DEVOIR MAISON N°1

Oscillateurs harmoniques

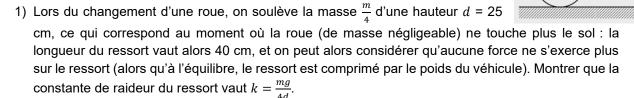
> A rendre le MARDI 18 NOVEMBRE 2025

PROBLEME 1 : Suspension de voiture

On modélise l'amortisseur d'une roue de voiture à l'aide d'un ressort de raideur k et de longueur à vide ℓ_0 , en parallèle avec un amortisseur de coefficient de frottement fluide h, correspondant à une puissance des forces de frottement $P_{fr}=-hv^2$.

Une masse $\frac{m}{4}$ est posée sur ce dispositif et peut se déplacer verticalement sur l'axe (Oz) lié au référentiel terrestre \mathcal{R}_T supposé galiléen.

On donne m = 1200 kg.



- 2) Déterminer et calculer h afin que le dispositif fonctionne en régime critique (la roue étant sur le sol à l'arrêt et la masse $\frac{m}{4}$ en mouvement vertical).
- 3) On enfonce la masse $\frac{m}{4}$ d'une hauteur d'=5 cm et on lâche le système à t=0 sans vitesse initiale. Après avoir établi l'équation différentielle du mouvement (par le Principe Fondamentale de la Dynamique et/ou le Théorème de la Puissance Mécanique), déterminer l'évolution de l'altitude z(t) de la masse $\frac{m}{4}$.

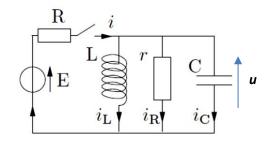
Les questions 4) et 5) sont facultatives.

- 4) On charge maintenant l'amortisseur au maximum : la masse totale du véhicule vaut $m=1\,700$ kg. Déterminer les paramètres Q et ω_0 de l'amortisseur.
- 5) Tracer l'allure de sa réponse lorsqu'on enfonce de $x_0 = 5$ cm la masse $\frac{m}{4}$ et qu'on lâche sans vitesse initiale. Conclure.

PROBLEME 2 : Circuit RLC parallèle

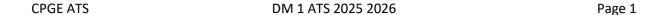
La figure suivante donne le schéma du montage étudié ; le générateur de tension est idéal, de f.é.m. *E* constante. Les résistors sont linéaires de résistances *R* et *r* constantes.

Tant que l'interrupteur est ouvert, le condensateur de capacité C est déchargé et la bobine idéale, l'autoinductance L, n'est parcourue par aucun courant. A l'instant t=0, l'interrupteur est fermé instantanément et on cherche à déterminer l'évolution ultérieure du réseau électrique.



véhicule automobile

1. Déterminer par un raisonnement physique simple (pratiquement sans calcul), la tension u et les intensités i, i_C, i_R dans les 4 branches :



- Juste après la fermeture de l'interrupteur (instant $t = 0^+$).
- Au bout d'une durée très grande ($t \rightarrow \infty$).
- 2. a. Déterminer l'équation différentielle liant u à ses dérivées par rapport au temps t et la mettre sous forme canonique.

On posera pour la suite :
$$\omega_0 = \frac{1}{\sqrt{LC}}$$
 et $\lambda = \frac{R+r}{2RrC}$

Les questions suivantes sont facultatives.

- b. Quelle relation doit-il exister entre R, r, C et L pour que la solution de l'équation différentielle du 2.a. corresponde à un régime pseudo périodique ? Pour la suite on prendra : R = 2,5 $k\Omega$; r = 1,25 $k\Omega$; C = 1 μ F ; L = 20 mH.
- c. Calculer numériquement la pulsation propre ω_0 , la période propre T_0 , ainsi que le coefficient λ ; que caractérise λ ?
- d. Définir et calculer la pseudo pulsation Ω et la pseudo période T. Compte tenu de la précision des données, que peut-on dire des valeurs numériques comparées de ω_0 et Ω ?
- e. Déterminer en fonction du temps les expressions complètes de la tension u et de l'intensité i (on pourra utiliser λ et Ω pour alléger les écritures). Donner l'allure de ces deux courbes. Retrouver les conditions aux limites déterminées au 1.