M4E3 OSCILLATEUR HARMONIQUE

Programme ATS

5. Oscillations libres au voisina	ge d'une position d'équilibre stable					
Oscillations non amorties au voisinage d'une position d'équilibre.	Expliquer qualitativement l'existence d'oscillations autour d'une position d'équilibre stable dans le cas d'une particule soumise à une force conservative dans un mouvement à un degré de liberté. Déterminer des caractéristiques du mouvement connaissant l'énergie mécanique du système.					
Oscillateur harmonique non amorti. Énergie potentielle. Équation d'évolution ; solutions générales. Période et pulsation propres des oscillations.	Établir et exploiter l'équation d'évolution d'un oscillateur harmonique non amorti à un degré de liberté. Résoudre cette équation connaissant les conditions initiales du mouvement. Exprimer l'énergie mécanique d'un oscillateur en fonction de l'amplitude des oscillations.					
Interprétation énergétique des oscillations harmoniques non amorties.	Représenter les variations en fonction du temps des énergies potentielle, cinétique et mécanique d'un oscillateur harmonique non amorti.					
Oscillateur harmonique amorti.	Établir l'équation différentielle du mouvement d'un système masse-ressort en présence d'une force de frottement dont la valeur est proportionnelle à celle de la vitesse.					
Régimes d'évolution libre (apériodique, critique et pseudopériodique). Facteur de qualité.	Écrire l'équation différentielle en faisant apparaître la pulsation propre et le facteur de qualité. Résoudre et interpréter les solutions de cette équation différentielle.					
racton de quante.	Identifier le régime d'évolution à partir de représentations graphiques des variations de la position ou de la vitesse au cours du temps.					
Temps caractéristiques d'évolution.	Dans le cas d'un régime pseudopériodique, identifier un temps caractéristique d'amortissement et un temps caractéristique d'oscillation. Relier qualitativement le facteur de qualité au nombre d'oscillations visibles.					
	Étudier expérimentalement les différents régimes d'oscillation d'un oscillateur harmonique mécanique amorti. Déterminer les paramètres caractéristiques de cet oscillateur : pulsation propre et facteur de qualité.					

13. Circuits linéaires en régime transitoire

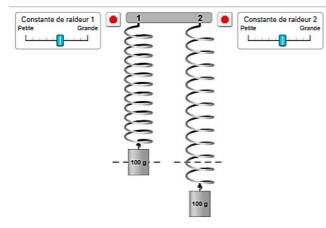
Circuit RLC série en régime	Établir et résoudre l'équation d'évolution de la tension aux bornes	
dépendant du temps.	du condensateur lors de sa charge ou de sa décharge, dans les	
Analogie mécanique.	différents régimes possibles.	
Analogie meeamque.	Écrire l'équation différentielle en faisant apparaître la pulsation	
	propre et le facteur de qualité.	
	Décrire et exploiter les analogies avec l'oscillateur harmonique	
	mécanique amorti. Identifier les paramètres et grandeurs	
	analogues.	

EXEMPLE D'OSCILLATEUR HARMONIQUE MECANIQUE NON AMORTI : LE SYSTEME MASSE-RESSORT

<u>I)1) Expérience</u>

I)

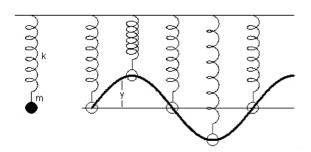
https://phet.colorado.edu/sims/html/masses-and-springs/latest/masses-and-springs fr.html



- 1 : Système en équilibre (statique)
- 2 : Système à l'instant *t* (dynamique)

Observations:

En l'absence de frottement (amortissement), le mouvement de la masse m est sinusoïdal (ou harmonique), de période d'oscillation T_0 constante. L'amplitude A du mouvement ne change pas dans le temps.



Position de la masse m : sinuso $\ddot{}$ dale en fonction du temps.

On va montrer que $y(t) = A \cos(\omega_0 t + \varphi)$

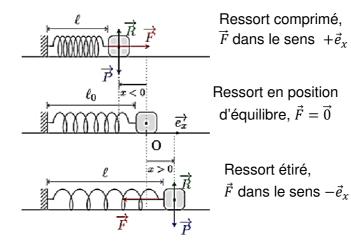
où A est l'amplitude

et
$$\omega_0 = \frac{2\pi}{T_0}$$
, la pulsation

I)2) Force de rappel élastique du ressort : rappels

La force qui nous intéresse ici est la force $\vec{F} = \vec{F}_{ressort\; sur\; masse}$ exercée par le ressort sur la masse.

On place le vecteur \vec{e}_{x} , vecteur unitaire « sortant » du ressort au point d'accrochage de la masse.



Caractérisation du ressort : Un ressort idéal (sans masse, parfaitement élastique, à spires non jointives) est caractérisé par sa **longueur à vide** $l_0(\mathbf{m})$ et sa **constante de raideur** k $(\mathbf{N}.\mathbf{m}^{-1})$.

Remarque : Ce sont des données « constructeur » : ces caractéristiques ne dépendent pas de la manière dont le ressort est utilisé (compression, extension, valeur de la masse accrochée en bout, ...).

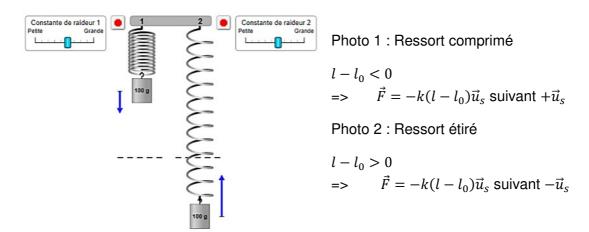
Force de rappel élastique : Une masse *m* accrochée à l'extrémité d'un ressort idéal subit une force de rappel :

$$\vec{F} = -k(l - l_0)\vec{u}_s$$
 en newtons (N)

Avec : k constante de raideur du ressort (N.m⁻¹)

 $l - l_0$ allongement du ressort (m)

 \vec{u}_s vecteur unitaire « sortant » du ressort au point d'accorchage de la masse



Remarque : la force de rappel élastique est toujours orientée de sorte que le ressort retrouve sa longueur à vide.

1)3) Equilibre du système masse-ressort vertical

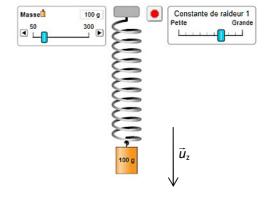
Référentiel : Terrestre supposé galiléen

Système : Masse *m* supposée ponctuelle

BAME:

Poids : $\vec{P} = m\vec{g} = +mg\vec{u}_z$ (Axe z orienté vers le bas)

Force de rappel : $\vec{F} = -k(l - l_0)\vec{u}_s = -k(l - l_0)\vec{u}_z$



Détermination de la longueur du ressort à l'équilibre $\boldsymbol{l_{eq}}$:

A l'équilibre $\sum \vec{F} = \vec{0}$ car pas d'accélération (les forces appliquées sur le système se compensent)

En projetant sur l'axe z:

$$mg - k(l - l_0) = 0$$

On obtient : $l_{eq} = l_0 + \frac{mg}{k}$

Vérification homogénéité + tendances

I)4) Système masse-ressort vertical en mouvement

Référentiel : Terrestre supposé galiléen

Système : Masse *m* supposée ponctuelle

BAME:

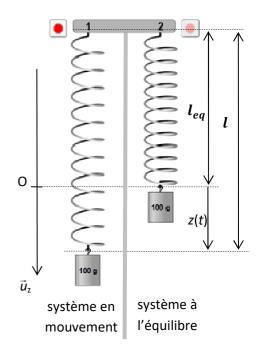
Poids : $\vec{P} = m\vec{g} = +mg\vec{u}_z$ (Axe z orienté vers le bas)

Force de rappel : $\vec{F} = -k(l - l_0)\vec{u}_s = -k(l - l_0)\vec{u}_z$

Par commodité, on prend la position d'équilibre de la masse comme position origine sur l'axe vertical descendant.

On a alors $z(t) = l - l_{eq}$

Principe fondamental de la dynamique :



D'où: $\frac{d^2z}{dt^2} + \frac{k}{m}z = 0$

Il s'agit d'une équation différentielle linéaire d'ordre 2 à coefficients constants

La forme canonique d'une telle équation différentielle s'écrit

$$\frac{d^2z}{dt^2} + \omega_0^2 z = 0$$

Le terme noté ω_0 y apparaissant est la pulsation du mouvement observé

par identification, dans le cas du système masse-ressort :

1)5) Résolution de l'équation différentielle

a) Solution de l'équation différentielle homogène (SEH) :

Les solutions de l'équation différentielle homogène du type $\frac{d^2x}{dt^2} + \omega_0^2 x = 0$ s'écrivent sous la forme : $x_H(t) = X_m \cos{(\omega_0 t + \varphi)}$ où X_m et φ sont déterminés à partir de 2 conditions initiales, en général x(0) et $\frac{dx}{dt}(0)$

 $|ci| z_H(t) = Z_m co s(\omega_0 t + \varphi)$

b) Solution particulière (SP): $|c| z_p(t) = 0$

c) Solution générale (SG) : $z(t) = z_H(t) + z_P(t) = Z_m \cos(\omega_0 t + \varphi)$

d) Conditions initiales (CI): 2 conditions initiales sont nécessaires

Par exemple : $z(0) = z(t = 0) = Z_0$ (Elongation initiale par non nulle)

 $\dot{z}(0) = \dot{z}(t=0) = 0$ (Vitesse initiale nulle)

e) Détermination des constantes d'intégration :

Remarque importante : si on utilise la formule de trigonométrie bien connue cos(a+b) = cos(a)cos(b) - sin(b)sin(a)on remarque que la SEH $x_H(t) = X_m \cos(\omega_0 t + \varphi)$

donc la solution peut aussi se présenter sous la forme $x_H(t) = A\cos(\omega_0 t) + B\sin(\omega_0 t)$ On pourra vous demander d'exprimer le résultat sous cette forme. dans ce cas, la démarche est la même que précédemment mais les constantes d'intégration à déterminer avec les conditions initiales sont A et B

Evolution de z en fonction du temps :

GENERALISATION:

Equation différentielle du deuxième ordre (oscillateur harmonique non amorti)

Forme canonique : $\frac{d^2x}{dt^2} + \omega_0^2 x = cte$ avec ω_0 pulsation propre (rad.s⁻¹)

Solution : $x(t) = SP + X_m \cos(\omega_0 t + \varphi)$

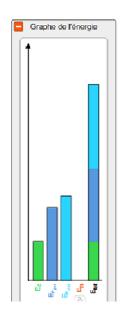
 X_m et φ déterminés à partir de 2 conditions initiales, en général x(0) et $\frac{dx}{dt}(0)$

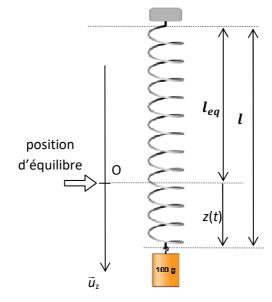
ou

Solution : $x(t) = SP + A\cos(\omega_0 t) + B\sin(\omega_0 t)$

 ${\pmb A}$ et ${\pmb B}$ déterminés à partir de 2 conditions initiales, en général $x({\pmb 0})$ et $\frac{dx}{dt}({\pmb 0})$

l)6) Oscillateur harmonique et conservation de l'énergie





• Energie cinétique du système = énergie cinétique de la masse *m* :

$$E_C = \frac{1}{2}mv^2 = \frac{1}{2}m\dot{z}^2$$

• Energie potentielle de pesanteur du système = Energie potentielle de pesanteur de la masse *m* :

$$E_{PP} = -mgz + cte$$
 (Axe z orienté vers le bas)

Energie potentielle élastique du système = Energie potentielle élastique de la masse
 m :

$$E_{PE} = \frac{1}{2}k(l - l_0)^2$$

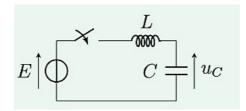
Cette énergie est toujours positive ou nulle, que le ressort soit comprimé $(l < l_0)$ ou allongé $(l > l_0)$.

L'énergie mécanique du système est la somme de l'énergie potentielle et de l'énergie cinétique du système :

$$E_m = E_P + E_C = E_{PP} + E_{PE} + E_C = -mgz + cte + \frac{1}{2}k(l - l_0)^2 + \frac{1}{2}m\dot{z}^2$$

Montrons que l'énergie mécanique du système masse – ressort se conserve :

II) EXEMPLE D'OSCILLATEUR HARMONIQUE ELECTRIQUE NON AMORTI



A l'instant t = 0 on ferme l'interrupteur.

- 1) Etablir l'équation différentielle vérifiée par la tension u_c .
- 2) Mettre cette équation différentielle sous forme canonique. Identifier la pulsation propre du circuit.
- 3) Donner la forme générale de la solution de cette équation différentielle.

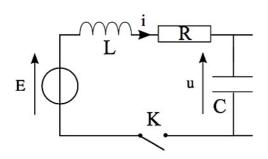
On suppose que le condensateur est initialement déchargé.

- 4) A partir de la continuité de la tension aux bornes du condensateur et de la continuité de l'intensité traversant la bobine, donner la condition initiale portant sur u_C et celle portant sur $\frac{du_C}{dt}$.
- 5) A partir des C.I. précédentes, déterminer **la** solution physique de l'équation différentielle.
- 6) Tracer l'évolution de $u_{\mathcal{C}}$ en fonction du temps.

III)1) Expérience

On soumet un circuit RLC à un **échelon de tension**, on fait l'acquisition de la tension u aux bornes du condensateur en fonction du temps.

Montage:



E: générateur de tension idéal ; E = 10 V

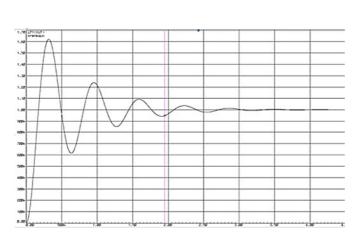
L: inductance parfaite; L = 0.2 H

C: condensateur parfait ; $C = 5 \mu F$

R : résistance variable

On ferme l'interrupteur $K \grave{a} t = 0$.

Observation : L'évolution de u en fonction du temps, ou la forme du régime transitoire, dépend de la valeur de R.

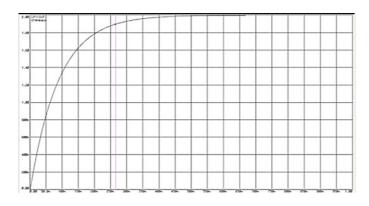


Cas a) : $R = 40 \Omega$

Le régime transitoire présente des oscillations amorties

Amortissement faible

Régime pseudo-périodique



Cas b) : $R = 4 \text{ k}\Omega$

Le régime transitoire ne présente pas d'oscillation

Amortissement important

Régime apériodique

Remarque : Le cas limite entre les deux cas précédents est appelé régime critique

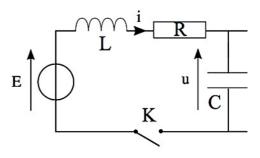
III)2) Modélisation et mise en équation

Tous les dipôles sont supposés idéaux.

Ils sont **en série** c'est-à-dire traversés par le même courant *i*.

Relations entre tensions et intensité :

Loi des mailles :



Equation différentielle vérifiée par u:

Il s'agit, comme dans le cas de l'oscillateur harmonique non amorti, d'une équation différentielle du second ordre à coefficients constants mais il y a un terme en plus qui apparait, la dérivée première de u(t) : $\frac{R}{L}\frac{du}{dt}$

l'équation différentielle de l'oscillateur harmonique amorti possède également une Forme canonique qui s'écrira ::

$$\frac{d^{2}u}{dt^{2}}(t) + \frac{\omega_{0}}{Q}\frac{du}{dt}(t) + {\omega_{0}}^{2}u(t) = cste$$

Avec : ω_0 pulsation propre (rad.s⁻¹)

Q facteur de qualité (sans dimension)

Identification:

Remarque : la forme canonique est parfois écrite sous la forme :

$$\frac{d^2u}{dt^2} + 2\xi\omega_0\frac{du}{dt} + \omega_0^2u = cste$$

où
$$\xi = \frac{1}{2Q}$$
 est appelé

Le régime transitoire dépend de la valeur de Q (donc de ξ) :

- Si le facteur de qualité Q est grand devant 1 (facteur d'amortissement ξ petit devant 1),
- Si *Q* tend vers l'infini (*ξ* tend vers zéro),
- Si Q est très petit devant 1 (ξ très grand devant 1),

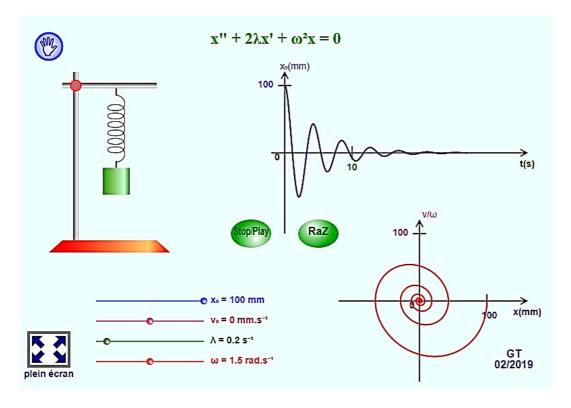
IV) EXEMPLE D'OSCILLATEUR MECANIQUE AMORTI : LE SYSTEME MASSE – RESSORT AVEC FROTTEMENT FLUIDE

IV)1) Expérience

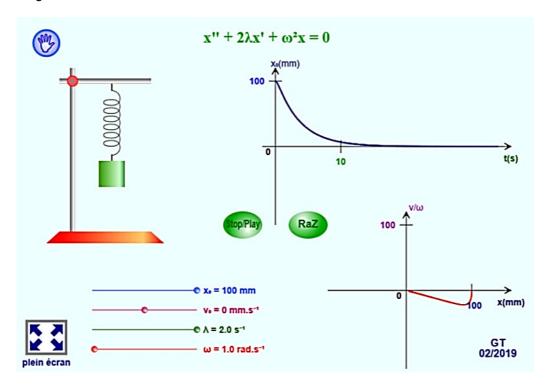
http://www.sciences.univ-nantes.fr/sites/genevieve_tulloue/Meca/Oscillateurs/ressort.php?typanim=Javascript

Sur un système masse-ressort, on écarte la masse de sa position d'équilibre. On réalise l'acquisition de la position de la masse en fonction du temps.

Régime



Régime



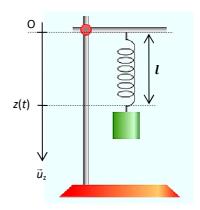
IV)2) Modélisation et mise en équation

Système masse-ressort avec « frottement visqueux ».

Référentiel:

Système:

BAME:



PFD:	
Equation différentielle vérifiée par z :	
Forme canonique de l'équation différentielle :	
Identification :	

ANALOGIES MECANIQUE - ELECTRICITE:

Mécanique	Electricité		
Position x (m)	Charge q (C)		
Vitesse v (m.s ⁻¹)	Intensité i (A)		
Masse m (kg)	Inductance L (H)		
Raideur k (N.m ⁻¹)	$\frac{1}{c}$ avec Capacité C (F)		
Frottement h (N.m ⁻¹ .s)	Résistance R (Ω)		
Force F (N)	Tension u (V)		
Energie Potentielle Elastique $E_{PE} = \frac{1}{2}kx^2$	Energie condensateur $E_{cond} = \frac{1}{2} \frac{q^2}{C} = \frac{1}{2} C u^2$		
Energie Cinétique $E_C = \frac{1}{2}mv^2$	Energie Bobine $E_{bobine} = \frac{1}{2}Li^2$		
Pulsation propre $\omega_0 = \sqrt{\frac{k}{m}} \text{ (rad.s}^{-1}\text{)}$	Pulsation propre $\omega_0 = \frac{1}{\sqrt{LC}} \text{ (rad.s}^{-1}\text{)}$		
Facteur de qualité $Q = \frac{1}{h}\sqrt{mk}$ (sans dimension)	Facteur de qualité $Q = \frac{1}{R} \sqrt{\frac{L}{c}}$ (sans dimension)		

V) RESOLUTION D'UNE EQUATION DIFFERENTIELLE DU DEUXIEME ORDRE

Revenons sur l'équation différentielle vérifiée par la tension \boldsymbol{u} dans le cas d'un circuit RLC série en réponse à un échelon de tension :

$$\frac{d^2u}{dt^2} + \frac{\omega_0}{Q}\frac{du}{dt} + \omega_0^2 u = \omega_0^2 E \qquad \text{pour } t > 0$$

Remarque: La méthode de résolution est la même en mécanique, où la tension u est remplacée par la position x ou z.

V)1) Forme générale des solutions

Solution particulière (SP) :

Solution de l'équation homogène (SEH) :

Les solutions de l'équation homogène sont déterminées à partir de **l'équation** caractéristique.

Equation homogène:

⇒ Equation caractéristique :

La forme de la solution et donc le type de régime (pseudo-périodique, apériodique ou critique) dépend du signe du discriminant Δ de l'équation caractéristique.

3 cas sont possibles:

- *∆* > 0
- $\Delta = 0$
- ∆ < 0

V)2) Régime apériodique

Le régime apériodique est obtenu lorsque

L'amortissement est , le facteur de qualité est

Le discriminant \(\Delta \) de l'équation caractéristique est

L'équation caractéristique admet 2 racines réelles :

En régime apériodique, les **solutions de l'équation homogène (SEH)** prennent la forme suivante :

Durée du régime transitoire

Les racines r_1 et r_2 sont négatives. Les 2 exponentielles de la solution sont donc décroissantes, avec des temps caractéristiques $\tau_{1,2}=\frac{1}{|r_{1,2}|}$. La durée τ du régime transitoire est définie comme le minimum de $\tau_1=\frac{1}{|r_1|}$ et $\tau_2=\frac{1}{|r_2|}$.

V)3) Régime pseudo-périodique

Le régime pseudo-périodique est obtenu lorsque

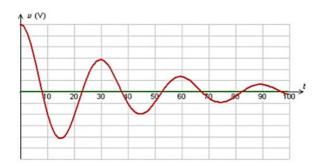
L'amortissement est , le facteur de qualité est

Le discriminant ∆ de l'équation caractéristique est

L'équation caractéristique admet 2 racines complexes conjuguées :

En régime pseudo-périodique, les **solutions de l'équation homogène (SEH)** prennent la forme suivante :

Allure de la solution de l'équation homogène



Durée du régime transitoire

La durée τ du régime transitoire est déterminée à partir de l'enveloppe exponentielle :

$$\tau = \frac{1}{\lambda} = \frac{2Q}{\omega_0}$$

La durée du régime transitoire est d'autant plus longue que \mathcal{Q} est élevé.

Si on compare la durée du régime transitoire τ à la pseudo-période T:

V)4) Régime apériodique critique								
Le régime critique est obtenu lorsque								
L'équation caractéristique admet 1 racine réelle double :								
En régime critique, les solutions de l'équation homogène (SEH) prennent la forme suivante :								

Durée du régime transitoire :

GENERALISATION : Equation différentielle du deuxième ordre des oscillateurs harmoniques amortis

Formes canoniques:

$$\frac{d^2y}{dt^2} + \frac{\omega_0}{0}\frac{dy}{dt} + {\omega_0}^2 y = cte$$

avec Q facteur de qualité, ω_0 pulsation propre

$$\frac{d^2y}{dt^2} + 2\xi\omega_0\frac{dy}{dt} + \omega_0^2y = cte$$

 $\frac{d^2y}{dt^2} + 2\xi\omega_0\frac{dy}{dt} + \omega_0^2y = cte$ avec $\xi = \frac{1}{2Q}$ facteur d'amortissement

$$\frac{d^2y}{dt^2} + 2\lambda \frac{dy}{dt} + \omega_0^2 y = cte$$
 avec $\lambda = \xi \omega_0 = \frac{\omega_0}{20}$

Equation caractéristique : $r^2 + \frac{\omega_0}{q}r + \omega_0^2 = 0$ Discriminant : $\Delta = \omega_0^2 \left(\frac{1}{q^2} - 4\right) \Rightarrow 2$ racines r_1 et r_2

Discriminant :
$$\Delta = \omega_0^2 \left(\frac{1}{a^2} - 4\right) \Rightarrow$$

Facteur de qualité Q	Coefficient d'amortisse ment ξ	Discrimin ant ⊿	Racines r_1 et r_2		Régime	Solution
$Q < \frac{1}{2}$	ξ>1	<i>∆</i> > 0	2 racines réelles négatives	$r_{1,2} = -\frac{\omega_0}{2Q} \pm \frac{\omega_0}{2} \sqrt{\frac{1}{Q^2} - 4}$	Apériodique	$y(t) = SP + Ae^{r_1t} + Be^{r_2t}$
$Q = \frac{1}{2}$	ξ= 1	Δ = 0	1 racine double	$r = -\omega_0$	Critique	$y(t) = SP + (At + B)e^{-\omega_0 t}$
$Q > \frac{1}{2}$	ξ< 1	Δ< 0	2 racines complexes conjuguées	$r_{1,2} = -\frac{\omega_0}{2Q} \pm j\omega_0 \sqrt{1 - \frac{1}{4Q^2}}$ OU $r_{1,2} = -\lambda \pm j\omega \text{avec} \begin{cases} \lambda = \frac{\omega_0}{2Q} \\ \omega = \sqrt{\omega_0^2 - \lambda^2} \end{cases}$	Pseudo-périodique	$y(t) = SP + [Acos(\omega t) + Bsin(\omega t)]e^{-\lambda t}$

A et B déterminés à partir de 2 conditions initiales, en général y(0) et $\frac{dy}{dt}(0)$.

Décrément logarithmique δ dans le cas du régime pseudo-périodique

$$\delta = \ln \left[\frac{y(t) - y(\infty)}{y(t+T) - y(\infty)} \right] = \ln \left[\frac{1}{e^{-\lambda T}} \right] = \lambda T = \frac{\omega_0}{2Q} T \qquad \text{avec } y(t) \text{ et } y(t+T) \text{ valeurs de 2 " maxima " successifs}$$