Liste d'exercices n°7

Nombres complexes

Exercice 1. Donner l'écriture algébrique des nombres complexes suivants.

1.
$$(2-5i)(3+i)$$

2.
$$\frac{3+2i}{i-1}$$

3.
$$(1-i)^{32}$$

4.
$$(2-i)^3$$

5.
$$\frac{1}{1+i}$$

6.
$$(12+5i)(3-i)$$

7.
$$\frac{i-3}{i+2}$$

8.
$$\frac{3+2i}{(1+i)(i-1)}$$

9.
$$\frac{7+3i}{1-i}+2i$$

Exercice 2. Soient M et M' deux points du plan d'affixes respectives z et z'.

Montrer que le milieu du segment [MM'] a pour affixe $\frac{z+z'}{2}$.

Exercice 3. Montrer que si |z| = |z'| = 1 et si $1 + zz' \neq 0$, alors le nombre $\frac{z + z'}{1 + zz'}$ est réel.

Exercice 4. Déterminer l'ensemble des nombres complexes $z \in \mathbb{C}$ tels que

1.
$$\frac{z+1}{z-1}$$
 soit réel;

2.
$$\frac{z+1}{z-1}$$
 soit imaginaire pur.

Exercice 5. Donner une écriture trigonométrique/exponentielle des nombres complexes suivants.

$$1. -3i$$

2.
$$-\frac{1}{2} + i\frac{\sqrt{3}}{2}$$

3.
$$1 - i\sqrt{3}$$

$$4. \left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right) \left(3 + i\sqrt{3}\right)$$

5.
$$\left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)^4$$

6.
$$3 + i\sqrt{3}$$

7.
$$1 + i$$

8.
$$(1-i)(-1+i\sqrt{3})$$

9.
$$(1-i)^7$$

10.
$$\frac{\sqrt{2}}{2} \frac{-1-i}{i}$$

11.
$$-3\exp(4)$$

Exercice 6. Soit α un réel. Déterminer le module et un argument des nombres complexes suivants.

1.
$$(\cos(\alpha) + i\sin(\alpha))^4$$

$$2. -\cos(\alpha) - i\sin(\alpha)$$

3.
$$\cos(-\alpha) + i\sin(\alpha)$$

4.
$$-2i\cos(\alpha) + 2\sin(\alpha)$$

5.
$$\sin(\alpha) + i\cos(\alpha)$$

6.
$$1 + i \tan(\alpha)$$

7.
$$1 + \cos(\alpha) + i\sin(\alpha)$$
.

Exercice 7. Déterminer le module et un argument de $-\sqrt{2+\sqrt{3}}+i\sqrt{2-\sqrt{3}}$

Exercice 8. Soient $(z_1, \ldots, z_n) \in \mathbb{C}^n$.

Montrer que

$$\left| \sum_{k=1}^{n} z_k \right|^2 = \sum_{k=1}^{n} |z_k|^2 + 2 \sum_{1 \le i \le j \le n} \operatorname{Re}(z_i \overline{z_j}).$$

Exercice 9.

- 1. Trouver les nombres complexes z tels que $z^2 = i$.
- 2. Trouver les nombres complexes z tels que $z^2 = -i$.
- 3. En déduire la factorisation dans $\mathbb C$ du polynôme x^4+1 en quatre facteurs de degré 1.
- 4. En déduire la factorisation dans \mathbb{R} du polynôme $x^4 + 1$ en deux facteurs de degré 2.

Exercice 10. Résoudre les équations suivantes, d'inconnue z complexe.

1.
$$z + 2i = iz - 1$$

3.
$$(4-2i)z^2 = (1+5i)z$$

$$2. \ 2z + \overline{z} = 2 + 3i$$

4.
$$3\overline{z} + 3z - 2 + 3i = 0$$

Exercice 11. Résoudre les équations suivantes, d'inconnue z complexe.

1.
$$5 + 2z^2 + 6z = 0$$

3.
$$z^2 + z + 1 = 0$$

2.
$$-z^2 - z + 6 = 0$$

$$4. \ \frac{3z-2}{z+1} = -3z+2$$

Exercice 12. Résoudre les équations suivantes, d'inconnue z complexe.

1.
$$z^2 = 3 + 4i$$

2.
$$z^2 = 8 - 6i$$

Exercice 13. Soit $u \in]0; \pi[$. On considère l'équation suivante d'inconnue z complexe :

$$z^{2} + 2[1 - \cos(u)]z + 2[1 - \cos(u)] = 0.$$

Trouver les solutions de cette équation et les mettre sous forme trigonométrique.

Exercice 14. Soit x un réel. Linéariser les expressions suivantes.

1.
$$\cos^4(x)$$

2.
$$\cos^4(x)\sin^2(x)$$

3.
$$\sin^5(x)$$

Exercice 15. Soit x un réel. Délinéariser les expressions suivantes.

1. $\cos(4x)$

 $3. \cos(3x)$

5. $\cos(7x)$

 $2. \sin(6x)$

4. $\sin(3x)$

6. $\sin(7x)$

Exercice 16. Pour x dans \mathbb{R} et n dans \mathbb{N} , on pose $C_n(x) = \sum_{k=0}^n \cos(kx)$ et $S_n(x) = \sum_{k=0}^n \sin(kx)$.

Calculer $C_n(x)$ et $S_n(x)$.

(Indication : penser à la formule de Moivre.)

Exercice 17. Soient n un entier naturel non nul et x un réel.

- 1. Calcular $\sum_{k=0}^{n} {n \choose k} \sin(kx)$.
- 2. Calculer $\sum_{0 \leqslant 2k \leqslant n} (-3)^k \binom{n}{2k}$ à l'aide de $(1+i\sqrt{3})^n$.

Exercice 18.

- 1. Pour tout $x \in \mathbb{R}$, exprimer $\cos(5x)$ en fonction de $\cos(x)$.
- 2. En déduire la valeur de $\cos\left(\frac{\pi}{10}\right)$.

Exercice 19. On pose $j = -\frac{1}{2} + \frac{i\sqrt{3}}{2}$.

- 1. Calculer j^2 , j^3 puis j^n suivant les valeurs de l'entier naturel n.
- 2. Vérifier que $1 + j + j^2 = 0$.
- 3. Calculer la somme $S = \sum_{k=0}^{2006} j^k$.

Exercice 20.

Soit p et q deux nombres réels.

- 1. Factoriser $e^{i\frac{p+q}{2}}$ dans la somme $e^{ip} + e^{iq}$.
- 2. En déduire une factorisation de cos(p) + cos(q) et de sin(p) + sin(q).
- 3. Résoudre dans l'intervalle $]-\pi;\pi]$ l'équation : $\cos(x)+\cos(3x)=0$.

Exercice 21. Déterminer z tel que les points d'affixe z, z^2 et z^4 soient alignés.

Exercice 22. Résoudre dans $\mathbb C$ l'équation

$$|z-1| = 2|z+1|$$
.

Interpréter géométriquement l'ensemble des solutions.

Exercice 23. Soit $P(X) = X^2 + 2uX + v$ avec $u, v \in \mathbb{R}$. On suppose que P admet deux racines complexes conjuguées ζ et $\overline{\zeta}$ avec $\Im(\zeta) > 0$.

- 1. Exprimer u et v en fonction de ζ .
- 2. Donner une condition sur u, v pour que $|\zeta| = 1$.
- 3. Application : déterminer tous les polynômes $X^2 + 2uX + v$ à coefficients réels dont les deux racines ont module 1.

Exercice 24. Soient trois points non alignés A, B, C d'affixes $a, b, c \in \mathbb{C}$. On note $j = \exp\left(\frac{2i\pi}{3}\right)$.

- 1. Justifier que $j^3 = 1$ et $1 + j + j^2 = 0$.
- 2. Montrer que le triangle ABC est équilatéral direct si, et seulement si, $a+bj+cj^2=0$.