CPGE ATS

Programme de colles — Semaine 16 (25 au 30 janvier 2026)

Chapitres étudiés et questions de cours :

E4 Circuits linéaires en régime sinusoidal établi (début) : impédances complexes
équivalentes a calculer, application loi des mailles, loi des noeuds, diviseurs etc ...,
résolution équation différentielles, résonances en intensité et en tension; avec
grandeurs complexes.

MF1 Statique des fluides
Réponses attendues en bleu ou manuscrit.
1¢® question de cours : questions 1 a 3.

2°me question de cours : questions 4 a 11.

1) Donner la grandeur complexe, 'amplitude complexe, 'amplitude, la phase et la phase a I'origine
associées a la grandeur réelle harmonique u(t) = Uncos(wt+¢).

Donner la grandeur réelle harmonique associée a I'amplitude complexe de module I, et
d’argument ¢, la pulsation étant w.

Réponse attendue : Grandeur complexe u(t) = U,,e/@t*® : Amplitude complexe U = U,e/?;
Amplitude Un, ; Phase ot + ¢ ; Phase a l'origine ¢

Réponse attendue : i(t) = In.cos(wt+¢)

2) Donner les expressions de I'impédance complexe Z et de I'admittance complexe Y d’une
résistance, d’'une bobine parfaite, d’'un condensateur. Donner la signification (ou interprétation
physique) du module de Z et de 'argument de Z.

Impédance complexe : Z =

Module deZ : || = ‘%‘ = Ll _ Umax

Argument de Z : Arg(Z) = Arg (%) = Arg(U) — Arg(I) = ¢, — ¢, Déphasage de u(t) par rapport a
i),

Admittance complexe : Y =

< I~
e .
~
=
=

Résistance : Zr = R; Yy = %

Bobine parfaite : Z, = jLw; Y, = —

jLw

Condensateur : Z, = ]C%H ;Yo =jCw
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3) Donner la Relation Fondamentale de la Statique des Fluides.

Relation Fondamentale de la Statique des Fluides :

grad(p) = pg

d : N .
d—'z’ = —p. g si z orienté vers le haut (verticale ascendante)

% = +p. g si z orienté vers le bas (verticale descendante)

4) Résoudre une équation différentielle par la méthode complexe :

L’équation différentielle vérifiée par u s’écrit, pout t > 0 :

Z—Z + %u = %e(t) avec e(t) = Epcos (wt + @)

On cherche une solution particuliére sous la forme u(t) = U,,cos (wt + ¢").

1. Ecrire cette équation différentielle en faisant apparaitre les
amplitudes complexes U et E.

2. Résoudre cette équation différentielle pour déterminer U.

3. En déduire I'expression de Un, et du déphasage ¢’ — ¢.
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5) Reésonance en intensité du circuit RLC série.
1. Déterminer I'expression de la fonction de transfert Y =

| i~

en fonctionde R, L, C et w.
2. Mettre cette expression sous la forme canonique
suivante :

1

Yy =—2~_+— avec x pulsation réduite : x = —
- 1+]Q(x—;) Wy

Déterminer les expressions de w, et Q (identification).

1 1 x
Y=2= T - T
= R+tjlw +_jZT; 1+ j— R 4‘}7?525
1 1 1
On identifie a Y = —£— 5 —oy = —
- 1+]Q(x—;) 1+]Q( 1+]Qw_0 -jQe—;
D’ou :jL— ]Q 2 ouencore: = =2 (D
o R wo
1 1
etm:—]w= ]Q— ou encore : E=Qw0 (2)
On résout :
par exemple :

en multipliant (1) et (2),on obtient : Q =

fg

1
VLC

x| =

en divisant (2) par (1),on obtient : wgy =

6) Résonance en intensité du circuit RLC série.
On donne [l'expression de [l'amplitude complexe de
lintensité i(t) :
E

E R ®
===—2=R _ quecx=—
A

1+jQ(x—) wo

I~

1. Déterminer I'expression de I'amplitude de lintensité I,, = |1|.
2. Déterminer la pulsation de résonance wg.

3. Donner l'allure de I,,, en fonction de la pulsation réduite x = el

Wo

E

1=l = ——
J1HQ (=)
2. Résonance :
I, passe par un maximum,

o (x2) =o

x=xg=10Uw=wgp =wg
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3. Etude aux limites :
x->0=1, -0
x>0 =L, >0

E
x—>1:>lm=E

L, (Allure)

4

3

2

s
x=1
0=0,

7) Résonance en tension aux bornes du condensateur :
1. Etablir la fonction de transfert T = % en fonction de R,

L, Ceto. L R
2. Mettre cette expression sous la forme canonique
suivante :
E| c=|Ue
T =——= avec x pulsation réduite : x = = T
- 1-x +]6 wq .

Déterminer les expressions de w, et Q (identification).

1
T = jCa) B 1 B 1
- , 1  jRCw—-LCw?+1 1-LCw?+jRCw
R+jlw +ij

On identifie & : T = ——— avec x pulsation réduite : x = —
- 1—x2+16 wo

Par identification, on obtient :

[~}
1]
x| =
-
=

woy = ﬁ
8) Résonance en tension aux bornes du condensateur : A I R

partir de I'expression de 'amplitude de la tension Uy =

&

E

=) T

1. Déterminer la condition de résonance en élongation.

|&| en fonction de la pulsation réduite x : [

Uem =
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2. Tracer l'allure de la courbe U, en fonction de x = wﬂ
0

On s’intéresse aux variations de U, en fonction de x.

Le numérateur de U,y est une constante positive, on peut donc simplifier I'étude en étudiant
le dénominateur de Uy, et méme le carré de celui-ci.

E

JD(x)

L’amplitude est alors maximale pour une fréquence telle que le dénominateur D(x) est
minimal.

2
On définit D(x)=(1—x%)?%+ (%) ;. desorte que Ugy =

Il faut donc chercher la pulsation réduite x telle que Z—i =0
- _ — —x2) 42 X 2_q4+ L
T o= 2x(20x(1-x)+ 2 4x(x 1+2Q2)

ap A .
— s’annule en x = 0 et, éventuellement, selon le signe de 1— i, enx= |1- — :
dx 2Q2 2Q2
e Sil-—<0e1-—<01<— <:>2(22<1<:>QZ<1<:>Q<i alors x =
2Q? 2Q? 2Q2 2 2

1 . . ~ .
/1— T impossible < Pas de résonance en tension aux bornes du condensateur

1

% alors x =

. Si1—2LQZ> 0 1-5>00 1> - ©20°>16 >0 >

202 202

1 . , .
/1— T possible < Résonance en tension aux bornes du condensateur

L
8 Q=8
7
I
2
= 5
=}
L)
o 4
o
2
2 3
g

1 /Qr%
o :M
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Fréquence réduite 2
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9) Statique des fluides : A partir d’'un Bilan des Actions
Mécaniques Extérieures sur un I'élément de fluide ci-
contre, établir I'expression de Ila Relation
Fondamentale de la Statique des Fluides.

Elément de volume d’axe vertical, de section dS et de
hauteur dz :

Hypothése : dz <<z
p(z) masse volumique a l'altitude z
p(z) = cte dans le cyclindre
p(z) pression a l'altitude z
Bilan des Actions Mécaniques Extérieures (BAME) s’exercant sur le cylindre :

e Poids du cylindre :

dP=dm.§=p.dV.§ = —p.dS.dz.g.¢e,
e Les forces de pression sur les surfaces latérales se compensent
e Forces de pression sur les surfaces haute et basse :

dFs(z) = p(2).dS.e;

dF(z +dz) = —p(z + dz).dS.e,
e Principe Fondamental de la Statique :

dP + dFy(z) + dFs(z +dz) =0

—p.dS.dz.g.e, + p(2).dS.e, —p(z + dz).dS.e; = 0

e Projection sur 'axe z:

—p.dz.g+ p(z) —p(z+dz) =0

p(z+dz)— p(z) = —p.g.dz

dp=—p.g.dz
e Différenciation :
0 47 d
i7" Z=—-p.g.dz
d
d_lz’ =—p.g Relation Fondamentale des la statique des Fluides (pour

axe z gradué vers le haut)

10) A partir de la Relation Fondamentale de la Statique des fluides Z—z = —p.g, établir

I'expression de la pression p en fonction de l'altitude z dans le cas d'un liquide
incompressible.

Fluide incompressible = Fluide dans lequel la masse volumique p est indépendante de la
pression p et de laltitude z.

Hypothése : p = constante = p,

E(z) = —po- g

CPGE ATS Page 6



On intégre :

p(z) = —po.g.z + cte

Condition aux Limites (C.L.) :

p(0) = cte = po

Dou :

p(z) = —po.g.z + po

Ou on intégre par variables séparées :

dp = —py.g.-dz

P z
f dp = f —po-g-dz
Po 0

[p]

o = —Po-9-121§

P—DPo= —Po-9-2

Autres écritures possibles :

P1tP-9.Z21=p2+p.92;

Pbas = Phaut + P-9-h

avec p = constante (fluide incompressible)

11) (Etudié en autonomie par les étudiants) A partir de la Relation Fondamentale de la

Statique des fluides Z—Z = —p. g, établir 'expression de la pression p en fonction de

l'altitude z dans le cas d’'un gaz parfait isotherme. Définir la hauteur caractéristique H
et vérifier ’lhomogénéité du résultat.

Hypothése : T = constante = T,

o~ NnRT NRT,

pV = nRT dou:V=—=—"=2
P P
. m m M m .
Masse volumique dugaz:p =—= P 2P avec M = — masse molaire du gaz
V  nRT, RT, n

d .
d—z = —p. g devient :
dp _ _Mpg _ Mg
dz RTy RTy

En séparant les variables :
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a _ _Mg 4,

p RTy

Intégration par variables séparées :

pdp _ (z _M _ M VA
oy fo T dz = T fo dz
p _ _ Mg
[inplh, = — 5 [215
_ — PY_ _Mg
Inp — Inpy = In (po) =~
= po.exp(~o2) = po.exp (~ )
avec H = ;—T; Hauteur caractéristique
Homogénéité :
_ [RTo] _ [MRTo] _ [nRTo] _ J _ N.m _
[H] = Mg]_[Mmg]_[mg]_N_ N o m

Puis : de 1 a 2 exercices proposés par le colleur.

Programme ATS

1
14. Circuits linéaires en régime sinusoidal établi

Signal sinusoidal
Pulsation et fréequence.
Amplitude, phase.

Représentation complexe d’un
signal sinusordal

Passer de la représentation complexe d’un signal au signal réel et
réciproquement (convention eiet).

Impédances complexes,
association de deux impédances.

Impédance d'une résistance,
d'un condensateur, d'une bobine.

Etablir I'expression de l'impédance d'une résistance, d'un condensateur,
d’une bobine.

Remplacer une association série ou paralléle de deux impédances par
une impeédance équivalente.

Puissance moyenne regue par un
dipole lingaire en régime
sinusoidal etabli.

Tension efficace. Intensité
efficace.

Facteur de puissance.

Etablir et exploiter 'expression de la puissance moyenne recue par un
dipdle en fonction de la tension efficace, de l'intensité efficace et du
facteur de puissance.

Relier le facteur de puissance a I'impédance complexe.

Transport d’énergie électrique.

Justifier 'emploi de lignes & haute tension pour le transport d’énergie
eélectrique.

Analyser l'influence du facteur de puissance d'une installation sur les
pertes d'énergie par effet Joule dans les lignes de transport.

Circuit RLC serie en regime
sinusoidal établi.

Résonance de courant.
Facteur de qualité.

Etablir I'expression de I'amplitude de la tension aux bornes de la
résistance, de la bobine ou du condensateur en fonction de la fréquence
en utilisant la notion d'impédance complexe.

Tracer la courbe donnant 'amplitude de la tension aux bornes de la
résistance en fonction de la fréquence.

Relier 'amplitude et la largeur (a 1h/2) du pic de résonance en courant
au facteur de qualité et a la pulsation propre du circuit.

Mettre en évidence le phénoméne de résonance de courant dans un
circuit RLC série et estimer la valeur du facteur de qualité.
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Notions et contenus

Capacités exigibles

1. Description d’un fluide statique

Echelle mésoscopique.

Definir et connaitre des ordres de grandeurs des dimensions de I'échelle
mésoscopique dans le cas des liquides et des gaz.

Champ de pression dans un
fluide.

Force de pression.

Citer des ordres de grandeur de valeurs de pression dans des situations
usuelles.

Calculer la force de pression s'exergant sur une surface, la pression
étant uniforme.

Forces volumiques associées a
un champ de pression non
uniforme.

Opérateur gradient.

Démontrer I'expression de la résultante des forces de pression
s’exergant sur un volume elémentaire de fluide dans le cas d’'une
variation unidirectionnelle de la pression.

Généraliser sans démaonstration pour une situation quelconque en
utilisant I'opérateur gradient.

Exploiter l'expression générale admise de la force volumique associée

aux forces de pression, I'expression de I'opérateur gradient étant fournie.

Relation de |a statique des
fluides.

Enoncer et établir la relation de |a statique des fluides dans le cas d'un
fluide soumis uniquement a la pesanteur, supposée uniforme.

Pression dans un fluide
incompressible.

Pression dans une atmosphere
isotherme.

Exprimer I'évolution de la pression avec l'altitude dans le cas d'un fluide
incompressible. Citer une application pratique.

Exprimer I'évolution de la pression avec l'altitude dans le cas d’'une
atmosphere isotherme assimilée & un gaz parfait.

Capacité numeérique : mettre en ceuvre la méthode d'Euler & l'aide d'un
langage de programmation pour simuler I'évolution de la pression pour
une atmosphére non isotherme dans le cadre du modéle du gaz parfait.

Poussée d’Archiméde

Expliquer l'origine de la poussée d'Archiméde.

Citer et exploiter I'expression de la poussée d’Archiméde.
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