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Introduction 
 

 Plutôt que de décrire précisément le mouvement d’un objet à chaque instant. On peut 
s’intéresser aux échanges d’énergies engendrés par cette transformation.  
 L’approche énergétique permet alors de déterminer des vitesses ou des positions finales 
sans décrire la totalité d’un mouvement, ce qui en fait un outil particulièrement efficace pour 
résoudre des problèmes en mécanique.  
 Par ailleurs, l’approche énergétique est transverse en physique et les percepts abordées 
seront repris dans le cours thermodynamique.  
 

I] Première approche : intégrale première du mouvement 

1. Exemple n°1 : chute libre         ★ 
 

Considérons un point matériel en chute libre verticale dans le référentiel terrestre, supposé 
galiléen. La 2ème loi de Newton conduit, en projection sur l'axe (𝑂𝑧) ascendant, à : 
 

𝒎𝒛̈ + 𝒎𝒈 = 𝟎 
 
On multiplie l'équation par 𝒛̇, et on reconnaît la forme d'une ḋérivée : 
 

𝒎𝒛̇𝒛̈ + 𝒎𝒈𝒛̇ = 𝟎 ⇒
𝒅

𝒅𝒕
(
𝟏

𝟐
𝒎𝒛̇𝟐 + 𝒎𝒈𝒛) = 𝟎 

 
Que l'on peut primitiver : 

𝟏

𝟐
𝒎𝒛̇𝟐 + 𝒎𝒈𝒛 = 𝑪𝒔𝒕𝒆 

 
On nomme les trois termes obtenus énergie cinétique, énergie potentielle 
et énergie mécanique, ce qui permet de réinterpréter la relation 
précédente comme un transfert entre deux réservoirs d'une quantité 
constante : 
 

𝑬𝒄(𝒗𝒛) + 𝑬𝒑(𝒛) = 𝑬𝒎 
 

On peut utiliser cette interprétation pour rapidement poser des relations 
efficaces, en s'appuyant sur une représentation graphique de 𝑬𝒑(𝒛). 
 

2. Exemple n°2 : Oscillateur harmonique       ★ 

 
On considère un système masse ressort horizontal posé sur un plan 
horizontal et se déplaçant sans frottements. On choisit la position de 
l'origine du repère à la position de la longueur à vide. 
La 2ème loi de Newton, projetée sur l'axe 𝑂𝑥, conduit à : 
 

𝒎𝒙̈ + 𝒌𝒙 = 𝟎 
 
On multiplie l'équation par 𝒙̇, et on reconnaît la forme d'une ḋérivée : 
 

𝒎𝒙̇𝒙̈ + 𝒌𝒙̇𝒙 = 𝟎 ⇒
𝒅

𝒅𝒕
(
𝟏

𝟐
𝒎𝒙̇𝟐 +

𝟏

𝟐
𝒌𝒙𝟐) = 𝟎 ⇒ 𝑬𝒄(𝒗𝒙) + 𝑬𝒑(𝒙) = 𝑬𝒎 
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Avec : 

𝑬𝒄(𝒗𝒙) =
𝟏

𝟐
𝒎𝒙̇𝟐   ;    𝑬𝒑(𝒙) =

𝟏

𝟐
𝒌𝒙𝟐  ;    𝑬𝒎 = 𝒄𝒔𝒕𝒆 

 
On peut à nouveau interpréter ce mouvement en termes d'énergie 
cinétique et potentielle, qui se répartissent une quantité totale 
d'énergie fixée par les conditions initiales. 
 

En écartant le ressort de sa position d’équilibre d’une distance 𝒂 et en 
le lachant sans vitesse initiale, on peut dessiner le graphe de 𝑬𝒑(𝒙). 

 

3. Conclusion  
 

Pour certains mouvements, on peut interpréter l’évolution comme un transfert d'énergie 
mécanique entre deux réservoirs : celui d'énergie cinétique (toujours positive) et celui d'énergie 
potentielle (qui dépend des actions mécaniques mises en jeu).  
 

II] Théorème de l’énergie cinétique 

1. Définition de l’énergie cinétique 

 

On considère un système point matériel 𝑀 de masse m dont le mouvement est décrit dans un 

référentiel galiléen ℛ, soumis à des forces de résultante 𝑭⃗⃗ . Ecrivons la 2ème loi de Newton : 
 

𝒎
𝒅𝒗⃗⃗ 

𝒅𝒕
= 𝑭⃗⃗   ⇒   𝒎

𝒅𝒗⃗⃗ 

𝒅𝒕
• 𝒗⃗⃗ = 𝑭⃗⃗ • 𝒗⃗⃗   ⇒   

𝒅

𝒅𝒕
(
𝟏

𝟐
𝒎‖𝒗⃗⃗ ‖𝟐) = 𝑭⃗⃗ • 𝒗⃗⃗  

 

On définit l’énergie cinétique d'un point matériel de masse 𝑚, en mouvement à la vitesse 𝒗⃗⃗  dans 
un référentiel ℛ : 

𝑬𝒄 =
𝟏

𝟐
𝒎‖𝒗⃗⃗ ‖𝟐 

 

L’énergie cinétique est homogène à une énergie 𝑴.𝑳𝟐. 𝑻−𝟐 et son unité SI est le Joule J. 
 

2. Puissance d’une force 
 

On appelle puissance exercée par la force 𝑭⃗⃗  sur le point M animé par la vitesse 𝒗⃗⃗  dans le 
référentiel ℛ :  

𝑷𝑭⃗⃗ →𝑴 = 𝑭⃗⃗ • 𝒗⃗⃗  
 

La puissance est homogène à 𝑴.𝑳𝟐. 𝑻−𝟑. Son unité dans le SI est le Watt (W, 𝟏 𝑾 = 𝟏 𝑱. 𝒔−𝟏) 
 

3. Force motrice et résistante 

 
La présence d'un produit scalaire conduit à plusieurs cas : 
 • Soit la force et le mouvement vont dans le même sens (𝑷 > 𝟎) : la force est 
motrice. 
 • Soit la force et le mouvement vont dans un sens opposé (𝑷 < 𝟎) : la force est 
résistante. 
 • Soit la force et le mouvement sont orthogonaux (𝑷 = 𝟎) : La force ne travaille 
pas. 
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Application : La luge. 
 

On considère une luge glissant avec frottements solide de coefficient f sur une pente d’angle   
avec l’horizontale.  
 
1) Faire un schéma et représenter les forces s’exerçant sur la luge.  
 
2) En déduire la nature motrice ou résistante de ces forces.  
 

Solution :  
 

 
 

 

 

 

 

 

4. Travail d’une force le long d’un chemin 
 

Le travail élémentaire de la force 𝑭⃗⃗  appliquée au point M au cours du déplacement élémentaire  

𝒅𝑶𝑴⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   dans le référentiel ℛ est défini par : 
 

𝑾(𝑭⃗⃗ ) = 𝑭⃗⃗ • 𝒅𝑶𝑴⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   
 

Le travail est homogène à une énergie 𝑴. 𝑳𝟐. 𝑻−𝟐. Son unité dans le SI est le J. 
 

On définit le travail global fourni par une force à un point matériel entre deux positions 𝐴 et 𝐵 le 
long de sa trajectoire (𝐴𝐵) en sommant les contributions des travaux élémentaires : 
 

𝑾𝑨𝑩(𝑭⃗⃗ ) = ∫ 𝑾(𝑭⃗⃗ ) = ∫ 𝑭⃗⃗ • 𝒅𝑶𝑴⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
𝑴 𝑨𝑩𝑴 𝑨𝑩

 

Remarques :  

- Le travail représente l’énergie cédée au système par la force 𝑭⃗⃗  entre les points A et B. 
 

- Le travail d’une force peut s’exprimer en fonction de la puissance et inversement.  
 

𝑾(𝑭⃗⃗ ) = 𝑭⃗⃗ • 𝒅𝑶𝑴⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 𝑭⃗⃗ • 𝒗⃗⃗ 𝒅𝒕 = 𝑷𝑭⃗⃗ →𝑴𝒅𝒕 

 
- La notation 𝜹𝑾 et non 𝒅𝑾 pour le travail élémentaire vient d'une propriété particulière: 

il dépend a priori du chemin suivi par le point matériel (cf. II.1). Il ne dépend donc pas 

seulement de la position de ce dernier (son état). D’où ∫ 𝑾(𝑭⃗⃗ )
𝑴 𝑨𝑩

 ne dépend pas que 

des états 𝑨 et de 𝑩. En conséquence, on ne peut pas écrire cette intégrale avec une 

primitive simple de 𝑾(𝑭⃗⃗ ).  

 
- Dans le cas d’une force constante, le calcul se simplifie et donne : 

 

𝑾𝑨𝑩(𝑭⃗⃗ ) = ∫ 𝑭⃗⃗ • 𝒅𝑶𝑴⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 𝑭⃗⃗ • ∫ 𝒅𝑶𝑴⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
𝑴 𝑨𝑩𝑴 𝑨𝑩

= 𝑭⃗⃗ • (𝑶𝑩⃗⃗⃗⃗⃗⃗  − 𝑶𝑨⃗⃗⃗⃗⃗⃗ ) = 𝑭⃗⃗ • 𝑨𝑩⃗⃗⃗⃗⃗⃗  
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5. Théorème de l’énergie et de la puissance cinétique     ★ 

 
On a montrer (II.1.) que la dérivée temporelle de l’énergie cinétique est égale à la puissance de la 
force résultante, ce résultat se généralisé à plusieurs forces, il est appelé le théorème de la 
puissance cinétique : 

𝑻𝑷𝑪:   
𝒅𝑬𝒄

𝒅𝒕
= ∑𝑷 

 
En intégrant entre deux états A et B, il vient le théorème de l’énergie cinétique  :  
 

𝒅𝑬𝒄 = ∑𝑷𝒅𝒕  ⇒   ∫ 𝒅𝑬𝒄

𝑩

𝑨

= ∑∫ 𝑭⃗⃗ •
𝒅𝑶𝑴⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝒅𝒕
 𝒅𝒕

𝑩

𝑨

= ∑∫ 𝑾(𝑭⃗⃗ )
𝑩

𝑨

 

 

𝑻𝑬𝑪:   𝑨𝑩𝑬𝒄 = 𝑬𝒄(𝑩) − 𝑬𝒄(𝑨) = ∑𝑾𝑨𝑩(𝑭⃗⃗ ) 

 
Remarque : Il faut tenir compte du travail de toutes les forces appliquées au système, y compris 
les forces intérieures (Si le système est indéformable, alors 𝑾𝑭⃗⃗ 𝒊𝒏𝒕

 =  𝟎).  

 
Application : Le curling. 
 

Un palet glisse sur un support horizontal avec une vitesse initiale 𝒗𝟎⃗⃗⃗⃗ = 𝒗𝟎 𝑼𝒙
⃗⃗⃗⃗  ⃗ (état initial 𝐴, 

position initiale choisie en 𝒙𝑨 =  𝟎). Il est soumis de la part du support à une force de frottements 
secs opposée à sa vitesse de glissement et de norme 𝑹𝑻 = 𝒇𝑹𝑵 d'après les lois de Coulomb. Cette 
force arrête le palet en 𝐵. 
 
1) Faire un schéma. Représenter les forces.  
 
2) Déterminer les travaux des forces entre A et B.  
 
3) Appliquer le théorème de l’énergie cinétique pour déterminer la position d’arrêt 𝒙𝑩. 
 
Solution :  
 
2)  

𝑾𝑨𝑩(𝑷⃗⃗ ) = 𝟎 

 

𝑾𝑨𝑩(𝑹𝑵
⃗⃗ ⃗⃗  ⃗) = 𝟎 

 

𝑾𝑨𝑩(𝑹𝑻
⃗⃗⃗⃗  ⃗) = −𝒇𝒎𝒈𝒙𝑩 

 
3) 

𝑨𝑩𝑬𝒄 = 𝑬𝒄(𝑩) − 𝑬𝒄(𝑨) = −
𝟏

𝟐
𝒎𝒗𝟎

𝟐 = −𝒇𝒎𝒈𝒙𝑩 

 

𝒙𝑩 =
𝒗𝟎

𝟐

𝟐𝒇𝒈
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III] Energie potentielle et forces conservatives 

1. Forces conservatives  

 

Une force 𝑭⃗⃗  est conservative si le travail 𝑾𝑨𝑩(𝑭⃗⃗ ) ne dépend pas du chemin suivi de A à B. 
 
Exemple : Elévation d’une masse. 
 
On considère un point, soumis à son poids, à une force de traînée (modèle 
linéaire), qui effectue un trajet entre 𝑨(𝒙𝟎, 𝟎, 𝟎) et 𝑩(𝒙𝟎, 𝟎, 𝒛𝑩). 
 
a) Déterminons le travail du poids (force constante) : 
 

𝑾𝑨𝑩(𝑷⃗⃗ ) = 𝑷⃗⃗ • 𝑨𝑩⃗⃗⃗⃗⃗⃗ = −𝒎𝒈𝒛𝑩 

 
Cette expression est valable quel que soit le chemin suivi par le système, elle ne dépend que des 
coordonnées des points A et B. 
 

b) Calculons le travail de la force de trainée linéaire (force non constante) : 
 

𝑾(𝒇⃗ ) = −𝒗⃗⃗ • 𝒅𝑶𝑴⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗     ⇒   𝑾(𝑨𝑩)(𝒇⃗ ) = −∫ 𝒗⃗⃗ • 𝒅𝑶𝑴⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
𝑴 𝑨𝑩

 

 
On constate qu'on ne peut pas finir le calcul de l'intégrale sans connaître les lois horaires, 
puisqu'on ne connaît pas la fonction 𝒗⃗⃗ (𝒕). Pour finir le calcul, prenons deux chemins : 
 

- Une élévation uniforme entre A et B : 𝒛(𝒕) = 𝒗𝟎𝒕. 
 

 𝑾(𝑨𝑩)(𝒇⃗ ) = −∫ 𝒗𝟎𝒅𝒛
𝒛𝑩

𝟎

= −𝒗𝟎𝒛𝑩 

 

- Une élévation uniformément accélérée entre A et B : 𝒛(𝒕) =  
𝟏

𝟐
𝒂𝟎𝒕

𝟐. 

 

 𝑾(𝑨𝑩)′(𝒇⃗ ) = −∫ 𝒗⃗⃗ • 𝒅𝑶𝑴⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  =
𝒛𝑩

𝟎

− ∫ 𝒂𝟎𝒕𝒅𝒛 = −∫ √
𝟐𝒛

𝒂𝟎
𝒅𝒛 = −√

𝟐

𝒂𝟎
∫ √𝒛𝒅𝒛

𝒛𝑩

𝟎

𝒛𝑩

𝟎

𝒛𝑩

𝟎

 

 𝑾(𝑨𝑩)′(𝒇⃗ ) = −√
𝟐

𝒂𝟎
× [

𝟐

𝟑
𝒛
𝟑
𝟐]

𝟎

𝒛𝑩

= − 𝒛𝑩√
𝟒𝒛𝑩

𝟑𝒂𝟎
 ≠ 𝑾(𝑨𝑩)(𝒇⃗ ) 

 
Le travail dépend du chemin suivi, la force de frottement fluide n’est pas conservative. 
 

Conséquence : Le travail d'une force conservative 𝑭𝒄
⃗⃗⃗⃗  sur n'importe quel chemin fermé (c'est-à-dire 

qui revient à sa position initiale) est nécessairement nul : 
 

 𝑾𝑨𝑨(𝑭⃗⃗ 𝒄) = ∫ 𝑭𝒄
⃗⃗⃗⃗ • 𝒅𝑶𝑴⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝑴 𝑨𝑨

= ∮𝑭𝒄
⃗⃗⃗⃗ • 𝒅𝑶𝑴⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 𝟎 

 
Pour montrer qu'une force est non conservative, il est possible de calculer son travail sur un chemin 
fermé : si ce travail est non nul, alors elle ne peut pas être conservative. 
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2. Energie potentielle         ★ 
 

Pour les forces conservatives 𝑭𝒄
⃗⃗⃗⃗ , on peut définir une grandeur qui ne dépend que des 

coordonnées du système, appelée énergie potentielle, notée 𝑬𝒑, tel que le travail élémentaire 

de la force s’exprime :  

𝑾(𝑭𝒄
⃗⃗⃗⃗ ) = −𝒅𝑬𝒑 

 
Remarque : L’énergie potentielle est définie à partir de sa différentielle. Son expression intégrale 
est donc valable à une constante additive près.  
 
Ainsi, en intégrant la relation précédente, il vient : 
 

𝑾𝑨𝑩(𝑭𝒄
⃗⃗⃗⃗ ) = ∫ 𝑾(𝑭𝒄

⃗⃗⃗⃗ )
𝑴 𝑨𝑩

= ∫ −𝒅𝑬𝒑
𝑴 𝑨𝑩

= −[𝑬𝒑]𝑨
𝑩

= 𝑬𝒑𝑨 − 𝑬𝒑𝑩 = −𝑨𝑩𝑬𝒑 

 
3. Force dérivée d’une énergie potentielle       ★ 

 

Pour une force 𝑭𝒄
⃗⃗⃗⃗  conservative, le travail élémentaire s’écrit en fonction de la variation 

infinitésimale de l’énergie potentielle : 
 

𝑾(𝑭𝒄
⃗⃗⃗⃗ ) = 𝑭𝒄

⃗⃗⃗⃗ • 𝒅𝑶𝑴⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗     ⇔    𝒅𝑬𝒑 = −𝑭𝒄
⃗⃗⃗⃗ • 𝒅𝑶𝑴⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   

 
a. Cas 1 dimension 

 

Si la force 𝑭𝒄
⃗⃗⃗⃗  dépend d’une unique coordonnée x et est dirigée selon un vecteur de la base 𝑼𝒙

⃗⃗⃗⃗  ⃗:  
  

𝑭𝒄
⃗⃗⃗⃗ = 𝑭𝒙(𝒙)𝑼𝒙

⃗⃗⃗⃗  ⃗   ⇒   𝒅𝑬𝒑 = −𝑭𝒙(𝒙)𝒅𝒙 

D’où : 

𝑭𝒄
⃗⃗⃗⃗ = −

𝒅𝑬𝒑

𝒅𝒙
𝑼𝒙
⃗⃗⃗⃗  ⃗ 

 

Application : Etablir les énergies potentielles associées aux forces classiques.  
 
1) Etablir l’énergie potentielle de pesanteur. (Pour un axe (𝑶𝒛) orienté vers le haut et vers le bas.) 
 
2) Etablir l’énergie potentielle élastique. On choisira un référentiel centré sur l’extrémité du ressort 
fixée. 
 
3) Rappeler l’expression de la force gravitationnelle exercée par une masse 𝒎𝒄 située en C sur une 
masse 𝒎 située en M. Etablir l’expression de l’énergie potentielle gravitationnelle. 
 
Solution :  
1) Axe (𝑶𝒛) orienté vers le haut : 

𝑷⃗⃗ = −𝒎𝒈𝑼𝒛
⃗⃗ ⃗⃗  = −

𝒅𝑬𝒑𝒑

𝒅𝒛
𝑼𝒛
⃗⃗ ⃗⃗     ⇒    

𝒅𝑬𝒑𝒑

𝒅𝒛
= 𝒎𝒈 

 
𝑬𝒑𝒑+ = 𝒎𝒈𝒛 + 𝒄𝒔𝒕𝒆 

 
Axe (𝑶𝒛) orienté vers le bas : 
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𝑷⃗⃗ = 𝒎𝒈𝑼𝒛
⃗⃗ ⃗⃗  = −

𝒅𝑬𝒑𝒑

𝒅𝒛
𝑼𝒛
⃗⃗ ⃗⃗     ⇒    

𝒅𝑬𝒑𝒑

𝒅𝒛
= −𝒎𝒈 

 
𝑬𝒑𝒑− = −𝒎𝒈𝒛 + 𝒄𝒔𝒕𝒆 

 
2)  

𝑭⃗⃗ = −𝒌(𝒙 − 𝒍𝟎)𝑼𝒙
⃗⃗⃗⃗  ⃗ = −

𝒅𝑬𝒑𝒑

𝒅𝒙
𝑼𝒙
⃗⃗⃗⃗  ⃗    ⇒    

𝒅𝑬𝒑𝒆

𝒅𝒙
= 𝒌(𝒙 − 𝒍𝟎) 

 

𝑬𝒑𝒆 = 
𝟏

𝟐
𝒌(𝒙 − 𝒍𝟎)

𝟐 + 𝒄𝒕𝒔𝒆   𝑒𝑡   𝑬𝒑𝒆(𝒙 = 𝒍𝟎) = 𝟎 ⇒  𝑬𝒑𝒆 = 
𝟏

𝟐
𝒌(𝒙 − 𝒍𝟎)

𝟐 

 
3)  

𝑭⃗⃗ = −𝑮
𝒎𝒎𝒄

𝒓𝟐
𝑼𝒓
⃗⃗ ⃗⃗  = −

𝒅𝑬𝒑𝒈

𝒅𝒓
𝑼𝒓
⃗⃗ ⃗⃗     ⇒    

𝒅𝑬𝒑𝒈

𝒅𝒓
= 𝑮

𝒎𝒎𝒄

𝒓𝟐
   ⇒   𝑬𝒑𝒈 = −𝑮

𝒎𝒎𝒄

𝒓
+ 𝒄𝒔𝒕 

 

a. Cas 3 dimensions 

 
Outils mathématiques :  
 
La dérivée partielle d’une fonction 𝒈(𝒙, 𝒚, 𝒛) par rapport à la variable 𝒙, avec 𝒚 et 𝒛 maintenues 
constantes est définie par : 
 

(
𝝏𝒈

𝝏𝒙
)
 𝒚,𝒛

= 𝒍𝒊𝒎
𝒙→𝟎

𝒈(𝒙 + 𝒙, 𝒚, 𝒛) − 𝒈(𝒙, 𝒚, 𝒛)

𝒙
 

 
La différentielle totale d’une fonction 𝒈(𝒙, 𝒚, 𝒛), notée 𝒅𝒈, de 3 variables 𝒙, 𝒚, 𝒛 indépendantes 
est définie par : 
 

𝒅𝒈 = (
𝝏𝒈

𝝏𝒙
)
 𝒚,𝒛

𝒅𝒙 + (
𝝏𝒈

𝝏𝒚
)
 𝒙,𝒛

𝒅𝒚 + (
𝝏𝒈

𝝏𝒛
)
 𝒙,𝒚

𝒅𝒛 

 
Le gradient de cette fonction réelle 𝒈(𝒙, 𝒚, 𝒛) des trois coordonnées d’un point M(𝒙, 𝒚, 𝒛) est 
défini comme le vecteur «accroissement» qui donne la variation de 𝒈 le long d'un petit 

déplacement élémentaire 𝒅𝑶𝑴⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   : 
 

𝒅𝒈 = 𝒈𝒓𝒂𝒅(𝒈)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ • 𝒅𝑶𝑴⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   
 

La définition de l’opérateur gradient fait intervenir le vecteur déplacement élémentaire 𝒅𝑶𝑴⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   qui 
dépend du système de coordonnée choisi. Ainsi, on peut expliciter l’expression de l’opérateur 
gradient :   
 

- En coordonnées cartésiennes : 𝒈𝒓𝒂𝒅(𝒇)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  =
𝝏𝒇

𝝏𝒙
𝑼𝒙
⃗⃗⃗⃗  ⃗ +

𝝏𝒇

𝝏𝒚
𝑼𝒚
⃗⃗⃗⃗  ⃗ +

𝝏𝒇

𝝏𝒛
𝑼𝒛
⃗⃗ ⃗⃗   

 

- En coordonnées cylindriques : 𝒈𝒓𝒂𝒅(𝒇)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  =
𝝏𝒇

𝝏𝒓
𝑼𝒓
⃗⃗ ⃗⃗  +

𝟏

𝒓

𝝏𝒇

𝝏
𝑼
⃗⃗ ⃗⃗  +

𝝏𝒇

𝝏𝒛
𝑼𝒛
⃗⃗ ⃗⃗   

 

- En coordonnées sphériques : 𝒈𝒓𝒂𝒅(𝒇)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  =
𝝏𝒇

𝝏𝒓
𝑼𝒓
⃗⃗ ⃗⃗  +

𝟏

𝒓

𝝏𝒇

𝝏
𝑼
⃗⃗ ⃗⃗  +

𝟏

𝒓𝒔𝒊𝒏()

𝝏𝒇

𝝏
𝑼
⃗⃗⃗⃗  ⃗ 
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Dans le cas 3 dimensions, revenons à la définition de l’énergie potentielle à partir de sa 

différentielle : Pour toutes force conservative 𝑭𝒄
⃗⃗⃗⃗ , il existe une fonction 𝑬𝒑(𝒙, 𝒚, 𝒛) tel que :  

 

 𝒅𝑬𝒑 = −𝑭𝒄
⃗⃗⃗⃗ • 𝒅𝑶𝑴⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗      

 
D’après la définition du gradient : 
 

𝒅𝑬𝒑 = 𝒈𝒓𝒂𝒅(𝑬𝒑)
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  • 𝒅𝑶𝑴⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗      

  
D’où : 

−𝑭𝒄
⃗⃗⃗⃗ • 𝒅𝑶𝑴⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 𝒈𝒓𝒂𝒅(𝑬𝒑)

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  • 𝒅𝑶𝑴⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   

 
Finalement, il vient : 
 

𝑭𝒄
⃗⃗⃗⃗ = −𝒈𝒓𝒂𝒅(𝑬𝒑)

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   

 
 
Application : Déterminer l’expression d’une force conservative à partir de l’énergie potentielle 
associée. 
 
Pour les énergie potentielles proposées, déterminer la force conservative associée. 
 
1) L’énergie potentielle de pesanteur en coordonnées polaires : 𝑬𝒑 = −𝒎𝒈𝒓𝒄𝒐𝒔(𝜽) + 𝒄𝒔𝒕𝒆.  

 
2) L’´énergie potentielle d’un particule chargée 𝒒 en M, en interaction coulombienne avec une 
particule chargée 𝒒𝟎 en O, s’écrit en coordonnées sphériques centrées sur O 
 

𝑬𝒑 =
𝒒𝒒𝟎

𝟒𝟎𝒓
 

 
Solution :  
 
1)  

𝑷⃗⃗ = −𝒈𝒓𝒂𝒅(𝑬𝒑)
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = −𝒈𝒓𝒂𝒅(−𝒎𝒈𝒓𝒄𝒐𝒔(𝜽) + 𝒄𝒔𝒕𝒆 )⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 

 

𝑷⃗⃗ =
𝝏𝒎𝒈𝒓𝒄𝒐𝒔(𝜽)

𝝏𝒓
𝑼𝒓
⃗⃗ ⃗⃗  +

𝟏

𝒓

𝝏𝒎𝒈𝒓𝒄𝒐𝒔(𝜽)

𝝏
𝑼
⃗⃗ ⃗⃗   

 

𝑷⃗⃗ = 𝒎𝒈𝒄𝒐𝒔(𝜽)𝑼𝒓
⃗⃗ ⃗⃗  − 𝒎𝒈𝒔𝒊𝒏(𝜽)𝑼

⃗⃗ ⃗⃗   
 
2) 

𝑭⃗⃗ = −𝒈𝒓𝒂𝒅(
𝒒𝒒𝟎

𝟒𝟎𝒓
)

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
= −

𝒒𝒒𝟎

𝟒𝟎

𝝏(
𝟏
𝒓)

𝝏𝒓
𝑼𝒓
⃗⃗ ⃗⃗  =

𝒒𝒒𝟎

𝟒𝟎𝒓𝟐
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IV] Energie mécanique 

1. Définition  

 

L'énergie mécanique d'un système est la somme de son énergie cinétique et de toutes les 
énergies potentielles des forces conservatives auxquelles il est soumis : 
 

𝑬𝒎 = 𝑬𝒄 + ∑𝑬𝒑 

 

2. Théorème de la puissance et de l’énergie et mécanique 

 

On considère un système point matériel 𝑀 de masse m dont le mouvement est décrit dans un 
référentiel galiléen ℛ. Ecrivons la 2ème loi de Newton en séparant les contributions des forces 
conservatives et non conservatives : 

𝒎
𝒅𝒗⃗⃗ 

𝒅𝒕
= ∑𝑭𝑪

⃗⃗ ⃗⃗  + ∑𝑭𝑵𝑪
⃗⃗ ⃗⃗ ⃗⃗  ⃗   

 

𝒎
𝒅𝒗⃗⃗ 

𝒅𝒕
• 𝒗⃗⃗ =

𝒅

𝒅𝒕
(
𝟏

𝟐
𝒎‖𝒗⃗⃗ ‖𝟐) = ∑𝑭𝑪

⃗⃗ ⃗⃗  • 𝒗⃗⃗ + ∑𝑭𝑵𝑪
⃗⃗ ⃗⃗ ⃗⃗  ⃗ • 𝒗⃗⃗    

 
𝒅

𝒅𝒕
(𝑬𝒄) = ∑𝑷𝑪 + ∑𝑷𝑵𝑪 

𝒅

𝒅𝒕
(𝑬𝒄) − ∑𝑭𝑪

⃗⃗ ⃗⃗  •
𝒅𝑶𝑴⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝒅𝒕
= ∑𝑷𝑵𝑪 

 
𝒅

𝒅𝒕
(𝑬𝒄) + ∑

𝒅𝑬𝒑

𝒅𝒕
= ∑𝑷𝑵𝑪 

 
On en déduit le théorème de la puissance mécanique : 

 

𝑻𝑷𝑴:   
𝒅𝑬𝒎

𝒅𝒕
=

𝒅

𝒅𝒕
(𝑬𝒄 + ∑𝑬𝒑) = ∑𝑷𝑵𝑪 

 
En intégrant entre deux états A et B, il vient le théorème de l’énergie mécanique :  
 

𝒅𝑬𝒎 = ∑𝑷𝑵𝑪 𝒅𝒕  ⇒   ∫ 𝒅𝑬𝒎

𝑩

𝑨

= ∑∫ 𝑭𝑵𝑪
⃗⃗ ⃗⃗ ⃗⃗  ⃗ •

𝒅𝑶𝑴⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝒅𝒕
 𝒅𝒕

𝑩

𝑨

= ∑∫ 𝑾(𝑭𝑵𝑪
⃗⃗ ⃗⃗ ⃗⃗  ⃗)

𝑩

𝑨

 

 

𝑻𝑬𝑴:   𝑨𝑩𝑬𝒎 = 𝑬𝒎(𝑩) − 𝑬𝒎(𝑨) = ∑𝑾𝑨𝑩(𝑭𝑵𝑪
⃗⃗ ⃗⃗ ⃗⃗  ⃗) 

 

Remarque : L’énergie mécanique se conserve, c’est-à-dire reste constante si et seulement si la 
puissance des forces non conservatives est nulle. 
 

Application : Pendule simple par l’énergie. 
 
On étudie le pendule simple : une masse ponctuelle m est accrochée à l’extrémité d’un fil 
inextensible sans masse de longueur ℓ, que l’on fait osciller dans un plan vertical.  
 
Etablir l’équation différentielle du mouvement en utilisant le théorème de la puissance mécanique. 
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Solution :  

 

 

V] Mouvements conservatifs à une dimension 

1. Courbe d’énergie potentielle 
 

Considérons le mouvement conservatif d'un point matériel soumis à des forces conservatives 
associées à une énergie potentielle totale 𝑬𝒑(𝒙). Notons 𝑬𝒎𝟎 son énergie mécanique initiale.  

 
Le théorème de l'énergie mécanique nous garantit alors que 𝑬𝒎 = 𝑬𝒎𝟎 est constante au cours 
du mouvement. Par la suite, on peut écrire la conservation de l'énergie : 
 

𝑬𝒎 = 𝑬𝒄 + 𝑬𝒑 

 

𝑬𝒑(𝒙) = 𝑬𝒎𝟎 −
𝟏

𝟐
𝒎‖𝒗⃗⃗ ‖𝟐 ≤ 𝑬𝒎𝟎 

 
Le point matériel ne peut accéder qu'aux lieux 𝒙 où l'énergie potentielle est inférieure à 𝑬𝒎𝟎. 
 
Traçons 𝑬𝒑(𝒙) et plaçons diverses possibilités de 𝑬𝒎𝟎 ci-dessous : 
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On distingue deux cas sur les schémas ci-dessus : 
 

-  Si dans le cas où 𝑬𝒎𝟎 est inférieure au col d'énergie potentielle (graphe de gauche) et 
où la particule est initialement entre 𝒙𝟏 et 𝒙𝟐, elle est bloquée entre ces deux positions. 
On parle d'état lié. Le col d'énergie potentielle infranchissable est appelé barrière de 
potentiel. La zone entre deux barrières dont une particule de trop faible énergie ne peut 
pas s'extraire, on parle de puits de potentiel. 
 

- Si la particule peut atteindre la position 𝒙𝟑 (soit parce que son énergie mécanique est 
suffisante pour passer le col, soit parce qu'elle est initialement de ce côté du 
col), elle peut s'éloigner indéfiniment. On parle d'état de diffusion.  

 

 
Remarque : Pour raisonner, on peut voir le diagramme d'énergie potentielle comme un dénivelé, 
puisque pour l'énergie potentielle de pesanteur, 𝑬𝒑 = 𝒎𝒈𝒛 est proportionnelle au dénivelé 𝒛. 
 

2. Position d’équilibre 

 

Une position d'équilibre une position pour laquelle le 
point matériel subit une force globalement nulle : 
 

𝑭⃗⃗ (𝒙 = 𝒙𝒆𝒒) = 𝟎⃗⃗  

 
Dans le cas d’un système conservatif à une dimension, 
il vient : 
 

𝑭𝑪
⃗⃗ ⃗⃗  = −

𝒅𝑬𝒑

𝒅𝒙
𝑼𝒙
⃗⃗⃗⃗  ⃗   ⇒   

𝒅𝑬𝒑

𝒅𝒙
(𝒙 = 𝒙𝒆𝒒) = 𝟎 

 
On peut alors séparer deux cas : 
 
• Pour un minimum de 𝑬𝒑, si le point s'éloigne un peu de la position 𝒙𝒆𝒒, la force devient non 

nulle et est orientée vers la position d'équilibre : il s'agit d'une position d'équilibre stable.  
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𝒅𝟐𝑬𝒑

𝒅𝒙𝟐
(𝒙 = 𝒙𝒆𝒒) > 𝟎 

 
• Pour un maximum de 𝑬𝒑, si le point s'éloigne un peu de la position 𝒙𝒆𝒒, la force devient non 

nulle et est orientée à l'opposé de la position d'équilibre : il s'agit d'une position d'équilibre 
instable. 
 

𝒅𝟐𝑬𝒑

𝒅𝒙𝟐
(𝒙 = 𝒙𝒆𝒒) < 𝟎 

 
3. Petits mouvements autour d’un équilibre stable 

 

Soit un système conservatif (sans dissipation) décrit par une variable 𝒙(𝒕), évoluant dans un profil 
d’énergie potentielle 𝑬𝒑(𝒙) et étudions son mouvement autour d’une position d’équilibre 𝒙𝒆𝒒.  

 

Par définition de l’équilibre : 𝑭⃗⃗ (𝒙 = 𝐱𝒆𝒒) = 𝟎⃗⃗ ⇒
𝒅𝑬𝒑

𝒅𝐱
(𝒙 = 𝐱𝒆𝒒) = 𝟎.  

 
Par la suite, en réalisant un développement de Taylor de 𝑬𝒑 au voisinage de 𝒙𝒆𝒒, il vient : 

 

𝑬𝒑(𝒙) = 𝑬𝒑(𝒙𝒆𝒒) +
𝟏

𝟐

𝒅𝟐𝑬𝒑

𝒅𝐱𝟐
(𝒙𝒆𝒒)(𝒙 − 𝒙𝒆𝒒)

𝟐 +  𝒐((𝒙 − 𝒙𝒆𝒒)
𝟐
) 

 

En posant 𝒌 =
𝒅𝟐𝑬𝒑

𝒅𝐱𝟐
(𝒙𝒆𝒒) > 𝟎 et 𝑿 = 𝒙 − 𝒙𝒆𝒒, l’énergie potentielle au voisinage d’une position 

d’équilibre s’écrit :  
 

𝑬𝒑(𝑿) =
𝟏

𝟐
𝒌𝑿𝟐 + 𝑪𝒔𝒕𝒆 + 𝒐(𝑿𝟐) 

 

Finalement, au termes négligeables devant 𝑿𝟐 près et en appliquant le théorème de l’énergie 
mécanique, il vient :  
 

𝒅

𝒅𝒕
(𝑬𝒎) =

𝒅

𝒅𝒕
(𝑬𝒑 + 𝑬𝒄) = 𝟎 ⇔

𝒅

𝒅𝒕
(
𝟏

𝟐
𝒌𝑿𝟐 +

𝟏

𝟐
𝒎𝑿̇𝟐) = 𝟎 

 

𝑿̈ +
𝒌

𝒎
𝑿 = 𝟎  

 
Que l’on identifie à la forme canonique d’un oscillateur harmonique : 
 

𝑿̈ + 𝟎
𝟐𝑿 = 𝟎      𝑎𝑣𝑒𝑐    𝟎 = √

𝒌

𝒎
 

 
Conclusion : Un système de masse 𝑚 en mouvement conservatif d'énergie 𝑬𝒑(𝑿) autour d'une 

position d'équilibre stable 𝐱𝒆𝒒 suit le mouvement d'un oscillateur harmonique. 


