TD n°17 - Mécanique : Energétique du point PTSI

Théorémes énergétiques en version intégrale :

0 Exercice 17.1. Marsupilami % (TEM)

m Si l'on néglige les frottements, alors I'énergie mécanique du Marsupilami
Em = Epp + Epe + Ec
est une constante du mouvement. Son énergie potentielle compte une contribution de pesanteur E,, et une contri-

bution élastique Epe. Prenons la position du sol comme référence des énergies potentielles. Lorsqu’il est au sol,
queue comprimeée, prét i sauter, I'énergie mécanique du Marsupilami est uniquement de type potentielle élastique,

1
En,=0+ EW"’ —)P+o0

Il serait également raisonnable d’inclure une contribution d’énergie potentielle de pesanteur mgfm d
I'énergie mécanique, mais cela ne modifierait pas beaucoup le résultat final.

Au contraire, lorsque le Marsupilami atteint sa hauteur de saut maximale, sa vitesse est nulle et son énergie méca-
nique n’est plus que de type potentielle de pesanteur,

E,=mgh+0+0.

D’apreés la conservation de I'énergie mécanique,

1 amgh
Sktw—0)* =mgh  dou  |k= mg

=—— _=44.10°N-m™*.
(fm_ fﬂj2

@ Lorsque la queue du Marsupilami quitte le sol, sa longueur est égale a sa longueur a vide. Le Marsupilami se
trouve donc 4 une hauteur § au dessus du sol avec une vitesse v. Son énergie mécanique vaut alors

1
Eyn=mgh +0+ Emﬂg.

D’apreés la conservation de 'énergie mécanique,

1
wigh = ptgly + E,m‘az d’oit v=+2g(h—£)=125m-s"

0 Exercice 17.2. Saut a ’élastique % % (TEM)

Posons un axe (Oz) vertical vers le bas, dont I'origine est prise au niveau du pont. La longueur de I’élastique
s'identifie donc a la coordonnée z, mais il n'est tendu que si z > £ : ce n'est pas un ressort, il n’exerce aucune force
lorsqu’il est comprimé.

L'énergie mécanique du sauteur se conserve. En I'exprimant au point de départ (z = 0, élastique non tendu,
vitesse nulle) et au point le plus bas de la trajectoire (z = zy,,,,. vitesse nulle) on obtient
1 2
Epm =E. + Epy + Epe ? 04+0+0 = 0— mgzyay +§k(zmaJd — &)
départ plus bas

Le saut d’Alice permet de déterminer la raideur de I’élastique,

2MGZyax

— _ -1
= G G PEN

Déterminons maintenant la position la plus basse atteinte par Bob avec cet élastique, en résolvant I'équation

1 1 1 1
—MgZmax + Ekz'i‘“ — kzmaxfo + Ekfﬂg =0 soit Ekznzm — (mg + kfo)zmax + Ekt’,_-,z =0
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Son discriminant vaut
(mg + ké,)? - k2(02 =5 (mg)z + 2kmgty, > 0

d’oti on déduit (seule la racine positive est pertinente physiquement)

(mg + k&) + +/(mg)? + 2kmgt,
=91m

Zmax = k

Bob peut donc garder le méme élastique qu’Alice pour sauter.

0 Exercice 17.3. Skieur ¥ (Calcul de travaux, TEC)

Schéma figure 1. Compte tenu de 'orientation des forces, il est plus judicieux d’utiliser un repérage incliné le
long de la pente.

Figure 1 — Schéma du skieur en descente.

Izl Notons x = 0 et x = L les deux extrémités de la piste. Le travail du poids du skieur se calcule simplement,

L, L L
W(P) = [ P.dM= [ mﬁp‘dx?x:mgsina/ dx don ‘W(F):mgsinaL
Jo Jo 0

Comme la force de réaction normale est perpendiculaire a la pente (donc a la trajectoire), alors elle ne travaille pas,
donc -
W(N) =0

—
Calculons enfin le travail de la force de réaction tangentielle T. La seule chose que I'on connaisse a son sujet est le
lien entre sa norme et celle de N. Comme le skieur demeure sur la piste sans s’enfoncer, alors

Py+Ny=0 soit —mgcosa+ N =0 d’'or T =puymgcosa

Alors,

L
W(T) = [ T-dM donc W(T)=—pmgcosal
Jo

E Appliquons le théoréme de I'énergie cinétique au skieur entre son point de départ D et son point d’arrivée A,
— —
E(A)-EAD)=W(P)+W(T) =mgL(sina — pcos )
Comme la vitesse initiale du skieur est nulle, et en notant v sa vitesse d’arrivée, on en déduit
1, .
Emu — 0 =mgL(sine — pcosa)

et finalement

v =+/2gL(sina — pcosa) =18m-s ' =65km-h™!
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0 Exercice 17.4. Convoyeur de colis %% % (Calcul de travaux, TEC)

Comme on cherche uniquement les vitesses en deux points (A et B), la version intégrale du théoréme de I'énergie
cinétique est la méthode a privilégier.

e Systéme : paquet de masse m;

o Référentiel galiléen : terrestre;

e Repérage : cartésien incliné d’origine A, voir figure 2,

AM = xex T =%€x d=3%€x

Figure 2 — Glissement d’un paquet sur le convoyeur.

e Bilan des forces :
—-
> poids P : sur la trajectoire AB ou le colis subit une dénivellation h, le poids et moteur et son travail vaut

Was(P) = —AE,, = +mgh > 0

g
> composante normale N de la réaction du support, qui ne travaille pas car elle est orthogonale au déplacement

= composante tangentielle T= ~T¢,, dont il faut calculer sa norme, ce qui ne peut se faire que via la norme de N
et la loi de Coulomb. Appliquons pour ce faire le PFD en projection sur €y,

m—=P+N+T soit 0=N-mgcosa d'on T=fmgcosa
ce qui permet enfin de calculer le travail de ?,
WAB(?) = [B?ﬁ =—fmgcosa / dx = —fmgcosaL
Ja Jap

ou L est la longueur totale du plan incliné. Comme L = h/sin a,

WAB(?) =—fmgcosa x ,h = —m .
sin o tan a
¢ Théoréme de I'énergie cinétique :
%muﬁz = —muj = mgh — {;9;
ce qui donne
e = 2fmgh

i 2 2, .
mog +mo ; + 2mgh

ce qui se simplifie en
2fgh
vi—of +2gh

tane = 0.4 d’olt

fana =

et conduit &
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Théorémes énergétiques en version instantanée :

0 Exercice 17.5. Piégeage d’un électron % (Force dérivée d’une énergie potentielle, TPM)

L'énergie mécanique est simplement la somme de 1'énergie cinétique et de I'énergie potentielle,

2
d leV;
2) 4 28Y 2

1
Eyn=-m|—
" 2m{dr 2 d?

En négligeant tout phénomene dissipatif (frottement, etc.), elle se conserve, d'olt

dEn mdz dzz_l_e‘.fozdz -
dt 1 drdez 0 2 Tdr 7
expr TEM

Comme I'électron se déplace dans le piége, alors sa vitesse n’est pas constamment nulle. On en déduit I'équation

du mouvement,
d?z e Vi 0
—+—2z=0.
drz  md?

L’équation différentielle que vérifie le mouvement de I'électron est donc celle d'un oscillateur harmonique, dont la

fréquence propre vaut
1 [eW
b = —+] — = 25 10° Hz = 25 MHz
2r N md?

0 Exercice 17.6. Tige avec ressort %% (TPC)

1. L'anneau est soumis & son poids (force conservative dérivant de 'énergie potentielle de pesanteur) et & la
force de rappel du ressort (force conservative dérivant de I'énergie potentielle élastique). Il est également
soumis 4 la force de réaction de la tige, mais comme les frottements sont négligeables, cette force ne travaille
pas. Ainsi, 'énergie potentielle de 'anneau vaut :

E, =mgz + %k(X —£g)?  soit E, =mgX cosa + %k(X —£)?

2. Commencons 'étude par calculer la dérivée :

d
§ =mgcosa+ k(X —{;)

o mg cos e . , e . -
Cette dérivée est nulle en X = £ — ———— et on peut facilement s’assurer qu’il s’agit d’'un minimum, par
exemple en étudiant les limites X — +oo du polynéme du second degré définissant £,. L'énergie potentielle

minimale vaut alors : R
(1rg cosa)®
Bmin = ————F7——

2k

ce qui conduit au traeé ci-dessous.

Ep

Jl:;m \ﬁ/

Comme l'énergie cinétique est positive ou nulle, le mouvement a lieu dans les zones telles que £, > E,. La
figure ci-dessus indique £, > 0 car la vitesse initiale est non nulle et £ est la référence d'énergie potentielle.
Par conséquent, tout au long du mouvement :

™

1,
T = 3 mVy

5 points extrémes correspondent 4 une énergie cinétique nulle, ¢'est-a-dire £, = Xon), soit :
Les points extrémes correspondent 4 une énergie cinétique nulle

1 . 1 E
Eml/'n‘) = mgX,, cosa + Ek[Xm —f)?
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4. L’énergie mécanique de I'anneau vaut :
1 s 1 2
E = §-mX‘ + mgX cosa + §k(X —by)*

et comme elle est constante alors :

dd—‘zt'" =0 <= mXX+mgXcosa+kX(X—-1£)=0

Ce qui permet, en simplifiant par X, d’aboutir a I'équation du mouvement :

ok k
X+ —X=—f—gcosa
m m
On reconnait comme attendu l'équation différentielle d'un oscillateur harmonique, on en déduit ainsi la
période des oscillations :

2T 1 m
T — e— = — —
. wo 2w\ k

0 Exercice 17.7. Mouvement dans un cercle v Y Y (Coordonnées polaires, TPM)

Le systéme étudié est la bille, modélisée par un point matériel M de masse m, en évolution dans le référentiel
terrestre, galiléen.

m Le point M est soumis a son poids, qui dérive de I'énergie potentielle de pesanteur, et a la réaction du support,
qui ne travaille pas : puisqu’il n’y a pas de frottement, seule la composante normale est a prendre en compte.
L’énergie potentielle de pesanteur s’écrit

Ey, = mgzy + cte = —mgR cos 0 + cte

en introduisant de facon trés temporaire un axe z vertical ascendant d’origine O. Choisissons dés maintenant la
constante en prenant E,, = 0 en bas du cercle, c’est-a-dire lorsque 6 = 0, ce qui donne

E,, = —mgRcos 0 + mgR = mgR(1 — cos )
De plus, comme le mouvement est circulaire, on connait la vitesse de M d’ot on déduit son énergie cinétique

E. = -m(R6)?

Do =

L’énergie mécanique de la bille est alors une constante du mouvement, qui vaut
1 ;
E,, = —mgR(1—cos0) + Em(Rt))2

Ainsi,
E : ‘o
dd—'"‘= R0 sin0 + mR*00 =0

Comme 6 ne peut pas étre constamment nul (cela signifierait que la vitesse est toujours nulle, or on sait qu'a t =0
la vitesse de la bille n’est pas nulle), on peut simplifier pour obtenir

mR*0 + mgRsin@ =0 d’ou 0+ %sinO:O

On reconnait I'équation d’un pendule simple.

@ Le meilleur moyen de déterminer une force inconnue est d’écrire le principe fondamental de la dynamique,
— —
mam /R=P+N
On utilise ici évidemment le répérage polaire de centre O avec r = R constant, d’oti

—mRO* = —N + mgcos 0

mR{ = mg sin 6
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‘El La norme N doit par définition rester positive tout au long du mouvement : si elle s’annule, c’est que le contact
entre le support et la bille est rompu. Le premier terme entre crochets est toujours positif. En revanche, le second
terme peut prendre des valeurs négatives. La valeur la plus petite qu'il puisse atteindre, lorsque cos @ = —1, est
—5g. Ainsi, la bille ne décolle pas du support si

2
7
% —-5g =0 soit Ug > Upin = v 3gR

El Supposons vy < Uy, et cherchons l'angle @ pour lequel la norme de N s’annule,

s
x +g(3cos80-2)=0

of
3gcost =29 — —

R
2 o}
cosf = - —
3 3gR
2 vl
8 = arccos | = — ——
3 3gR

—
car N est orientée selon —,. L'équation projetée sur @y donne I'équation du mouvement, déterminée énergéti-
quement, alors que I’équation projetée sur u, donne accés i la norme N,

N = mR6? + mgcos 0.

Or on a montré précédemment que

1 . . 2
Em = mgR(1 —cosf) + Em(Rﬂjg d’on mR9* = EEm + 2mg(cos 0 — 1)
Ainsi,
N =2RE,, + mg(3cosf —2).
Enfin, comme |’énergie mécanique est une constante du mouvement, sa valeur est toujours égale 4 sa valeur initiale.
Comme on a déja choisi la référence d’énergie potentielle en bas du cercle, alors

1
Em = Ec(0) + E;(0) = Emuuz +0

Il est absolument indispensable de garder la méme référence d’énergie potentielle tout au long de I'exer-
cice. En effet, E,, est définie a@ une constante additive prés, ce qui n’est pas le cas de la force. Changer
malencontreusement de constante en cours de route ferait apparaitre la différence entre les constantes
dans l'expression de la force, ce qui n’a aucun sens.

Cette expression donne finalement le résultat escompteé,

2
v
N=m %+g(33039—2}

TD n°17 - Mécanique : Energétique du point - PTSI
Page 6/6



