CPGE ATS

Programme de colles - Semaine 7 (10 au 15 novembre 2025)

Chapitre étudié et questions de cours : M4 E3 Oscillateur harmonique

Les colles du mardi 11 novembre doivent être rattrapées : contacter votre colleur

Réponses attendues en bleu.

1ère question de cours : questions 1 à 7.

2ème question de cours : questions 8 à 13.

1) Equation différentielle du deuxième ordre (oscillateur harmonique non amorti) : forme canonique + solution.

Forme canonique : $\frac{d^2y}{dt^2} + \omega_0^2 y = cte$ avec ω_0 pulsation propre

Solution : $y(t) = SP + Y_m \cos(\omega_0 t + \varphi)$

 Y_m et φ déterminés à partir de 2 conditions initiales, en général y(0) et $\frac{dy}{dr}(0)$

ou

Solution: $y(t) = SP + A\cos(\omega_0 t) + B\sin(\omega_0 t)$

A et B déterminés à partir de 2 conditions initiales, en général y(0) et $\frac{dy}{dt}(0)$

2) Equation différentielle du deuxième ordre (oscillateur harmonique amorti) : forme canonique, équation caractéristique et discriminant associé.

Formes canoniques:

$$\frac{d^2y}{dt^2} + \frac{\omega_0}{o}\frac{dy}{dt} + \omega_0^2 y = cte$$

avec Q facteur de qualité, ω₀ pulsation propre

$$\frac{d^2y}{dt^2} + 2\xi\omega_0 \frac{dy}{dt} + \omega_0^2 y = cte$$

avec $\xi = \frac{1}{20}$ facteur d'amortissement

$$\frac{d^2y}{dt^2} + 2\lambda \frac{dy}{dt} + \omega_0^2 y = cte \qquad \text{avec } \lambda = \xi \omega_0 = \frac{\omega_0}{2Q}$$

avec
$$\lambda=\xi\omega_0=rac{\omega_0}{2Q}$$

Equation caractéristique :

$$r^2 + \frac{\omega_0}{\varrho}r + \omega_0^2 = 0$$

 $r^2 + \frac{\omega_0}{\varrho} r + {\omega_0}^2 = 0$ Discriminant : $\Delta = \omega_0^2 (\frac{1}{\varrho^2} - 4) \Rightarrow 2$ racines r_1 et r_2

3) La forme canonique de l'équation différentielle du deuxième ordre (oscillateur harmonique amorti) étant donnée ci-dessous, donner les conditions du régime apériodique, et la solution associée.

Forme canonique:

$$\frac{d^2y}{dt^2} + \frac{\omega_0}{o}\frac{dy}{dt} + \omega_0^2 y = cte$$

avec **Q** facteur de qualité, **ω**₀ pulsation propre

Facteur de qualité Q	Coefficient d'amortisse ment ξ	Discrimi nant ∆	Racines r ₁ et r ₂	Régime	Solution
Q < ½	ξ > 1	Δ > 0	2 racines réelles négatives $r_{1,2} = -\frac{\omega_0}{2Q} + /-\frac{\omega_0}{2} \sqrt{\frac{1}{Q^2} - 4}$	Apériodique	$y(t) = SP + Ae^{r_1t} + Be^{r_2t}$

A et **B** déterminés à partir de 2 conditions initiales, en général y(0) et $\frac{dy}{dt}(0)$.

4) La forme canonique de l'équation différentielle du deuxième ordre (oscillateur harmonique amorti) étant donnée ci-dessous, donner les conditions du régime pseudopériodique, et la solution associée.

Forme canonique:

$$\frac{d^2y}{dt^2} + \frac{\omega_0}{o}\frac{dy}{dt} + \omega_0^2 y = cte$$

avec **Q** facteur de qualité, **ω**₀ pulsation propre

Facteur de qualité	Coefficient d'amortisse	Discrimi nant ∆	Racines r ₁ et r ₂	Régime	Solution
Q	ment ξ				
Q > ½	ξ < 1	Δ < 0	2 racines complexes conjuguées	Pseudo-	$y(t) = SP + e^{-\lambda t} [A\cos(\omega t)]$
	2 .		$r_{1,2} = -\frac{\omega_0}{2Q} + / j\omega_0 \sqrt{1 - \frac{1}{4Q^2}}$ Ou $r_{1,2} = -\lambda + / j\omega$	périodique	$+Bsin(\omega t)$]
			$\operatorname{Od} r_{1,2} = -\pi r_{1,2} \int \omega$		
			$\boldsymbol{\omega} = \omega_0 \sqrt{1 - \frac{1}{4Q^2}} = \sqrt{{\omega_0}^2 - \boldsymbol{\lambda}^2}$ $\boldsymbol{\lambda} = \frac{\omega_0}{2Q}$		
			$\lambda = \frac{\omega_0}{2Q}$		d.

A et **B** déterminés à partir de 2 conditions initiales, en général y(0) et $\frac{dy}{dt}(0)$.

5) La forme canonique de l'équation différentielle du deuxième ordre (oscillateur harmonique amorti) étant donnée ci-dessous, donner les conditions du régime critique, et la solution associée.

Forme canonique:

$$\frac{d^2y}{dt^2} + \frac{\omega_0}{\Omega} \frac{dy}{dt} + \omega_0^2 y = cte$$

avec **Q** facteur de qualité, **ω**₀ pulsation propre

Facteur de qualité Q	Coefficient d'amortisse ment ξ	Discrimi nant ∆	Racines r ₁ et r ₂	Régime	Solution
Q = ½	ξ = 1	∆ = 0	1 racine double $r = -\omega_0$	Critique	$y(t) = SP + (At + B)e^{-\omega_0 t}$

A et **B** déterminés à partir de 2 conditions initiales, en général y(0) et $\frac{dy}{dt}(0)$.

6) Donner la définition du décrément logarithmique.

Dans le cas du régime pseudo-périodique :

Décrément logarithmique :
$$\delta = \ln \left[\frac{y(t) - y(\infty)}{y(t+T) - y(\infty)} \right] = \ln \left[\frac{1}{e^{-\lambda T}} \right] = \lambda T = \frac{\omega_0}{2Q} T$$

avec y(t) et y(t+T) valeurs de 2 « maxima » successifs

7) Donner les analogies mécanique - électricité.

Mécanique	Electricité	
Position x (m)	Charge q (C)	
Vitesse v (m.s ⁻¹)	Intensité i (A)	
Masse <i>m</i> (kg)	Inductance L (H)	
Raideur k (N.m ⁻¹)	$\frac{1}{c}$ avec Capacité C (F)	
Frottement h (N.m ⁻¹ .s)	Résistance R (Ω)	
Force F (N)	Tension u (V)	

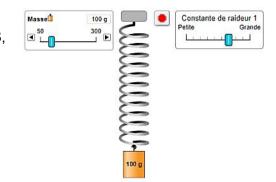
Démos de cours :

8) Système masse-ressort vertical: A partir du PFS, établir l'expression de la longueur à l'équilibre.

Référentiel: Terrestre supposé galiléen

Système : Masse m supposée ponctuelle

BAME:



Poids : $\vec{P} = m\vec{g} = +mg\vec{u}_z$ (Axe z orienté vers le bas)

Force de rappel : $\vec{F} = -k(l-l_0)\vec{u}_s = -k(l-l_0)\vec{u}_z$

Principe fondamental de la dynamique :

$$\sum \vec{F} = m \vec{a}$$
 c'est-à-dire $m g \vec{u}_z - k(l-l_0) \vec{u}_z = m \ddot{z} \vec{u}_z$

Détermination de la longueur du ressort à l'équilibre $oldsymbol{l}_{eq}$:

En projetant sur l'axe z :

$$mg - k(l - l_0) = m\ddot{z} = 0$$

On obtient :
$$l_{eq} = l_0 + \frac{mg}{k}$$

 Système masse-ressort vertical : A partir du PFD, établir l'expression de l'équation différentielle du mouvement.

Système : Masse m supposée ponctuelle

BAME:

Poids : $\vec{P} = m\vec{g} = +mg\vec{u}_z$ (Axe z orienté vers le bas)

Force de rappel :
$$\vec{F} = -k(l-l_0)\vec{u}_s = -k(l-l_0)\vec{u}_z$$

Principe fondamental de la dynamique :

$$\sum \vec{F} = m\vec{a}$$
 c'est-à-dire $mg\vec{u}_z - k(l-l_0)\vec{u}_z = m\ddot{z}\vec{u}_z$

En projetant sur l'axe z :

$$mg - k(l - l_0) = m\ddot{z}$$

Equation différentielle vérifiée par la position $z=l-l_{eq}$:

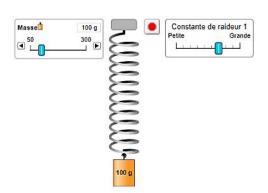
$$mg - k(l - l_{eq} + l_{eq} - l_0) = m\ddot{z}$$

Avec :
$$mg - k(l_{eq} - l_0) = 0$$
 (Equilibre)

On obtient :
$$-k(l-l_{eq}) = -kz = m\ddot{z} = m\frac{d^2z}{dt^2}$$

D'où : $\frac{d^2z}{dt^2} + \frac{k}{m}z = 0$ Equation différentielle linéaire d'ordre à coefficients constants

$$\frac{d^2z}{dt^2} + \omega_0^2 z = 0$$
 Forme canonique



10) Résoudre l'équation différentielle homogène (SEH) de la fonction z(t) suivante :

$$\frac{d^2z}{dt^2}(t) + \omega_0^2 z(t) = 0$$

On donne les 2 conditions initiales :

$$z(0) = z(t = 0) = Z_0$$
 (Elongation initiale non nulle)

$$\dot{z}(0) = \dot{z}(t = 0) = 0$$
 (Vitesse initiale nulle)

- a) Solution de l'équation homogène (SEH) : $z_H(t) = Z_m \cos(\omega_0 t + \varphi)$ ou $A \cos(\omega_0 t) + B \sin(\omega_0 t)$
- b) Solution particulière (SP) : Ici : $z_P(t) = 0$
- c) Solution générale (SG): $z(t) = z_H(t) + z_P(t) = Z_m \cos(\omega_0 t + \varphi)$ ou $A \cos(\omega_0 t) + B \sin(\omega_0 t)$
- d) Conditions initiales (CI): 2 conditions initiales sont nécessaires

$$z(0) = z(t = 0) = Z_0$$
 (Elongation initiale non nulle)

$$\dot{z}(0) = \dot{z}(t=0) = 0$$
 (Vitesse initiale nulle)

e) Détermination des constantes d'intégration :

$$z(t) = Z_m \cos(\omega_0 t + \varphi)$$
 ou $A \cos(\omega_0 t) + B \sin(\omega_0 t)$

$$\dot{z}(t) = -\omega_0 Z_m \sin(\omega_0 t + \varphi) ou - \omega_0 A \sin(\omega_0 t) + \omega_0 B \cos(\omega_0 t)$$

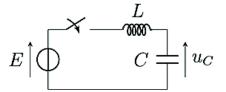
$$z(0) = Z_m \cos(\varphi)$$
 ou A mathématiquement et $z(0) = Z_0$ physiquement

$$\dot{z}(0) = -\omega_0 Z_m sin(\varphi)$$
 ou $\omega_0 B$ mathématiquement et $\dot{z}(0) = 0$ physiquement

On en déduit : En prenant $\varphi = 0$, on obtient $Z_m = Z_0$

Ou:
$$A = Z_0, B = 0$$

11) Pour le circuit ci-contre (interrupteur fermé à t=0) : Etablir l'équation différentielle vérifiée par la tension $u_{\mathbb{C}}$ aux bornes du condensateur. La mettre sous forme canonique, identifier la constante introduite.



Appliquer la loi des mailles : $E - u_L - u_C = 0$

Appliquer la loi entre u et i pour chaque récepteur. $u_L = L \frac{di}{dt}$; $i = C \frac{du_C}{dt}$

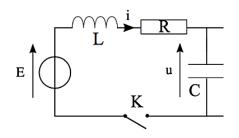
On obtient :
$$\frac{d^2u_C}{dt^2} + \frac{1}{LC}u_C = \frac{1}{LC}E$$

Sous forme canonique:

$$\frac{d^2u_C}{dt^2} + \omega_0^2 u_C = \omega_0^2 E$$
, avec, en identifiant: $\omega_0 = \frac{1}{\sqrt{LC}}$ pulsation propre (rad.s⁻¹)

CPGE ATS

12) Pour le circuit ci-contre (interrupteur fermé à t = 0) : Etablir l'équation différentielle vérifiée par la tension u aux bornes du condensateur. La mettre sous forme canonique, identifier les constantes introduites.



Appliquer la loi des mailles : $E - u_L - u_R - u = 0$

Appliquer la loi entre u et i pour chaque récepteur. $u_L = L \frac{di}{dt}$; $i = C \frac{du}{dt}$; $u_R = R.i$

On obtient sous forme canonique:

$$\frac{d^2u}{dt^2} + \frac{R}{L}\frac{du}{dt} + \frac{1}{LC}u = \frac{1}{LC}E$$

On identifie à la forme canonique suivante :

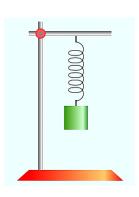
$$\frac{d^2u}{dt^2} + \frac{\omega_0}{Q}\frac{du}{dt} + \omega_0^2 u = \omega_0^2 E$$

On détermine par identification :

$$\omega_0 = \frac{1}{\sqrt{LC}}$$
 pulsation propre (rad.s⁻¹)

$$Q = \frac{1}{R} \sqrt{\frac{L}{c}}$$
 facteur de qualité (sans dimension)

13) Pour le système masse-ressort amorti ci-contre, on écarte la masse de sa position d'équilibre ; déterminer l'équation du mouvement. La mettre sous forme canonique ; identifier les constantes introduites.



Graduer axe z vers le bas.

Prendre l'origine de l'axe au point de fixation du ressort.

Référentiel: Terrestre, supposé galiléen

Système : Masse m.

Bilan des forces extérieures appliquées :

Poids :
$$\vec{P} = m\vec{g} = mg\vec{u}_Z$$

Force de rappel élastique : $\vec{F} = -k(l-l_0)\overrightarrow{u_s}$ avec $\overrightarrow{u_s}$ vecteur sortant du ressort.

$$\overrightarrow{u_S} = \overrightarrow{u_Z} \text{ et } l = z$$

On obtient :
$$\vec{F} = -k(z - l_0) \overrightarrow{u_z}$$

Force de frottement fluide :
$$f = -h\vec{v} = -h\dot{z}\overrightarrow{u_z}$$

$$\mathsf{PFD}: \sum \vec{F} = m\vec{a} = m\ddot{z}\overrightarrow{u_z}$$

En projetant sur
$$z$$
 on obtient :

CPGE ATS

$$mg - k(z - l_0) - h\dot{z} = m\ddot{z}$$

Sous forme canonique :

$$\ddot{z} + \frac{h}{m}\dot{z} + \frac{k}{m}z = g + \frac{k}{m}l_0$$

On identifie à la forme canonique suivante :

$$\ddot{z} + \frac{\omega_0}{Q}\dot{z} + {\omega_0}^2 z = g + \frac{k}{m}l_0$$

On détermine par identification :

$$\omega_0 = \sqrt{\frac{k}{m}}$$
 pulsation propre (rad.s⁻¹)

 $Q = \frac{1}{h} \sqrt{mk}$ facteur de qualité (sans dimension)

Puis : de 1 à 2 exercices proposés par le colleur.

Programme ATS

5. Oscillations libres au voisina	ge d'une position d'équilibre stable		
Oscillations non amorties au voisinage d'une position d'équilibre.	Expliquer qualitativement l'existence d'oscillations autour d'une position d'équilibre stable dans le cas d'une particule soumise à une force conservative dans un mouvement à un degré de liberté. Déterminer des caractéristiques du mouvement connaissant l'énergie mécanique du système.		
Oscillateur harmonique non amorti. Énergie potentielle. Équation d'évolution ; solutions générales. Période et pulsation propres des oscillations.	Établir et exploiter l'équation d'évolution d'un oscillateur harmonique non amorti à un degré de liberté. Résoudre cette équation connaissant les conditions initiales du mouvement. Exprimer l'énergie mécanique d'un oscillateur en fonction de l'amplitude des oscillations.		
Interprétation énergétique des oscillations harmoniques non amorties.	Représenter les variations en fonction du temps des énergies potentielle, cinétique et mécanique d'un oscillateur harmonique non amorti.		
Oscillateur harmonique amorti.	Établir l'équation différentielle du mouvement d'un système masse-ressort en présence d'une force de frottement dont la valeur est proportionnelle à celle de la vitesse.		
Régimes d'évolution libre (apériodique, critique et pseudopériodique). Facteur de qualité.	Écrire l'équation différentielle en faisant apparaître la pulsation propre et le facteur de qualité. Résoudre et interpréter les solutions de cette équation différentielle.		
a account de quante.	Identifier le régime d'évolution à partir de représentations graphiques des variations de la position ou de la vitesse au cours du temps.		
Temps caractéristiques d'évolution.	Dans le cas d'un régime pseudopériodique, identifier un temps caractéristique d'amortissement et un temps caractéristique d'oscillation. Relier qualitativement le facteur de qualité au nombre d'oscillations visibles.		
	Étudier expérimentalement les différents régimes d'oscillation d'un oscillateur harmonique mécanique amorti. Déterminer les paramètres caractéristiques de cet oscillateur : pulsation propre et facteur de qualité.		

13. Circuits linéaires en régime transitoire

Circuit RLC série en régime	Établir et résoudre l'équation d'évolution de la tension aux bornes		
dépendant du temps.	du condensateur lors de sa charge ou de sa décharge, dans les		
Analogie mécanique.	différents régimes possibles.		
7	Écrire l'équation différentielle en faisant apparaître la pulsation		
	propre et le facteur de qualité.		
	Décrire et exploiter les analogies avec l'oscillateur harmonique mécanique amorti. Identifier les paramètres et grandeurs analogues.		
	unurogues.		