T2 – TRANSFERT ET CONSERVATION D'ENERGIE - PREMIER PRINCIPE DE LA THERMODYNAMIQUE

Programme ATS

7. Bilan d'énergie d'une transform	nation			
Travail et transfert thermique reçu par un système. Système isolé mécaniquement.	Calculer le travail des forces de pression reçu par un système au cours de transformations mécaniquement réversibles de nature monobare et isochore.			
Système isolé thermiquement.	Dans le cas d'un gaz parfait, déterminer le travail reçu au cours d'une transformation isotherme réversible.			
Travail des forces de pression.	Interpréter géométriquement la valeur et le signe du travail des forces de pression dans un diagramme de Watt (P,V), dans le cas de transformations isobares, isochores et isothermes.			
Transfert thermique.	Décrire qualitativement les modes de transfert thermique par conduction, convection et rayonnement.			
Puissance thermique. Paroi adiabatique.	Déterminer le signe du transfert thermique connaissant les températures du système et de son environnement. Interpréter le cas où le système et son environnement sont à la même température.			
Premier principe de la thermodynamique.	Expliquer en quoi le premier principe de la thermodynamique est un principe de conservation.			
Énergie interne U d'un système.	Expliciter le premier principe de la thermodynamique pour un système fermé en tenant compte de l'énergie cinétique macroscopique et de l'énergie potentielle d'interaction avec l'extérieur.			
	Exploiter l'extensivité de l'énergie interne.			
Capacité thermique à volume constant dans le cas d'un gaz parfait ou d'une phase condensée considérée indilatable et incompressible.	Déterminer la variation d'énergie interne d'un système assimilé à un gaz parfait ou à une phase condensée incompressible et indilatable en fonction de la variation de température pour une capacité thermique à volume constant indépendante de la température.			
8. Bilan enthalpique				
Enthalpie H d'un système	Définir l'enthalpie d'un système.			
monophasé. Capacité thermique à pression constante dans le cas du gaz parfait et d'une phase	Déterminer la variation d'enthalpie d'un système assimilé à un gaz parfait ou à une phase condensée incompressible et indilatable en fonction de la variation de température pour une capacité thermique à pression constante indépendante de la température.			
condensée considérée incompressible et indilatable.	Exprimer le premier principe sous la forme d'un bilan d'enthalpie dans le cas d'une transformation monobare.			
	Exploiter l'extensivité de l'enthalpie.			
	Mettre en œuvre un protocole expérimental de mesure d'une capacité thermique.			
Changement d'état d'un corps	Utiliser le vocabulaire des changements d'états.			
pur. Diagramme (P,T) d'un corps pur.	Exploiter un diagramme d'état (P,T) fourni.			
Diagramme de Clapeyron (P,v)	Exploiter les isothermes d'Andrews.			
d'un système diphasé liquide- vapeur. Théorème des moments.	Reconnaître et interpréter les courbes de rosée et d'ébullition. Identifier le point critique.			
	Exploiter le théorème des moments pour déterminer la composition d'un système diphasé.			
	Mettre en œuvre un protocole expérimental de mesure d'une enthalpie de fusion.			
Enthalpie de changement d'état d'un corps pur.	Déterminer le transfert thermique reçu par un corps pur lors d'un changement d'état à pression constante.			
Réactions de combustion. Combustible. Comburant	Déterminer le transfert thermique reçu par un système réactionnel lors d'une combustion complète réalisée à température et pression			
Pouvoirs calorifiques inférieur et supérieur d'un combustible.	constantes, à partir du pouvoir calorifique adapté et des paramètres du système.			
	Déterminer la masse de CO ₂ produite lors du dégagement d'une énergie donnée par combustion complète d'un hydrocarbure, les données nécessaires étant fournies.			

TRANSFORMATIONS D'UN SYSTEME THERMODYNAMIQUE

Transformation d'un système thermodynamique : passage d'un état d'équilibre initial (EI) à un état d'équilibre final (EF). Au moins une des variables d'état du système varie lors d'une transformation.

I)1) Différents types de transformations

Transformation « iso » : une des grandeurs d'état <u>du système</u> est constante (stationnaire) au cours de la transformation.

- Transformation isotherme : transformation à température constante,
- Transformation isobare : transformation à pression constante,
- Transformation isochore: transformation à volume constant.

Transformation « mono » : un des <u>paramètres extérieurs</u> est constant (stationnaire) au cours de la transformation.

- Transformation monotherme : température extérieure constante au cours de la transformation,
- Transformation monobare : pression extérieure constante au cours de la transformation.

Remarques:

I)

- Si la paroi du système permet les transferts thermiques, alors une transformation isotherme est forcément monotherme, avec équilibre thermique dans les états I et F.
- Si la paroi du système peut se déplacer ou se déformer, alors une transformation isobare est forcément monobare, avec équilibre mécanique dans les états I et F.

Transformation réversible : transformation telle qu'il est possible de revenir de l'état final à l'état initial en repassant par les mêmes états intermédiaires.

Exemple: changement d'état.

Transformation irréversible : transformation non réversible.

Exemple: transformation brutale.

Transformation mécaniquement réversible : Equilibre mécanique à chaque instant :

 $P_{\text{système}} = P_{\text{ext}}$ tout au long de la transformation.

Transformation « quasi-statique » : transformation suffisamment lente pour que le système soit à tout moment en équilibre thermique et mécanique avec l'extérieur.

I)2) Echanges d'énergie au cours d'une transformation

I)2)a) Nature des échanges et conventions

Un système peut **échanger de l'énergie** avec l'extérieur sous 2 formes :

- Travail W = Travail d'une action mécanique extérieure = échange d'énergie au niveau macroscopique, lié au déplacement du point d'application d'une force,
- Transfert thermique (ou chaleur) Q = échange d'énergie au niveau microscopique, aucun déplacement de force ne peut être mis en évidence.

Les grandeurs W et Q sont algébriques et définies en convention récepteur pour le système :

- W > 0 si le système reçoit du travail de l'extérieur ; Q > 0 si le système reçoit de l'énergie thermique de l'extérieur,
- *W* < 0 si le système fournit ou cède du travail à l'extérieur ; *Q* < 0 si le système fournit ou cède de l'énergie thermique à l'extérieur.

Représentation:

I)2)b) Travail des forces de pression

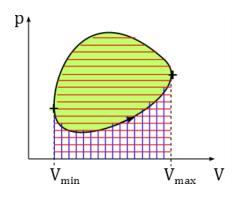
Travail élémentaire δW (en joules, J) des forces de pression s'exerçant sur un système :					

Interprétation:

Lors d'une **compression** du système : Les **forces** subies par le système sont

Lors d'une détente du système :

Les **forces** subies par le système sont


Travail W des forces de pression s'exerçant sur un système lors d'une transformation d'un état 1 à un état 2 :

Si la transformation est mécaniquement réversible : $P = P_{ext}$ d'où :

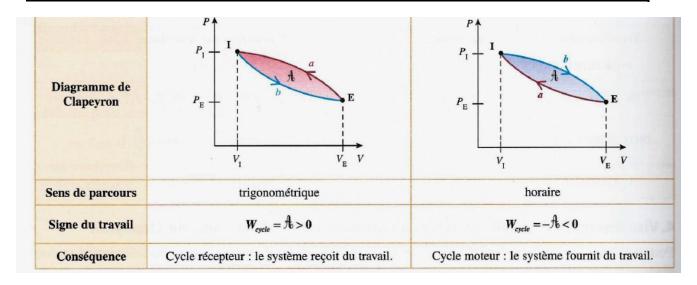
Application : Soit un système thermodynamique évoluant entre 2 états d'équilibre notés 1 et 2. Exprimer le travail <i>W</i> des forces de pression dans les cas suivants :
Transformation isochore :
Transformation monobare :
Transformation isobare mécaniquement réversible
Transformation isotherme mécaniquement réversible pour un gaz parfait (GP) :
Transformation isotherme mecaniquement reversible pour un gaz pariait (Of).
Interprétation dans le diagramme de Watt
Rappel :
Diagramme de Clapeyron (P , v) : Pression P en fonction du volume massique v ,
Diagramme de Watt (P,V) : Pression P en fonction du volume V .
Cas des systèmes mécaniquement réversibles
■ Cycle thermodynamique
Un cycle thermodynamique est par définition tel que l'état final et l'état initial sont confondus.

Application : cycles mécaniquement réversibles moteurs et récepteurs dans le diagramme de Watt

Déterminer le signe du travail reçu par le système sur l'ensemble du cycle pour un cycle parcouru dans le sens trigonométrique puis pour un cycle parcouru dans le sens horaire. Indiquer la nature (moteur ou récepteur) de ces cycles.

Globalement, sur l'ensemble du cycle, le gaz reçoit de la part des forces de pression un travail

En valeur absolue, ce travail représente l'aire du cycle dans le diagramme de Watt.

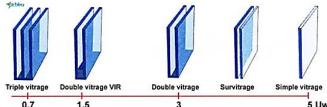

Son signe est lié au sens de parcours du cycle. Ici, le cycle est décrit dans le sens

 Travail des forces de pression au cours d'une transformation cyclique mécaniquement réversible

Le travail des forces de pression correspond alors à l'aire du cycle dans un diagramme de Watt.

$$|W| = |aire\ du\ cycle|$$

- Sens de parcours : dépend du signe du travail.
- Cycle récepteur : W > 0; cycle décrit dans le sens trigonométrique ;
- Cycle moteur : W < 0; cycle décrit dans le sens horaire ;



I)2)c) Transfert thermique

3 modes de transfert thermique d'un système avec l'extérieur :

<u>Conduction thermique</u> = diffusion thermique : l'énergie thermique se transmet de proche en proche dans un milieu (agitation des molécules), sans déplacement macroscopique de matière. Exemple : au travers d'un mur ou d'une vitre.

- - ✓ Le gant isolant thermique permet de ne pas se brûler
 - ✓ les **double ou triple vitrage** permettent de diminuer les pertes thermiques à travers une vitre

Convection

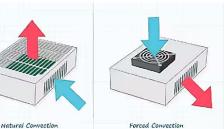
- ⇒ Augmenter la conduction thermique permet notamment de refroidir un système. Comment augmenter la conduction thermique ?
- ✓ Le **dissipateur thermique** permet d'augmenter la surface d'échanges thermiques

<u>Convection thermique</u> = l'énergie thermique est transportée grâce au déplacement macroscopique d'un fluide.

- <u>Convection naturelle</u> : due à des inhomogénéités de température dans le milieu. Exemple : le convecteur électrique.
- Convection forcée : dans le cas où le mouvement du fluide est dû à une cause externe.

Exemple : circuit de refroidissement.

⇒ Augmenter la convection thermique permet notamment de refroidir un système. Comment augmenter la convection thermique?


Passer de la convection naturelle à la convection forcée permet d'augmenter la convection.

Exemple: Refroidissement d'un processeur par ventilation.

Conduction

Rayonnement

<u>Rayonnement thermique</u> = rayonnement électromagnétique émis par un corps à une température *T* ; seul transfert thermique pouvant avoir lieu dans le vide (sans support matériel)

Tous les corps rayonnent de l'énergie électromagnétique, de façon d'autant plus importante que leur **température augmente**, la longueur d'onde et la puissance rayonnée dépendant de la température.

Exemples : Soleil, Corps humain rayonnant dans l'IR, lampe à filament dans l'IR et le visible, plus généralement couleur des objets lorsqu'ils rayonnent dans le visible.

Transformation adiabatique

Transformation adiabatique : transformation au cours de laquelle le système n'échange pas d'énergie par transfert thermique.

Une paroi qui n'autorise pas les transferts thermiques est dite calorifugée, atherme ou athermane.

Au contraire, une paroi qui autorise les transferts thermiques est dite diatherme ou diathermane.

Transformation adiabatique : modèle pour une transformation brève ou brutale, pendant laquelle les transferts thermiques n'ont pas le temps de se produire.

Thermostat, transformations isotherme et monotherme

Un **thermostat** est un système thermodynamique dont la température ne varie pas, même s'il échange de l'énergie, que ce soit sous forme de travail ou de transfert thermique.

Autres appellations:

Exemples de thermostats : l'atmosphère extérieure, la mer, un système diphasé (eau bouillante par ex).

<u>Transformation monotherme</u>:

Transformation isotherme

En général, le thermostat impose sa température au système.

Remarque:

- Une **transformation isotherme** réalisée entre un système et un thermostat impose des **parois diathermes**, c'est-à-dire perméables à la chaleur,
- Une transformation adiabatique entre un système et l'extérieur impose des parois calorifugées, c'est-à-dire imperméables à la chaleur.

En général, l'absence de transfert thermique Q entraîne une élévation de température, notamment s'il y a un travail *W* échangé.

l)2)d) Tableau récapitulatif

Il existe **2 formes d'énergie** et **2 formes de transferts d'énergie** pour caractériser l'état et l'évolution des systèmes thermo.

	Macroscopique	Microscopique		
Perception par un « observateur mécanique »	perceptible	dissimulée		
Energie	Energie mécanique : $E_m = E_{p,ext} + E_{c,macro}$	Energie interne : $U = E_{p,int} + E_{c,micro}$		
Transfert d'énergie	Travail <i>W</i> d'une force : Echange d'énergie par l'intermédiaire d'une force entre le (Σ) et l'extérieur, associé à une variation macroscopique de certains paramètres extérieurs.	Quantité de chaleur (par un transfert thermique) <i>Q</i> : Tout transfert d'énergie sans variation apparente d'un paramètre macroscopique		
Notations pour les transferts d'énergie	Transformation infinitésimale : <i>δW</i> Transformation finie : <i>W</i>	Transformation infinitésimale : δQ Transformation finie : Q		
Notations pour la puissance	Puissance mécanique $\mathcal{P}=rac{\delta W}{dt}=\dot{W}$	Puissance thermique ${\cal P}_{th}=rac{\delta Q}{dt}=\dot{Q}$		
Propriétés et convention	Grandeurs algébriques suivant la convention récepteur : $\delta W \text{ et } \delta Q > 0 \text{ si l'énergie est effectivement reçue par le système, } \delta W \text{ et } \delta Q < 0 \text{ si l'énergie est en réalité cédée au milieu extérieur}$			

II) ENERGIE INTERNE D'UN SYSTEME

II)1) Définition et cas général

Nous connaissons déjà les différentes formes d'énergie suivantes :

Forme d'énergie	Paramètre la caractérisant	Expression
Energie cinétique		
Energie potentielle		
Energie électrostatique		
Energie magnétique		

L'énergie totale d'un système est composée de son énergie mécanique E_m et de son **énergie interne** U:

L'énergie mécanique est constituée de l'énergie cinétique macroscopique E_C et de l'énergie potentielle E_P liée aux actions extérieures :

L'énergie interne est constituée de l'énergie cinétique microscopique (agitation des particules) et de l'énergie potentielle interne (interactions moléculaires) :

L'énergie interne d'un corps dépend en général de 2 variables d'état, par exemple sa température et son volume.

II)2) Cas du gaz parfait

Dans le cas du gaz parfait, l'énergie potentielle interne est nulle : il n'y a pas d'interaction entre les molécules.

L'énergie interne d'un gaz parfait monoatomique ne dépend que d'une seule variable d'état : la température *T*. Elle s'exprime de la façon suivante :

L'énergie interne molaire d'un gaz parfait polyatomique ne dépend également que de la température :

$$U_m = U_m(T)$$

On définit la capacité thermique à volume constant \mathcal{C}_V d'un système fermé de la façon suivante :

$$C_V =$$

On peut aussi définir les capacités thermiques massiques massique c_V et molaire $c_{V,m}$ (grandeurs intensives) :

$$c_V =$$
 et $C_{V,m} =$

Pour un **gaz parfait monoatomique** (par exemple l'Argon), l'énergie interne ne dépendant que de la température T, la capacité thermique à volume constant s'écrit :

$$C_V =$$

Pour un gaz parfait diatomique (par exemple le dioxygène, ou l'air), l'énergie interne s'écrit (admis) :

$$C_V =$$

Ordre de grandeur : $c_{V.air} \approx 700 J.K^{-1}.kg^{-1}$

II)3) Cas de la phase condensée incompressible et indilatable

Pour une phase condensée incompressible et indilatable, le volume V pouvant être considéré comme constant, l'énergie interne molaire peut être considérée comme fonction uniquement de la température T: $U_m = U_m(T)$

Ordre de grandeur : $c_{eau\ liquide} \approx 4000\ J.\ K^{-1}.\ kg^{-1}$

III) PREMIER PRINCIPE DE LA THERMODYNAMIQUE

Nous allons voir que le premier principe de la thermodynamique traduit la **conservation de l'énergie** d'un système.

III)1) Premier principe de la thermodynamique : Bilan d'énergie

Soit un **système fermé** évoluant entre 2 états initial (I) et final (F) et recevant de l'extérieur un transfert thermique Q et un travail W (grandeurs algébriques).

Soient ΔE_m et ΔU les variations d'énergie mécanique et interne du système au cours de l'évolution.

Le bilan d'énergie du système s'écrit :

Pour une transformation infinitésimale, le bilan d'énergie s'écrit :

III)2) Remarques sur le premier principe

La variation d'énergie potentielle macroscopique est souvent nulle ou négligeable => Le **premier principe** s'écrit :

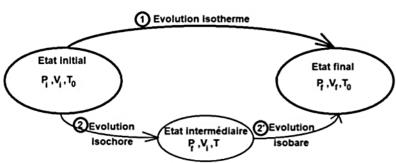
Si le **système** est au **repos** (macroscopique), le premier principe s'écrit :

Si le système est isolé :

$$Q = 0$$
 et $W = 0$ d'où $\Delta E_{TOT} = 0$ c'est à dire $E_{TOT} = cte$

W comprend tous les travaux : Travail des forces de pression $W_{pression}$, mais aussi $W_{élec} = Rl^2\tau$ si présence d'une résistance chauffante par exemple.

L'énergie interne *U* est une fonction d'état (extensive) : L'énergie interne initiale ne dépend que de l'état initial I, l'énergie interne finale ne dépend que de l'état final F


⇒ La variation d'énergie interne ∆U ne dépend pas du chemin suivi entre les états l et F.

En revanche, les grandeurs Wet Q sont des grandeurs d'échange (ou de transfert), qui dépendent du type de transformation.

Attention : Ne pas écrire ΔW et ΔQ car ce sont des termes d'échange et non des variations.

Considérons l'évolution réelle ① isotherme à T_0 entre l'état initial et l'état final. La variation d'énergie interne $\Delta U = U_F - U_I$ sera la même que le système subisse l'évolution réelle isotherme ou qu'il subisse la succession de 2 évolutions imaginaires (l'une isochore puis l'autre isobare) l'amenant du même état initial au même état final.

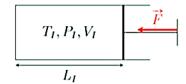
$$\Delta U = W_1 + Q_1 = W_2 + Q_2 + W_{2'} + Q_{2'}$$
 mais $W_1 \neq W_2 + W_{2'}$ et $Q_1 \neq Q_2 + Q_{2'}$

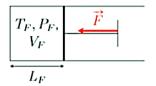
Cas d'un système subissant un cycle (état final identique à l'état initial) :

$$\Delta U_{cvcle} =$$

III)3) Exemples

Exemple 1 : Echauffement isochore d'un gaz


Considérons un gaz parfait dans une enceinte indéformable diatherme. Ses variables d'état initiales sont T_i , P_i , V_i . On place l'enceinte dans un milieu extérieur la température T_0 .


- 1. Déterminer l'état final, c'est-à-dire les valeurs T_f , P_f et V_f , en utilisant les conditions d'équilibre.
- 2. Déduire du premier principe le transfert thermique reçu par le gaz.
- 3. Analyser son signe.

On suppose la capacité thermique à volume constant C_V (en J.K⁻¹) du gaz connue.

Exemple 2 : Echauffement d'un gaz sans transfert thermique

Considérons un gaz parfait dans une enceinte fermée. Un opérateur appuie brusquement sur le piston de la seringue en exerçant une force constante.

- 1. Définir le système. Justifier que la transformation peut être considérée comme adiabatique.
- 2. Déduire du premier principe la température finale.

Rappel : La température T d'un système peut varier sans qu'il n'y ait de transfert thermique Q.

Isotherme : $\Delta T = 0 \neq Adiabatique : Q = 0$

IV) ENTHALPIE D'UN SYSTEME

IV)1) Intérêt et définition de l'enthalpie

Considérons un système en transformation monobare avec équilibre mécanique dans les états I et F.

Cas particulier important : toutes les transformations qui se font à l'air libre sont monobares : $P_{ext} = P_{atm}$ = constante.

Travail des forces de pression au cours de la transformation :

car l'équilibre mécanique impose $P_i = P_f = P_{ext}$

On peut donc écrire : $W_P = -\Delta(PV)$

Le premier principe s'écrit : $\Delta E_m + \Delta U = W + Q =$

Ou: $\Delta E_m + \Delta U + \Delta (PV) = W_{\neq P} + Q \text{ ou } \Delta E_m + \Delta (U + PV) = W_{\neq P} + Q$

On appelle enthalpie la fonction d'état :

Elle est extensive et homogène à une énergie (unité : joule, J).

Pour une transformation monobare, le premier principe s'écrit :

Avec W_{#P} l'ensemble des travaux autres que celui des forces de pression.

Remarques:

Hypothèses : Transformation mécaniquement réversible $P = P_{ext}$, Travail des forces de pression uniquement.

Premier principe sous forme infinitésimale : $dU = -P \cdot dV + \delta Q$

 \Rightarrow Cas de la transformation **isochore** : dV = 0 $d'où dU = \delta Q$ ou $\Delta U = Q$

Premier principe sous forme infinitésimale, avec l'enthalpie :

dH =

IV)2) Capacité thermique à pression constante

Nous avions défini la capacité thermique à volume constant C_V d'un système fermé à partir de la variation d'énergie interne :

 $C_V =$

De la même façon, nous pouvons définir la capacité thermique d'un système à pression constante C_P à partir de la variation d'enthalpie :

$$C_P =$$

 C_P est une **grandeur extensive**, exprimée, comme C_V , en **J.K**⁻¹.

On peut aussi définir les capacités thermiques massiques c_P et molaire $C_{P,m}$ (grandeurs intensives) :

$$c_P = \frac{c_P}{m} = \frac{\partial h}{\partial T}$$
 et $C_{P,m} = \frac{c_P}{n} = \frac{\partial H_m}{\partial T}$

Cas du gaz parfait

L'enthalpie molaire d'un gaz parfait ne dépend que d'une seule variable d'état : la température T. Elle s'exprime de la façon suivante :

$$H_m = H_m(T) d'$$
 où $H = n. H_m(T)$

Expression de CP pour un gaz parfait :

$$C_P = \frac{\partial H}{\partial T} = \frac{dH}{dT} = \frac{d}{dT}(U + PV) = \frac{dU}{dT} + \frac{d}{dT}(nRT) = C_V + nR$$

D'où la Relation de Mayer :

Pour un gaz parfait monoatomique (par exemple l'Argon), l'enthalpie molaire ne dépendant que de la température T, la capacité thermique à pression constante s'écrit :

$$C_P =$$

Pour un gaz parfait diatomique (par exemple le dioxygène, ou l'air), la capacité thermique à pression constante s'écrit :

$$C_P =$$

Pour un gaz parfait, on définit le **coefficient isentropique** γ :

$$\gamma = \frac{C_P}{C_V} = \frac{C_{P,m}}{C_{V,m}} = \frac{c_P}{c_V}$$

Application 1 : Considérons un gaz parfait de coefficient isentropique γ. Déterminer les expressions des capacités calorifiques en fonction de n, R et γ.

Application 2 : Déterminer la valeur du coefficient isentropique γ pour un gaz parfait monoatomique, puis pour un GP diatomique.

Pour un gaz parfait, les capacités thermiques massiques c_P et c_V sont des constantes.

Conséquences:

$$c_P = \frac{dh}{dT} d'$$
 où $dh = c_P . dT$ ou $\Delta h = c_P . \Delta T$ ou $\Delta H =$

$$c_V = \frac{du}{dT} d'$$
 où $du = c_V . dT$ ou $\Delta u = c_V . \Delta T$ ou $\Delta U =$

Cas d'une phase condensée incompressible et indilatable

L'enthalpie *H* d'une phase condensée est à priori fonction de la température *T* et de la pression *P*. Cependant, pour une phase incompressible, il y a peu d'influence de la pression. On peut écrire :

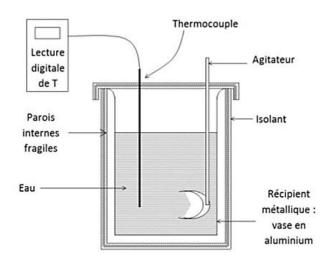
$$H_{m, phase \, condens\'{e}e} = H_m(T)$$

D'où l'expression de la capacité thermique à pression constante pour une phase condensée incompressible et indilatable :

$$C_P = \frac{\partial H}{\partial T} = \frac{dH}{dT} = \frac{d}{dT}(U + PV) = C_V + P.\frac{\partial V}{\partial T} + V.\frac{\partial P}{\partial T} \approx C_V + 0 + 0 \approx C_V$$

Pour une phase condensée incompressible et indilatable,

- L'enthalpie molaire ne dépend que de la température :


$$H_m = H_m(T) d'où H = n.H_m(T)$$

- Les capacités thermiques à pression et à volume constant sont quasiment égales :

$$C_P \approx C_V \approx C$$

- Les variations d'énergie ou d'enthalpie s'écrivent : $\Delta H = \Delta U = C$. $\Delta T = m$. c. $\Delta T = n$. C_m . ΔT

IV)3) Calorimétrie

Calorimétrie : technique expérimentale qui permet la mesure de grandeurs thermodynamiques.

Sur des courtes durées, les transformations qui ont lieu dans un calorimètre peuvent être considérées comme adiabatiques et monobares.

Remarque : la capacité thermique du calorimètre est en général non négligeable et doit être prise en compte dans le bilan énergétique.

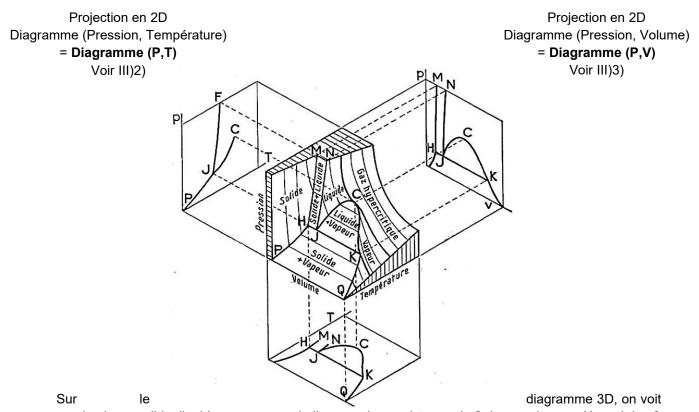
On la prend en compte sous la forme de la valeur en eau (μ) du calorimètre = masse d'eau qui aurait la même capacité thermique :

 $C_{calorimètre} = \mu \cdot c_{m,eau}$

Application : Mesure de capacité thermique par calorimétrie

On cherche à mesurer la capacité thermique massique du fer, notée $c_{\rm fer}$. Dans un calorimètre de valeur en eau $\mu=30\,{\rm g}$, on place une masse d'eau $m_{\rm eau}=400\,{\rm g}$. Après avoir attendu l'équilibre thermique avec le calorimètre, on mesure sa température $T_{\rm eau}=4\,{\rm ^{o}C}$, et on y ajoute un bloc de fer de masse $m_{\rm fer}=200\,{\rm g}$ à $T_{\rm fer}=85\,{\rm ^{o}C}$. Après avoir laissé l'ensemble évoluer quelques minutes, on obtient un nouvel équilibre thermique à température $T_{\rm \acute{e}q}=7,9\,{\rm ^{o}C}$.

En déduire la capacité thermique massique du fer.


V) CORPS PUR DIPHASE EN EQUILIBRE

Un **corps** est **pur** est constitué d'une seule espèce chimique. Il est **diphasé** lorsqu'il est présent sous deux phases, par exemple liquide et gaz. Les deux phases sont considérées en **équilibre** lorsque la quantité de matière de chaque phase n'évolue plus, et lorsque la pression P et la température T sont les mêmes pour les deux phases et n'évoluent plus non plus.

V)1) Diagramme de phases

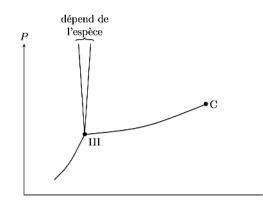

On appelle **diagramme de phases** ou **diagramme d'état** une représentation graphique qui cartographie la ou les phase(s) stable(s) d'un échantillon de corps pur en fonction de 2 variables d'état, en général variables intensives.

Diagramme de phases à trois dimensions (3D) (en fonction des 3 variables P, V, T):

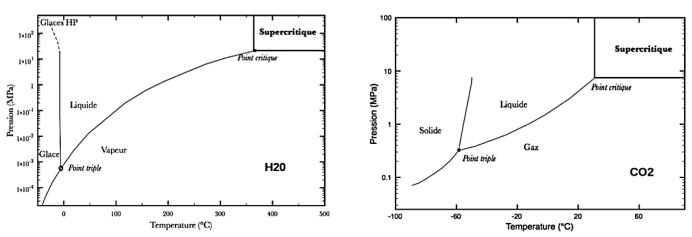
que la phase solide, liquide ou gazeuse de l'eau, ou la coexistence de 2 de ces phases, dépend des 3 variables (P,V,T). Cependant, ces 3 variables ne sont pas indépendantes les unes des autres, car liées par des équations d'état.

III)2) Diagramme de phases (P,T)

Sur ce diagramme, le volume V (ou volume massique v) n'est pas représenté, il faut donc le déduire d'une équation d'état.

La pente de la droite très inclinée dépend de l'espèce : pente positive en général, négative pour l'eau.

Sur ce diagramme, il faut en premier leu attribuer des différentes zones (dites **zones de stabilité**) aux différentes phases (solide, liquide, gaz).


La logique nous fait attribuer la zone des très basses températures à la phase solide et la zone de très basses pressions à la phase gazeuse, la troisième zone étant « intermédiaire », c'est-à-dire la phase liquide.

Entre ces zones on retrouve des lignes de coexistence (de 2 phases) ou lignes de changement d'état.

Deux points particuliers :

- Le **point critique C**, au-delà duquel les phases liquide et gazeuse sont discernables et ne forment plus qu'une seule phase appelée **fluide supercritique**,
- Le point triple III ou T, qui correspond à la coexistence des 3 phases de manière stable.

Exemples pour l'eau et le dioxyde de carbone :

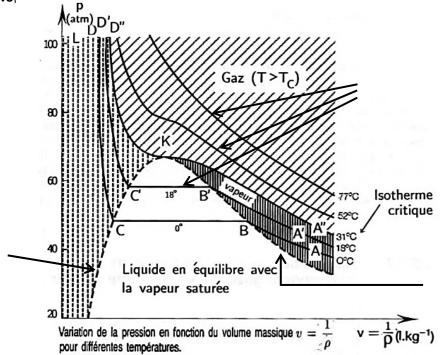
Expérience montrant l'apparition du point tripe du tertiobutanol (CH₃)₃OH:

https://www.youtube.com/watch?v=BLRqpJN9zeA

Expérience montrant le point critique du dioxyde de carbone :

https://www.youtube.com/watch?v=P9EftqFYaHg

Le diagramme de phase (P,T) permet de déterminer les conditions (P,T) d'un changement d'état (coordonnée d'un point d'une des lignes de changement d'état) mais ne permet pas de déterminer la composition des phases (proportion de telle phase, proportion de telle autre phase) lorsqu'elles coexistent. Le diagramme (P,V) ci-après le permet.


V)2) Diagramme de Clapeyron (P,v)

Le diagramme de Clapeyron (P,v) représente la pression P en fonction du volume massique v.

Remarque : Le diagramme de Watt (P, V) représente la pression P en fonction du volume V, et a une forme semblable au diagramme de Clapeyron.

Le diagramme de Clapeyron met en évidence le(s) domaine(s) de coexistence de plusieurs phases.

Ci-dessous : diagramme de Clapeyron d'un corps pur, dans lequel les isothermes, dites **isothermes** d'Andrews, sont tracées.

La **courbe d'ébullition** correspond à l'apparition de la 1ère bulle de gaz.

La **courbe de rosée** correspond à l'apparition de la 1ère goutte de liquide.

L'ensemble de ces 2 courbes correspond à la courbe de saturation.

Sous la courbe de saturation, le corps pur coexiste sous 2 phases, liquide et gazeuse.

Parcourons 2 exemples d'isothermes d'Andrews :

- Isotherme 0°C, en diminuant la pression *P*: le liquide commence à se vaporiser au point C (intersection avec la courbe d'ébullition), puis se vaporise à température et pression constante (segment CB horizontal : coexistence des 2 phases liquide et gazeuse, la proportion de chaque phase pouvant être déterminée, voir ci-après) puis finit de se vaporiser au point B (intersection avec la courbe de rosée).
- Isotherme critique 31°C, en diminuant la pression P: le liquide se vaporise au point critique K
 (ou C, vu précédemment), sans coexistence des phases liquide et gazeuses.

Lors du changement d'état d'un corps pur, la température est constante.

Pour une température donnée du corps pur, il existe une unique pression correspondant au changement d'état (et pour lesquelles les phases liquide et gazeuses coexistent) dite **pression de vapeur saturante**.

Sous la courbe de saturation, il est possible de déterminer la composition du mélange liquide / vapeur et de déterminer les titres en liquide et en vapeur.

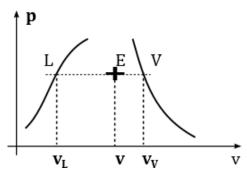
On appelle **titre en liquide** x_L la fraction massique de la phase liquide dans le mélange :

$$x_L =$$

On appelle titre en vapeur x_V la fraction massique de la phase vapeur (ou gazeuse) dans le mélange :

$$x_G =$$

Etant donné que $m_L + m_V = m_{TOT}$, on montre que


D'autre part, le volume massique v du mélange est défini de la façon suivante :

$$v =$$

(Les volumes massiques v_L pour l'état liquide et v_V pour l'état gazeux sont définis sur le diagramme de Clapeyron ci-dessous).

De (1) on déduit le calcul des titres x_V et x_L et leur détermination à partir du diagramme de Clapeyron se fait à l'aide du **théorème des moments** :

$$x_V =$$

V)3) Enthalpie de changement d'état

Considérons un changement d'état ou une transition de phase pour un corps pur.

On appelle **enthalpie (massique) de changement d'état** ou **chaleur latente (massique)** de changement d'état (de l'état 1 vers l'état 2) la différence d'enthalpie massique entre les états 1 et 2 :

$$\Delta h_{12} =$$
 Unité : J.kg⁻¹

Remarque : L'enthalpie de changement d'état de l'état 2 vers l'état 1 s'écrit :

Le changement d'état ou transition de phase est une **transformation réversible, qui ne dépend que de la température**. En effet, si la température du changement d'état est fixée, la pression l'est aussi.

L'enthalpie de changement d'état est positive dans le sens phase ordonnée => phase moins ordonnée, négative dans le cas contraire.

Exemples: $\Delta h_{fusion}(T) =$

 $\Delta h_{vaporisation}(T) =$

 $\Delta h_{sublimation}(T) =$

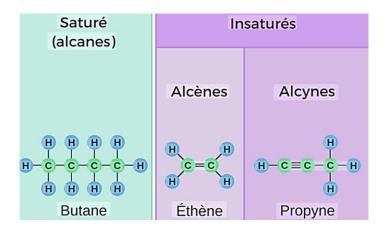
Application: Bilan enthalpique avec changement d'état

Calculer le transfert thermique reçu par un glaçon de masse $m=5\,\mathrm{g}$ sorti du congélateur (température $T_1=-18\,\mathrm{^{\circ}C}$) jusqu'à sa fonte totale dans l'air (température $T_2=20\,\mathrm{^{\circ}C}$).

Données : capacités thermiques massiques de la glace $c_{\rm sol}=2.1\,{\rm kJ\cdot K^{-1}\cdot kg^{-1}}$ et de l'eau liquide $c_{\rm liq}=4.2\,{\rm kJ\cdot K^{-1}\cdot kg^{-1}}$; enthalpie massique de fusion de l'eau $\Delta h_{\rm fus}=3.3\cdot 10^2\,{\rm kJ\cdot kg^{-1}}$

VI) REACTIONS DE COMBUSTION

VI)1) Combustible et comburant


La **combustion** est une réaction d'**oxydation** qui libère de l'énergie.

- Le **combustible** est la substance qui brûle. Le bois, le papier et les combustibles fossiles (pétrole, charbon, gaz naturel, etc.) sont des exemples de combustibles.
- Le **comburant** est la substance qui entretient la combustion. Le comburant le plus courant est le dioxygène (O₂), car il est présent dans l'air.

Combustion du méthane CH4:

Combustion de l'heptane C₇H₁₆ (composant principal de l'essence) :

Les hydrocarbures sont des composés chimiques constitués exclusivement d'atomes de carbone et d'hydrogène. Ils sont principalement dérivés **du pétrole et du gaz naturel** et sont les principaux constituants des combustibles fossiles.

VI)2) Pouvoir calorifique

Le pouvoir calorifique d'un <u>combustible</u> est l'opposé de **l'enthalpie de réaction de combustion** par unité de masse dans les <u>conditions normales de température et de pression</u>. C'est l'**énergie dégagée sous forme de chaleur** (autrement dit la quantité de chaleur) par la réaction de combustion par le dioxygène.

Elle est exprimée en général en kilojoules par kilogramme (kJ/kg), mais on rencontre également le pouvoir calorifique molaire (kJ/mol) ou le pouvoir calorifique volumique (kJ/L).

Le plus souvent, on considère un <u>hydrocarbure</u> réagissant avec le <u>dioxygène</u> de l'air pour donner du <u>dioxyde de carbone</u>, de l'<u>eau</u> et de la <u>chaleur</u>.

On distingue:

- Pouvoir Calorifique Supérieur (PCS): c'est l'énergie thermique libérée par la combustion d'un kilogramme de combustible, en comptant l'énergie récupérée si la vapeur d'eau émise est condensée, c'est-à-dire si toute l'eau vaporisée se retrouve finalement sous forme liquide;
- Pouvoir Calorifique Inférieur (PCI) : c'est l'énergie thermique libérée par la combustion d'un kilogramme de combustible, l'eau étant produite sous forme de vapeur (donc non condensée).

PCS et PCI de quelques combustibles usuels³ à 25 °C

Combustibles +	PCS		PCI	
Combustibles	MJ/kg ¢	kJ/mol ≑	MJ/kg ♦	kWh/kg +
Dihydrogène	141,80	286	119,96	33,32
Méthane	55,50	890	50,00	13,89
Éthane	51,90	1560	47,62	13,23
Propane	50,35	2220	46,35	12,88
Butane	49,50	2877	45,75	12,71
Kérosène	46,20		43,00	11,94
Gazole	44,80		43,4	12,06
Essence E10			39,5 ⁴	10,97
Charbon (anthracite)	32,50			
Bois	21,70			

<u>Application</u>: Calculer le transfert thermique reçu par la combustion complète de 1 mol de Méthane CH_4 , sous pression atmosphérique, à 25°C. Calculer la masse de CO_2 produite.

Données:

Masses molaires : $M(C) = 12 \text{ g.mol}^{-1}$; $M(O) = 16 \text{ g.mol}^{-1}$; $M(H) = 1 \text{ g.mol}^{-1}$

Pouvoir calorifique : PCI(CH₄) = 50 MJ.kg⁻¹