franc de football tiré & 20 m |, face au but
de hauteur 2,44 m et dans son plan médian vertical (Oxy). L’axe (Oy) est choisi suivant la verticale ascendante.

: but
mur
7,
i} /8
ol g, z

Le ballon, de masse m = 430 g , est assimilé & un point matériel M posé sur le sol initialement en O. Le
mur, de hauteur 1,90 m , est situé & 9,15 m du ballon. Ce dernier est lancé avec une vitesse initiale 7} de norme
20 m/s, et formant un angle o de 20° avec I'horizontale. L'origine des dates correspond au départ du ballon.
Dans un premier temps, on néglige totalement les frottements de 1’air.

1. Etablir les lois horaires du mouvement du ballon ainsi que 'équation de la trajectoire.
2. Le ballon passe-t-il au-dessus du mur ?
3. Le tir est-il cadré?

En réalité, des frottements existent, qu'on modélise par une force ? = —h_;}_. out h est une constante
positive de valeur 5,0.1073 kg/s et T le vecteur vitesse de M & chaque instant.

P . . . . . . m
4, Déterminer les équations horaires en introduisant la constante 7 = T

5. Donner I'équation de la trajectoire.
6. Le ballon passe-t-il au-dessus du mur ?
7

. Le tir est-il cadré?
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0 Exercice 16.3. Viscosimétre a bille %% (Coordonnées cartésiennes, frottements fluides)

Une méthode trés simple 4 mettre en ceuvre pour mesurer la viscosité n d'un fluide relative-
ment visqueux consiste 4 licher une bille dans une éprouvette contenant le fluide et 4 mesurer
sa vitesse limite. On s’intéresse dans cet exercice 4 une bille en acier de rayon R = 1 mm qui

E’l T tombe dans une huile siliconée. L’huile exerce sur la bille une force de frottement fluide donnée
I I 1L par la loi de Stokes,
- l f=-6nnR7T.

Données : masse volumique de |'acier p, = 7,83 - 10* kg - m™ et de I'huile pn = 970 kg - m™.

1 - Déterminer ['unité de la viscosité 5 dans le Systéme International.

2 - Montrer qu’en raison de la poussée d’Archiméde tout se passe comme si le poids de la bille était modifié avec
une masse volumique apparente p = p, — pj-

3 - Etablir |'équation différentielle vérifiée par la norme de la vitesse de la bille.

4 - Exprimer la vitesse limite atteinte par la bille et la durée caractéristique r pour atteindre cette vitesse limite. En
déduire un ordre de grandeur (surestimé) de la distance de chute nécessaire pour atteindre cette vitesse limite.

5 - On place deux repéres distants de L = 15,0 cm dans I'éprouvette, le premier de ces repéres étant situé envi-
ron 5 cm sous l'interface entre 1'air et I’huile. On mesure une durée de chute At = 10,7 s. En déduire la viscosité de
'huile siliconée.

6 - Confirmer que supposer la vitesse limite atteinte lorsque la bille passe au niveau du premier repére est une
hypothése tout 4 fait légitime. Comment aurait-on pu s’en assurer expérimentalement ?

Mouvements sur un support solide :

0 Exercice 16.4. Brigue sur un plan incliné % (Coordonnées cartésiennes, frottements solides)

On considée un plan incliné d'un angle o = 20° par rapport a I'horizontale. Une brique de masse m = 600 g
est lancée depuis le bas du plan vers le haut, avec une vitesse ﬁ de norme 2,4 m.s~1. On utilise, pour étudier
le mouvement, un axe (Ox) parallele au plan incliné et dirigé vers le haut et tel que O coincide avec le départ
de la brique.

1. On suppose que le contact entre la brique et le plan incliné se fait sans frottements.
a. Etablir I'équation horaire du mouvement de la brique lors de la montée.
b. Déterminer la date a laquelle la brique s’arréte ainsi que la distance qu’elle aura parcourue.

2. On suppose Iiliintcnant qu'il existe des frottements solides. La force de contact a alors la forme suivante :

= Ry + R, avec Rp colinéaire et de sens contraire & la vitesse, et Ry = fRy ot f = 0,20 est un
coefficient de frottement.

Répondre aux mémes questions dans ce cas.

0 Exercice 16.5. Descente de ski %% % (Coordonnées cartésiennes, frottements solides)
E
-~

Madame Michu descend une piste a ski, selon la ligne de plus grande pente
faisant 'angle « avec 'horizontale. L’air exerce une force de frottement sup-
posée de la forme ? = —AT , ol A est un coefficient positif et T la vitesse
de la skieuse. On note ? et Nk les composantes tangentielle et normale de la
réaction exercée par la neige, et f le frottement solide tel que T'= fN.

On choisit comme origine de 'axe (Oz) de la ligne de plus grande pente la position initiale de la skieuse, sup-

posée partir & I'instant initial avec une vitesse négligeable. On note (Oy) la normale a la piste dirigée vers le

haut.

1. Calculer les normes T et N.

2. Calculer la vitesse et la position de la skieuse a chaque instant.

3. Montrer qu’elle atteint une vitesse limite v;. Application numérique : calculer v; avec A = 8,8 kg/s, m = 80
kg, a« = 45° | et f =0,055.

4. Calculer littéralement et numériquement la date ¢; o la skieuse a une vitesse égale & v;/2.

5. A la date t1, Madame Michu tombe. On néglige alors la résistance de I'air, et on considére que le coefficient

de frottement sur le sol est multiplié par 20. Calculer la distance parcourue par Madame Michu avant de
s'arréter.
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Mouvements circulaires :

0 Exercice 16.6. Oscillation d’un pendule simple % % (Coordonnées polaires, oscillateur amorti)

Un pendule simple est constitué d'un point matériel M. de masse m, lié
a U'extrémité d'un fil de longueur L et de masse nulle, I'autre extrémité étant
fixe en un point ). On suppose que le mouvement a lien dans le plan vertical
(Oxy), et on repére la position de M avec I'angle polaire # (voir figure), 'angle
# restant toujours faible. A I'instant ¢ = 0, on liche la masse depuis un angle

g, sans vitesse initiale. x y

M

Lorsqu'on enregistre expérimentalement 8(t), on constate que l'amplitude de # diminue lentement. On in-

terpréte ce résultat par la présence de frottements que I'on modélise par une force ? =—a?7 . ,o0 7 désigne
la vitesse du point M. et « une constante positive.

1. Etablir I'équation différentielle vérifiée par Pangle # et I'éerire sous la forme :
6+ -0+wid=0
T

2. a. A quelle condition obtient-on un régime pseudo-périodique ?

On supposera dans la suite que cette condition est vérifiée et que I'angle # peut se mettre sous la forme

- . 1
8(t) = Ae=t/7 cos(Q + B) ot A et B sont des constantes et £ = 4 /w? — =
.
b. Que représente physiquement 77

o(t)

3. On appelle décrément logarithmique la quantité § = In (m) . Exprimer & en fonction de T et 7.

4. La figure ci-dessous représente les variations de # avee le temps. On précise les coordonnées de quatre points

particuliers.

Points A B C D
t(s) 0,53 | 1,10 | 2,20 | 8,25
f(rad) | 0,00 | 8.95 | 8,02 | 0.00

Age
: 10;
La masse est m = 470 g. Calculer 8
numériquement, a partir des valeurs B C
expérimentales : 5
. . . 4
— le décrément logarithmique 4§ Al A /\
— la pseudo-période T°
0 1
— le temps 7 -2 . 6 8\/1) 'O>
— la constante « -4 t(s)
-6
-84

0 Exercice 16.7. Glissade sur un igloo %% (Coordonnées polaires, réaction d’un support solide)

Cet exercice s'intéresse & la glissade d’un enfant esquiman E de masse m B K

sur le toit d'un igloo d’on il s’élance sans vitesse initiale. L’enfant glisse sans / - f\
aucun frottement & la surface de l'igloo. Sa position est repérée par 'angle 6.

Pour simplifier, I'igloo est supposé sphérique de rayon R. [

1. Appliquer la deuxiéme loi de Newton & l'enfant pour en déduire deux équations différentielles portant sur
I'angle #. Identifier I’équation du mouvement, qui permet de déterminer #(t). Quelle information Pautre

équation contient-elle?
2. En multipliant ’équation du mouvement par é, montrer que :

62 = 2Eg(l — cosf)

3. En déduire 'expression de la force de réaction de 1'igloo.
4. L’enfant décolle-t-il du toit de l'igloo avant d’atteindre le sol ? Si oui, pour quel angle 7

TD n°16 - Mécanique : Dynamique du point - PTST
Page 3/4



TD n°16 - Mécanique : Dynamique du point PTSI

Ressorts et positions d’équilibres :

0 Exercice 16.8. Oscillations verticales % (Oscillateur harmonique)

On considére le systeme ci-contre: une masse m est — < o
suspendue a un ressort vertical ideal, de masse négligeable
et de raideur k. L’extrémité superieure du ressort est fixe et
attachée au point O. On utilise I’axe (Ox), vertical et dirigé
vers le bas pour repérer la position de ’extréemité libre du
ressort par son abscisse x. Soit x; la longueur a vide du  l.______ Xo

ressort et X, sa longueur lorsque la masse m est accrochee xt----- Bl v
]

a I’extrémité inférieure du ressort et est a I’équilibre.

1. Exprimer X en fonction de m, g, ket xq.

2. Déterminer I’équation différentielle vérifiée par x lorsque la masse est en mouvement.

3. A l'instant =0, la masse m est dans une position telle que la longueur du ressort est égale a
X¢q - On lui communique alors une vitesse v, verticale et dirigée vers le bas.

a) Déterminer ’expression de x(#) en fonction des données du probléme.

b) Exprimer la période T, des oscillations.

0 Exercice 16.9. Suspension de voiture % (oscillateur amorti)

La suspension d’une voiture est assurée par quatre systémes
identiques indépendants, montés entre le chassis et chaque arbre de
roue, et constitués chacun :
— d’un ressort hélicoidal de constante de raideur k et de longueur a
vide Lp ;

d’un amortisseur tubulaire a piston, fixé parallélement au ressort,
exercant une force de frottement visqueux linéaire de coefficient
d’amortissement J.
On suppose que la masse totale M (voiture et passagers) est toujours
également répartie entre les quatre systémes.

Les roues de rayon R sont considérées comme entiérement
rigides. On n’envisage que des déplacements verticaux du
chissis, repéré par son altitude z par rapport au sol: la

longueur commune des quatre ressorts est notée L. J_ * J_
1. Le wéhicule étant immobile sans freins sur un sol L ,
horizontal, quelle est la longueur L. des ressorts au repos
et la « garde au sol » z. du véhicule ?
g : T 77777777

2. Le chissis est abaissé d’ une hauteur /i, puis brusquement libéré sans vitesse initiale.
a) Etablir I'équation différentielle de la position z(#) du chassis par rapport au sol. On introduira

i k . : .
la grandeur o, =2 5 et un facteur de qualité Q dont on précisera I'expression.

b) L amortisseur a &té réglé de maniére 4 obtenir un retour i la position d’équilibre final le plus
bref possible, lorsque la masse M est seulement celle de la voiture (1100 kg). Quelle doit étre
la valeur de 4 en fonction de Met k 7

c) Déterminer alors I'expression compléte de la solution z(¢) en fonction de z.. ki et @y .

d) Tracer I’allure de la courbe représentant ’évolution de z en fonction du temps.
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