Chapitre n°15 Mécanique : Energétique du point PTSI

Introduction :

Plutét que de décrire précisément le mouvement d’un objet a chaque instant. On peut
s’intéresser aux échanges d’énergies engendrés par cette transformation.

L’approche énergétique permet alors de déterminer des vitesses ou des positions finales
sans décrire la totalité d’un mouvement, ce qui en fait un outil particulierement efficace pour
résoudre des probléemes en mécanique.

Par ailleurs, I'approche énergétique est transverse en physique et les percepts abordées
seront repris dans le cours thermodynamique.

I] Premiére approche : intégrale premiére du mouvement

Nous avons vu dans le chapitre précédent que la 2™ loi de Newton conduit & des équations
différentielles sur les dérivées secondes des coordonnées.

Dans ce paragraphe, nous allons voir que I'on peut intégrer ces équations, amenant a une
interprétation en termes de réservoir d'énergie.

1. Exemple n°l: chute libre *

Application : Hauteur atteinte par un ballon.

Une rugbyman réalise une chandelle avec un ballon modélisé par un point matériel M de masse
m = 400 g, les frottements sont négligés. On étudie ce systeme dans le référentiel terrestre
supposé galiléen. On suppose que le mouvement est verticale et on donne la vitesse initiale du
ballon vy = 20 m.s™ 1,

1) Déterminer la hauteur atteinte par le ballon.

2. Exemple n°2 : Oscillateur harmonique *
3. Conclusion

Pour certains mouvements, on peut interpréter I’évolution comme un transfert d'énergie
mécanique entre deux réservoirs : celui d'énergie cinétique (toujours positive) et celui d'énergie
potentielle (qui dépend des actions mécaniques mises en jeu).
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IT] Théoreme de |'énergie cinétique
1. Définition de I'énergie cinétique

On considere un systeme point matériel M de masse m dont le mouvement est décrit dans un
= \ .
référentiel galiléen R, soumis a des forces de résultante F. Ecrivons la 2°™¢ |oi de Newton :

— —._): ._) —_— _92 :_)._-)
mdt F:>mdt v=F v:dt(zmllvH) Fev

On définit I'énergie cinétique d'un point matériel de masse m, en mouvement a la vitesse ¥ dans
un référentiel R :

i .
E. = Zml[3

L’énergie cinétique est homogeéne a une énergie M. L%. T~2 et son unité Sl est le Joule J.

2. Puissance d'une force

On appelle puissance exercée par la force F sur le point M animé par la vitesse ¥ dans le
référentiel R :

n =
Pf_)M—FO‘D

La puissance est homogene a8 M. L. T~3. Son unité dans le Sl est le Watt (W, 1 W = 1].s71)

3. Force motrice et résistante

La présence d'un produit scalaire conduit a plusieurs cas :

- Soit la force et le mouvement vont dans le méme sens (P > 0) : la force est motrice.
- Soit la force et le mouvement vont dans un sens opposé (P < 0) : la force est résistante.
- Soit la force et le mouvement sont orthogonaux (P = 0) : La force ne travaille pas.

r I . L
'}
ﬁ1".1" :' ﬁM .r! Unr ’
.<:7 =" ﬁ V e’ .’
- - - -
- - F
Force motrice Force résistante Force ne travaillant pas

Application : La luge.

On considére une luge glissant avec frottements solide de coefficient f sur une pente d’angle o
avec I’horizontale.

1) Faire un schéma et représenter les forces s’exercant sur la luge.
2) Déterminer les puissances des forces en présence.

3) En déduire la nature motrice ou résistante de ces forces.
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4. Travail d'une force le long d'un chemin

Le travail élémentaire de la force F appliquée au point M au cours du déplacement élémentaire
dOM dans le référentiel R est défini par :

W(F) =F « dOM

Le travail est homogéne a une énergie M. L?. T~2. Son unité dans le Sl est le J.

On définit le travail global fourni par une force a un point matériel entre deux positions A et B le
long de sa trajectoire (AB) en sommant les contributions des travaux élémentaires :

Wap(F) = oW(F) = f F « dOM
Me AB

Remarques :

Le travail représente I'énergie cédée au systéme par la force F entre les points A et B.

- Le travail d’une force peut s’exprimer en fonction de la puissance et inversement.

_

W(F) = F « dOM = F « vdt = P;_,dt

F-M

- La notation 8W et non dW pour le travail élémentaire vient d'une propriété particuliére:
il dépend a priori du chemin suivi par le point matériel (cf. Il.1). Il ne dépend donc pas

seulement de la position de ce dernier (son état). D’oli f MeAB w (f) ne dépend pas que
des états A et de B. En conséquence, on ne peut pas écrire cette intégrale avec une
primitive simple de oW (ﬁ)

- Dans le cas d’une force constante, le calcul se simplifie et donne :

W a5 (F) = ﬁ.—’d(m:ﬁ.j dOM = F « (OB — 0A) = F « 4B
MeAB MeAB
5. Théoréme de I'énergie et de la puissance cinétique *

Application : Le curling.

Un palet glisse sur un support horizontal avec une vitesse initiale vy = vy U_x) (état initial A,
position initiale choisie en x4 = 0). Il est soumis de la part du support a une force de frottements
secs opposée a sa vitesse de glissement et de norme Ry = fRy d'aprés les lois de Coulomb. Cette
force arréte le palet en B.

1) Faire un schéma. Représenter les forces.

2) Déterminer les travaux des forces entre A et B.

3) Appliquer le théoreme de I’énergie cinétique pour déterminer la position d’arrét xpg.
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II] Energie potentielle et forces conservatives
1. Forces conservatives

Une force F est conservative si le travail WAB(T?) ne dépend pas du chemin suivi de A a B.

Exemple : Elévation d’une masse.

On considére un point, soumis a son poids, a une force de trainée (modele ¥ B
linéaire), qui effectue un trajet entre A(xg,0,0) et B(x,, 0, zg). ;
M
a) Déterminons le travail du poids (force constante) : I .
A Tmg,f
‘:' X
W,p(P) =P+ AB = —mgzg D

Cette expression est valable quel que soit le chemin suivi par le systéme, elle ne dépend que des
coordonnées des points A et B.

b) Calculons le travail de la force de trainée linéaire (force non constante) :

W(f)=—-ABedOM = W5 (f) = -2 ; ABTJ’-dOM

On constate qu'on ne peut pas finir le calcul de l'intégrale sans connaitre les lois horaires,
puisqu'on ne connait pas la fonction V(t). Pour finir le calcul, prenons deux chemins :

- Une élévation uniforme entre A et B : z(t) = vyt.
W(AB)(f) = —ﬂf vodZ = —ﬂvozB
0

- Une élévation uniformément accélérée entre Aet B : z(t) = 2 ayt?.

— Zp - Zp Zp zz 2 zp
W(AB)’(f):_’IJ;) B'dOM:—ﬂ-];) aotdz:—ﬂ,fo a—odzz—ﬂ a—OL \/Edz
f / 2 2 3% 4zp -
W ! = - _X[—Zi] =—ﬂz _¢W
(AB) (f) a 3 0 B 3a0 (AB)(f)

Le travail dépend du chemin suivi, la force de frottement fluide n’est pas conservative.

—
Conséquence : Le travail d'une force conservative F . sur n'importe quel chemin fermé (c'est-a-dire
qui revient a sa position initiale) est nécessairement nul :

W, (F,) = FT-dOszE’-dOMzo
Me AA

Pour montrer qu'une force est non conservative, il est possible de calculer son travail sur un chemin
fermé : si ce travail est non nul, alors elle ne peut pas étre conservative.
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2. Energie potentielle *
3. Force dérivée d'une énergie potentielle *
a. Cas 1D

Application : Etablir les énergies potentielles associées aux forces classiques.
1) Etablir I'’énergie potentielle de pesanteur (pour un axe (0z) orienté vers le haut et vers le bas).
2) Etablir I'énergie potentielle élastique. On choisira E,(x = 1y) = 0.

3) Rappeler I'expression de la force gravitationnelle exercée par une masse m_ située en C sur une
masse m située en M. Etablir 'expression de I’énergie potentielle gravitationnelle.

b. Cas 3D

Outils mathématiques :

La dérivée partielle d’'une fonction g(x,y, z) par rapport a la variable x, avec y et z maintenues
constantes est définie par :

(09) . gx+ox,y,z)—gxy 2)
— = lim
dax yz x>0 ox

La différentielle totale d’une fonction g(x,y, z), notée dg, de 3 variables x, y, z indépendantes

est définie par:
_ ag ag ag>
dg = (ax)y,z dx+ (ay)“dy " (62 dz

Le gradient de cette fonction réelle g(x,y, z) des trois coordonnées d’un point M(x,y, z) est
défini comme le vecteur «accroissement» qui donne la variation de g le long d'un petit

déplacement élémentaire dOM :

dg = grad(g) «dOM

La définition de I'opérateur gradient fait intervenir le vecteur déplacement élémentaire dOM qui
dépend du systeme de coordonnée choisi. Ainsi, on peut expliciter I'expression de I'opérateur
gradient :

- En coordonnées cartésiennes : grad(f) = %Fx) + z—’yFU_y) + %FZ)
- En coordonnées cylindriques : grad(f) = %Fr) + %%F‘; + %FZ)

- En coordonnées sphériques : grad(f) = %Fr) + %%F‘; + rsi;(e)%j
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Dans le cas 3D, revenons a la définition de I’énergie potentielle a partir de sa différentielle : Pour
toutes force conservative FC), il existe une fonction E(x,y, z) tel que :

dE, = —F,+« dOM

D’apres la définition du gradient :

dE, = grad(E,) » dOM

D’ou:
—F,+dOM = grad(E,) » dOM

Finalement :

F.=—grad(E,)

Application : Déterminer I'expression d’une force conservative a partir de I'énergie potentielle
associée.

Pour les énergie potentielles proposées, déterminer la force conservative associée.
1) L’énergie potentielle de pesanteur en coordonnées polaires : Ep, = —mgrcos(0) + cste.

2) L’’énergie potentielle d’un particule chargée q en M, en interaction coulombienne avec une
particule chargée qq en O, s’écrit en coordonnées sphériques centrées sur O

_ 99
4rggr

p
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IIT] Energie mécanique
1. Définition

L'énergie mécanique d'un systéme est la somme de son énergie cinétique et de toutes les
énergies potentielles des forces conservatives auxquelles il est soumis :

i E SR,

2. Théoreme de la puissance et de I'énergie et mécanique

On considere un systeme point matériel M de masse m dont le mouvement est décrit dans un
référentiel galiléen R. Ecrivons la 2™ loi de Newton en séparant les contributions des forces
conservatives et non conservatives :

dv — -
—:ZFC+ZFNC
t
dv _ d
S m e v= (mnvuZ)——(Ec) DE e+ ) Fyed
SE) - Y = Py
d . £, N,
E( ‘)+ZW_Z NC

On en déduit le théoréme de la puissance mécanique :

dE, d
TPM: 7=&(EC+ZEP)=ZPNC

En intégrant entre deux états A et B, il vient le théoréme de I’énergie mécanique :

B B__, dOM
dE,, = Z Pycdt = f dE,, = z Fre Z f W (Fye)
A A

TEM: AgEp = E(B) — Ep(4) = Z Was(Frc)

Remarque : L’énergie mécanique se conserve, c’est-a-dire reste constante si et seulement si la
puissance des forces non conservatives est nulle.

Application : Pendule simple par I’énergie.

On étudie le pendule simple : une masse ponctuelle m est accrochée a I'extrémité d’un fil
inextensible sans masse de longueur €, que I'on fait osciller dans un plan vertical.

Etablir I'’équation différentielle du mouvement en utilisant le théoréme de la puissance mécanique.

Chapitre n°15 - Mécanique : Energétique du point - PTST
Page 7/10




Chapitre n°15 Mécanique : Energétique du point PTSI

V] Mouvements conservatifs a une dimension
1. Courbe d'énergie potentielle

Considérons le mouvement conservatif d'un point matériel soumis a des forces conservatives
associées a une énergie potentielle totale E,(x). Notons Ep,g son énergie mécanique initiale.

Le théoreme de I'énergie mécanique nous garantit alors que E,, = E,,;¢ est constante au cours
du mouvement. Par la suite, on peut écrire la conservation de I'énergie :

E,=E.+ Ep
1 12
Ep(x) = Emno — Em”v” < Eno

Le point matériel ne peut accéder qu'aux lieux x ou |'énergie potentielle est inférieure a E,p.

Tragons Ep(x) et plagons diverses possibilités de E,,q ci-dessous :

3

m,0

[

> &

[

~ p,max

p,max

On distingue deux cas sur les schémas ci-dessus :

- Sidans le cas ou E,,, est inférieure au col d'énergie potentielle (graphe de gauche) et
ou la particule est initialement entre x4 et x,, elle est bloquée entre ces deux positions.
On parle d'état lié. Le col d'énergie potentielle infranchissable est appelé barriére de
potentiel. La zone entre deux barrieres dont une particule de trop faible énergie ne peut
pas s'extraire, on parle de puits de potentiel.

- Si la particule peut atteindre la position x3 (soit parce que son énergie mécanique est
suffisante pour passer le col, soit parce qu'elle est initialement de ce c6té du
col), elle peut s'éloigner indéfiniment. On parle d'état de diffusion.

Remarque : Pour raisonner, on peut voir le diagramme d'énergie potentielle comme un dénivelé,
puisque pour l'énergie potentielle de pesanteur, E,, = mgz est proportionnelle au dénivelé z.
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2. Position d'équilibre

Une position d'équilibre une position pour laquelle le
point matériel subit une force globalement nulle :

F(x=x,)=0

e e e e e == =

xr}q, 2

R s . . Yéq, 1
Dans le cas d’un systeme conservatif a une dimension,

il vient :

Fc= —EUx = E(x=xeq) =0

On peut alors séparer deux cas :

* Pour un minimum de E,, si le point s'éloigne un peu de la position x4, la force devient non
nulle et est orientée vers la position d'équilibre : il s'agit d'une position d'équilibre stable.
2
d°E,
dx?

(x=x¢q)>0

* Pour un maximum de E,, si le point s'éloigne un peu de la position X4, la force devient non
nulle et est orientée a I'opposé de la position d'équilibre : il s'agit d'une position d'équilibre
instable.

d’E,
dx?

(x =%eq) <0

3. Petits mouvements autour d'un équilibre stable

Soit un systeme conservatif (sans dissipation) décrit par une variable x(t), évoluant dans un profil
d’énergie potentielle E,(x) et étudions son mouvement autour d’une position d’équilibre x,.

Par définition de I'équilibre : F(x = X.4) = 0 = d—xp(x = X¢q) = 0.

Par la suite, en réalisant un développement de Taylor de E,, au voisinage de X, il vient :

2

1d°E
Ey(x) = Ep(xeq) + EdTZp (Xeq) (x = xeg)* + o((x — xeq)z)

d’E . : : - , .
En posant k = ?Zp(xeq) > 0 et X = X — Xq, 'énergie potentielle au voisinage d’une position
d’équilibre s’écrit :

1
E,(X) = EkX2 + Cste + o(X?)

Finalement, au termes négligeables devant X? pres et en appliquant le théoréme de I’énergie
mécanique, il vient :
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d(E)—d(E +E)—0(:>d<1kX2+1 X2
ac=™ dt~ P YT m

dt\2 2

. k
X+—X=0
m

Que I'on identifie a la forme canonique d’un oscillateur harmonique :

. k
X+o3X=0 avec wy= |—
m

)=0

Conclusion : Un systeme de masse m en mouvement conservatif d'énergie E,(X) autour d'une

position d'équilibre stable X, suit le mouvement d'un oscillateur harmonique.
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