

Fonctions réelles usuelles.

Table des matières			
8 Fo	nctions	s réelles usuelles.	1
8.1	Géné	ralités	1
	8.1.1	Ensemble de définition	1
	8.1.2	Courbe représentative	2
	8.1.3	Opérations algébriques sur les fonctions	2
	8.1.4	Parité	3
	8.1.5	Périodicité	5
	8.1.6	3 /	6
	8.1.7	Monotonie	7
	8.1.8		8
	8.1.9		8
8.2			9
	8.2.1		9
	8.2.2	P	10
	8.2.3	1000110 001100	12
	8.2.4		13
	8.2.5	1	L7
	8.2.6		21
	8.2.7	1011001011 1080110111111 0001111111 1 1 1	22
	8.2.8		24
	8.2.9	Fonctions circulaires	25

8.1 Généralités

8.1.1 Ensemble de définition

Définition 1: Ensemble de définition

Une fonction à valeurs réelles est une application f définie sur une partie \mathcal{D} à valeurs dans \mathbb{R} . On appelle ensemble (ou domaine) de définition de f l'ensemble

$$\mathcal{D}_f = \{x \in \mathbb{R} | f(x) \text{ existe} \}.$$

Exemple 1. • L'application $f: x \longmapsto |x|$ est définie sur $\mathcal{D}_f = \mathbb{R}$. • L'application $f: x \longmapsto \sqrt{x}$ est définie sur $\mathcal{D}_f = [0; +\infty[=\mathbb{R}_+$.

- L'application $f: x \longmapsto \frac{x+3}{x-5}$ est définie sur $\mathcal{D}_f = \mathbb{R} \setminus \{5\}$.

8.1.2 Courbe représentative

Définition 2: Courbe représentative d'une fonction à valeurs réelles

Soit $f: \mathcal{D}_f \longmapsto \mathbb{R}$ une application.

On appelle courbe représentative (ou graphe) de f, et on note C_f , la courbe

$$C_f = \{(x, f(x)) | x \in \mathcal{D}_f\} \subset \mathbb{R}^2.$$

Autrement dit, un point du plan (x, y) appartient à \mathcal{C}_f si et seulement si y = f(x).

Remarque 1. Pour tout $x \in \mathcal{D}_f$, il existe un unique point d'abscisse x sur la courbe \mathcal{C}_f : c'est le point (x, f(x)).

8.1.3 Opérations algébriques sur les fonctions

Définition 3: Opérations algébriques sur les fonctions

Soient $f: \mathcal{D}_f \longrightarrow \mathbb{R}$ et $g: \mathcal{D}_g \longrightarrow \mathbb{R}$ deux applications.

1. Pour tout $\lambda \in \mathbb{R}$, on définit la fonction $\lambda f : \mathcal{D}_f \longrightarrow \mathbb{R}$ définie pour tout $x \in \mathcal{D}_f$ par

$$(\lambda f)(x) = \lambda \times f(x).$$

2. On définit la fonction $f + g : \mathcal{D}_f \cap \mathcal{D}_g \longrightarrow$ définie pour tout $x \in \mathcal{D}_{\cap} \mathcal{D}_g$ par

$$(f+g)(x) = f(x) + g(x).$$

3. On définit la fonction $f \times g : \mathcal{D}_f \cap \mathcal{D}_g \longrightarrow$ définie pour tout $x \in \mathcal{D}_f \cap \mathcal{D}_g$ par

$$(f \times q)(x) = f(x) \times q(x).$$

4. Pour tout $n \in \mathbb{N}$, on définit la fonction $f^n : \mathcal{D}_f \longrightarrow \mathbb{R}$ définie pour tout $x \in \mathcal{D}_f$ par

$$f^n(x) = (f(x))^n.$$

5. On définit la fonction $\frac{f}{g}: \mathcal{D}_f \cap \{x \in \mathcal{D}_g | g(x) \neq 0\}$ par

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}.$$

Exemple 2. La fonction cotan : $x \mapsto \frac{\cos(x)}{\sin(x)}$ est définie sur

$$\{x \in \mathbb{R} | \sin(x) \neq 0\} = \{x \in \mathbb{R} | x \not\equiv 0[\pi]\}.$$

8.1.4 Parité

Définition 4: Fonctions paires, fonctions impaires

Soit $f: \mathcal{D}_f \longrightarrow \mathbb{R}$ une application. On suppose que \mathcal{D}_f est symétrique par rapport à l'origine, i.e. pour tout $x \in \mathcal{D}_f$, alors $-x \in \mathcal{D}_f$.

 \bullet On dit que la fonction f est paire si

$$\forall x \in \mathcal{D}_f, f(-x) = f(x).$$

 \bullet On dit que la fonction f est impaire si

$$\forall x \in \mathcal{D}_f, f(-x) = -f(x).$$

Exemple 3. • Soit $n \in \mathbb{N}$. L'application $f: x \mapsto x^n$ est paire (resp. impaire) si n est pair (resp. impair).

En effet, $\mathcal{D}_f = \mathbb{R}$ est symétrique par rapport à l'origine.

- Si n est pair, alors il existe $k \in \mathbb{N}$ tel que n = 2k, donc pour tout $x \in \mathbb{R}$,

$$f(-x) = (-x)^n = (-x)^{2k} = ((-x)^2)^k = (x^2)^k = x^{2k} = x^n = f(x)$$

donc la fonction f est paire.

- Si n est impair, alors il existe $k \in \mathbb{N}$ tel que n = 2k + 1 donc pour tout $x \in \mathbb{R}$,

$$f(-x) = (-x)^{2k+1} = -x \times (-x)^{2k} = -x \times x^{2k} = -x^{2k+1} = -x^n = -f(x)$$

donc la fonction f est impaire.

- De même, pour $n \in \mathbb{Z}$, l'application $f : x \mapsto x^n$ est paire (resp. impaire) si n est pair (resp. impair) mais ici $\mathcal{D}_f = \mathbb{R}^*$ (qui est encore symétrique par rapport à l'origine).
- On a vu dans le chapitre « Trigonométrie » que l'application cosinus est paire, tandis que les applications sinus et tangentes sont impaires.

Proposition 1: Courbe représentative d'une fonction paire/impaire

Soit $f: \mathcal{D}_f \longrightarrow \mathbb{R}$ une application, où \mathcal{D}_f est symétrique par rapport à l'origine. Soit \mathcal{C}_f la courbe représentative de f.

- 1. Si f est paire, alors \mathcal{C}_f est symétrique par rapport à l'axe des ordonnées.
- 2. Si f est impaire, alors \mathcal{C}_f est symétrique par rapport à l'origine.

Démonstration.

- 1. Supposons que f est paire. Soit $(x,y) \in \mathcal{C}_f$. Par définition, ceci implique que $x \in \mathcal{D}_f$ et y = f(x). Le symétrique de (x,y) par rapport à l'axe des ordonnées est le point (-x,y) = (-x,f(x)). Or, ce dernier appartient également à \mathcal{C}_f puisque $-x \in \mathcal{D}_f$ et f(-x) = f(x) puisque f est paire. Ainsi, si un point appartient à la courbe \mathcal{C}_f , cette dernière possède également son symétrique par rapport à l'axe des ordonnées, ce qui prouve que \mathcal{C}_f est symétrique par rapport à l'axe des ordonnées.
- 2. Supposons que f est impaire. Soit (x, y) ∈ C_f. Par définition, ceci implique que x ∈ D_f et y = f(x). Le symétrique de (x, y) par rapport à l'origine est le point (-x, -y) = (-x, -f(x)). Or, ce dernier appartient également à C_f puisque -x ∈ D_f et f(-x) = -f(x) puisque f est impaire. Ainsi, si un point appartient à la courbe C_f, cette dernière possède également son symétrique par rapport à l'origine, ce qui prouve que C_f est symétrique par rapport à l'origine.

Remarque 2. • Soit $f : \mathcal{D}_f$ une fonction paire. Pour tracer la courbe représentative de f, il suffit donc d'étudier f sur $\mathcal{D}_f \cap \mathbb{R}_+$, de tracer la courbe sur $\mathcal{D}_f \cap \mathbb{R}_+$ et de la prolonger par symétrie par rapport à l'axe des ordonnées.

• Soit $f : \mathcal{D}_f$ une fonction impaire. Pour tracer la courbe représentative de f, il suffit donc d'étudier $f \text{ sur } \mathcal{D}_f \cap \mathbb{R}_+$, de tracer la courbe sur $\mathcal{D}_f \cap \mathbb{R}_+$ et de la prolonger par symétrie par rapport à l'origine.

Proposition 2: Parties paire et impaire

Soit $f: \mathcal{D}_f \longrightarrow \mathbb{R}$ une application, où \mathcal{D}_f est symétrique par rapport à l'origine.

Alors il existe une unique fonction paire g et une unique fonction impaire h définies sur \mathcal{D}_f telles que

$$f = g + h$$
.

On a alors pour tout $x \in \mathcal{D}_f$,

$$g(x) = \frac{f(x) + f(-x)}{2}$$
 et $h(x) = \frac{f(x) - f(-x)}{2}$.

L'application g est appelée la partie paire de f et l'application h est appelée la partie impaire de f.

Démonstration. Nous allons faire un raisonnement par analyse-synthèse : pour montrer l'existence et l'unicité des parties paire et impaire, nous allons d'abord supposer leur existence, montrer leur unicité si existence, puis enfin vérifier leur existence.

• Analyse: Supposons qu'il existe une fonction paire g et une fonction impaire h définies sur \mathcal{D}_f telles que pour tout $x \in \mathcal{D}_f$, f(x) = g(x) + h(x).

On a alors pour tout $x \in \mathcal{D}_f$, f(-x) = g(-x) + h(-x) = g(x) - h(x) en utilisant la parité de g et l'imparité de h.

Ainsi, pour tout $x \in \mathcal{D}_f$, on a

$$\frac{f(x) + f(-x)}{2} = \frac{g(x) + h(x) + g(x) - h(x)}{2} = g(x)$$

 et

$$\frac{f(x) - f(-x)}{2} = \frac{g(x) + h(x) - (g(x) - h(x))}{2} = h(x).$$

Ceci prouve que si la partie paire g et la partie impaire h existent, alors nécessairement elles sont définies pour tout $x \in \mathcal{D}_f$ par

$$g(x) = \frac{f(x) + f(-x)}{2}$$
 et $h(x) = \frac{f(x) - f(-x)}{2}$.

On a donc bien prouvé l'unicité (si existence) des parties paire et impaire de f.

• Synthèse: Vérifions maintenant qu'il existe bien une fonction paire g et une fonction impaire h définies sur \mathcal{D}_f telles que f = g + h.

Posons pour tout $x \in \mathcal{D}_f$,

$$g(x) = \frac{f(x) + f(-x)}{2}$$
 et $h(x) = \frac{f(x) - f(-x)}{2}$

Tout d'abord, on remarque qu'on a bien pour tout $x \in \mathcal{D}_f$, f(x) = g(x) + h(x). Ensuite, vérifions que g est paire : pour tout $x \in \mathcal{D}_f$,

$$g(-x) = \frac{f(-x) + f(-(-x))}{2} = \frac{f(x) + f(-x)}{2} = g(x)$$

donc g est bien une fonction paire.

Enfin, vérifions que h est une fonction impaire : pour tout $x \in \mathcal{D}_f$,

$$h(-x) = \frac{f(-x) - f(-(-x))}{2} = \frac{-f(x) + f(-x)}{2} = -h(x)$$

donc h est bien une fonction impaire.

On a donc bien prouvé l'existence d'une fonction g paire et d'une fonction h impaire telles que f = g + h.

• Conclusion : Finalement, on a prouvé l'existence et l'unicité des parties paire et impaire d'une fonction.

Exemple 4. Soit $f: x \longmapsto x^3 + 3x^2 - x + 4$ définie sur \mathbb{R} .

Pour tout $x \in \mathbb{R}$, on a

$$g(x) = \frac{f(x) + f(-x)}{2} = \frac{x^3 + 3x^2 - x + 4 + (-x^3 + 3x^2 + x + 4)}{2} = 3x^2 + 4$$

et

$$h(x) = \frac{f(x) - f(-x)}{2} = \frac{x^3 + 3x^2 - x + 4 - (-x^3 + 3x^2 + x + 4)}{2} = x^3 - x.$$

Remarque 3. Si f est une fonction paire, sa partie paire est elle-même et sa partie impaire est la fonction nulle.

De même, si f est une fonction impaire, sa partie paire est la fonction nulle et sa partie impaire est elle-même.

8.1.5 Périodicité

Définition 5: Périodicité

Soit $f: \mathcal{D}_f \longrightarrow \mathbb{R}$ une application. Soit T > 0.

On dit que la fonction f est T-périodique si :

- 1. $\forall x \in \mathbb{R}, x \in \mathcal{D}_f \Leftrightarrow x + T \in \mathcal{D}_f;$
- 2. $\forall x \in \mathcal{D}_f, f(x+T) = f(x)$.

Exemple 5. On a vu dans le chapitre « Trigonométrie » que les fonctions cosinus et sinus sont 2π -périodiques tandis que la fonction tangente est π -périodique.

Proposition 3

Soit $f: \mathcal{D}_f \longrightarrow \mathbb{R}$ une application T-périodique (où T > 0). On note \mathcal{C}_f sa courbe représentative. Soit $x \in \mathbb{R}$.

Alors

$$(x, f(x)) \in \mathcal{C}_f \Leftrightarrow (x + T, f(x)) \in \mathcal{C}_f.$$

Autrement dit, la courbe représentative de f est invariante par la translation de vecteur $\begin{pmatrix} T \\ 0 \end{pmatrix}$.

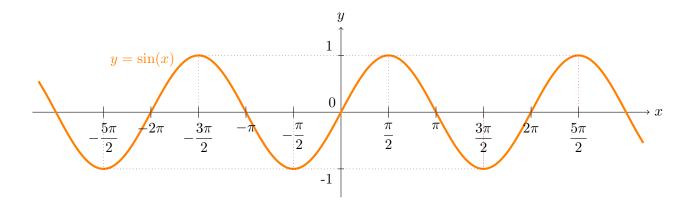
Démonstration. On a les équivalences suivantes :

$$(x, f(x)) \in \mathcal{C}_f \Leftrightarrow x \in \mathcal{D}_f \Leftrightarrow x + T \in \mathcal{D}_f \text{ et } f(x + T) = f(x) \Leftrightarrow (x + T, f(x)) \in \mathcal{C}_f.$$

Remarque 4. Si f est une fonction T-périodique, il suffit de l'étudier sur un ensemble de la forme $\mathcal{D}_f \cap [a, a+T]$ où a est un réel quelconque, de tracer sa courbe représentative sur cet ensemble, puis de la prolonger en utilisant l'invariance par translation.

Si, de plus, f est paire ou impaire, il suffit alors de l'étudier sur l'ensemble $\mathcal{D}_f \cap [0; \frac{T}{2}]$, de la prolonger par symétrie sur $[-\frac{T}{2}; \frac{T}{2}]$ puis de la prolonger en utilisant l'invariance par translation.

Exemple 6. Pour étudier la fonction sinus qui est à la fois 2π -périodique et impaire, il suffit de l'étudier sur $[0;\pi]$, tracer sa courbe représentative sur cet intervalle, puis la prolonger sur $[-\pi;\pi]$ par symétrie par rapport à l'origine, puis la prolonger sur \mathbb{R} tout entier par invariance par translation de vecteur $\begin{pmatrix} 2\pi \\ 0 \end{pmatrix}$.



8.1.6 Fonctions majorées, minorées, bornées

Définition 6: Fonctions majorées, minorées, bornées

Soit $f: \mathcal{D}_f \longrightarrow \mathbb{R}$ une application. Soit I un intervalle inclus dans \mathcal{D}_f .

ullet On dit que f est majorée sur I s'il existe un réel M tel que

$$\forall x \in I, f(x) \leqslant M.$$

Un tel réel M est appelé un majorant de la fonction f.

ullet On dit que f est minorée sur I s'il existe un réel m tel que

$$\forall x \in I, f(x) \geqslant m.$$

Un tel réel m est appelé un minorant de la fonction f.

 \bullet On dit que f est bornée sur I si f est à la fois majorée et minorée sur I.

Exemple 7. Les fonctions cosins et sinus sont majorées sur \mathbb{R} par 1 et minorées sur \mathbb{R} par -1.

Remarque 5. On retrouve les propriétés des parties de \mathbb{R} majorées ou minorées vues dans le chapitre « Nombres réels », à savoir :

- Si f est majorée sur I, alors la partie f(I) admet une borne supérieure qu'on note $\sup_{x \in I} f(x)$. Si cette borne supérieure appartient à f(I), c'est à dire si c'est une valeur effectivement prise par f, on dit que c'est le maximum de f sur I et on la note $\max_{x \in I} f(x)$.
- Si f est minorée sur I, alors la partie f(I) admet une borne inférieure qu'on note $\inf_{x \in I} f(x)$. Si cette borne inférieure appartient à f(I), c'est à dire si c'est une valeur effectivement prise par f, on dit que c'est le minimum de f sur I et on la note $\min_{x \in I} f(x)$.
 - Si f est bornée sur I, il existe un réel M positif tel que pour tout $x \in I$, $|f(x)| \leq M$.

Exemple 8. Considérons l'application

$$\begin{array}{ccc} f:[1,+\infty[&\longrightarrow&]0,1]\\ x&\longmapsto&\frac{1}{x}. \end{array}$$

L'application f est bornée sur $[1, +\infty[$ car pour tout $x \ge 1, |f(x)| \le 1.$

On a $\inf_{x\geqslant 1} f(x) = 0$ mais 0 n'est pas une valeur prise par la fonction f; ce n'est donc pas un minimum. En revanche, on a bien $\max_{x\geqslant 1}(f)=1$.

8.1.7 Monotonie

Définition 7: Monotonie

Soit $f: I \longrightarrow \mathbb{R}$ une application définie sur un intervalle $I \subset \mathbb{R}$.

- On dit que f est croissante sur I si $\forall (x,y) \in I^2, x \leq y \Rightarrow f(x) \leq f(y)$.
- On dit que f est décroissante sur I si $\forall (x,y) \in I^2, x \leq y \Rightarrow f(x) \geq f(y)$.
- On dit que f est strictement croissante sur I si $\forall (x,y) \in I^2, x < y \Rightarrow f(x) < f(y)$.
- On dit que f est strictement décroissante sur I si $\forall (x,y) \in I^2, x < y \Rightarrow f(x) > f(y)$.
- On dit que f est constante sur I si f est à la fois croissante et décroissante sur I, i.e. $\forall (x,y) \in I^2, f(x) = f(y)$.

On dit que f est monotone (resp. strictement monotone) si f est croissante ou décroissante (resp. strictement décroissante).

Exemple 9. • La fonction cosinus est strictement décroissante sur $[2k\pi, (2k+1)\pi]$ et strictement croissante sur $[(2k+1)\pi, (2k+2)\pi]$ pour tout $k \in \mathbb{Z}$.

• La fonction partie entière est croissante sur \mathbb{R} mais pas strictement croissante car elle est constante sur tout intervalle de la forme [n, n+1[pour $n \in \mathbb{Z}$.

Remarque 6. Si f est strictement croissante sur I, on a en fait une équivalence

$$\forall (x,y) \in I^2, x < y \Leftrightarrow f(x) < f(y).$$

En effet, supposons que f(x) < f(y) et montrons que x < y. Supposons par l'absurde que $x \ge y$. Alors par stricte croissance de f, on aurait $f(x) \ge f(y)$, ce qui contredit f(x) < f(y). Donc $x < y \Leftrightarrow f(x) < f(y)$.

De même, si f est strictement décroissante sur I, on a en fait une équivalence

$$\forall (x,y) \in I^2, x < y \Leftrightarrow f(x) > f(y).$$

Proposition 4: Monotonie et bijection réciproque

Soient E et F deux parties de \mathbb{R} . Soit $f:E\longrightarrow F$ une application bijective. On considère $f^{-1}:F\longrightarrow E$ sa bijection réciproque.

- 1. Si f est strictement croissante sur E, alors f^{-1} est strictement croissante sur F.
- 2. Si f est strictement décroissante sur E, alors f^{-1} est strictement décroissante sur F.

Autrement dit, une application bijective a même monotonie que sa bijection réciproque.

Démonstration.

1. Soient $(y, y') \in F^2$ avec y < y'. Posons $x = f^{-1}(y)$ et $x' = f^{-1}(y')$. Ainsi, f(x) = y et f(x') = y' donc f(x) < f(x').

Puisque f est strictement croissante sur E, alors

$$f(x) < f(x') \Leftrightarrow x < x' \Leftrightarrow f^{-1}(y) < f^{-1}(y'),$$

ce qui prouve la stricte croissance de f^{-1} .

2. Soient $(y, y') \in F^2$ avec y < y'. Posons $x = f^{-1}(y)$ et $x' = f^{-1}(y')$. Ainsi, f(x) = y et f(x') = y' donc f(x) < f(x').

Puisque f est strictement décroissante sur E, alors

$$f(x) < f(x') \Leftrightarrow x > x' \Leftrightarrow f^{-1}(y) > f^{-1}(y'),$$

ce qui prouve la stricte décroissance de f^{-1} .

Exemple 10. Les fonctions $x \mapsto x^2$ et $x \mapsto \sqrt{x}$ sont toutes deux strictement croissantes sur \mathbb{R}_+ .

A titre de rappel, mentionnons la proposition suivante, très utile, qui sera démontrée dans le chapitre \ll Dérivation des fonctions réelles \gg .

Proposition 5: Lien entre signe de la dérivée et monotonie

Soit $I \subset \mathbb{R}$ un intervalle, soit $f: I \longrightarrow \mathbb{R}$ une application dérivable sur I.

- 1. La fonction f est croissante sur I si et seulement si pour tout $x \in I$, $f'(x) \ge 0$.
- 2. La fonction f est décroissante sur I si et seulement si pour tout $x \in I$, $f'(x) \leq 0$.
- 3. La fonction f est constante sur I si et seulement si pour tout $x \in I$, f'(x) = 0.
- 4. Si pour tout $x \in I$, f'(x) > 0 alors la fonction f est strictement croissante sur I.
- 5. Si pour tout $x \in I$, f'(x) < 0 alors la fonction f est strictement décroissante sur I.

Remarque 7. Pour les deux derniers alinéas, la réciproque est fausse comme le montre l'exemple de l'application $f: x \longmapsto x^3$. La fonction f est strictement croissante sur \mathbb{R} mais on a f'(0) = 0.

8.1.8 Equation de la tangente en un point

Proposition 6: Tangente

Soit $f: \mathcal{D}_f \longrightarrow \mathbb{R}$. Soit $a \in \mathcal{D}_f$. On suppose que la fonction f est dérivable en a, i.e. $\lim_{x \to a} \frac{f(x) - f(a)}{x - a}$ existe et est finie.

Alors la courbe représentative de f admet une tangente au point (a, f(a)) dont l'équation est

$$y = f'(a)(x - a) + f(a).$$

Exemple 11. Soit $f: x \longrightarrow e^x$. L'équation de la tangente à \mathcal{C}_f au point (0, f(0)) = (0, 1) est

$$y = f'(0)(x - 0) + f(0) = f(0)x + 1 = x + 1.$$

8.1.9 Asymptotes

Définition 8: Asymptotes horizontales et verticales

Soit $f: \mathcal{D}_f \longrightarrow \mathbb{R}$.

1. Si \mathcal{D}_f est de la forme $[a, +\infty[$ (ou $]-\infty, a]$) pour $a \in \mathbb{R}$, on dit que \mathcal{C}_f admet une asymptote horizontale d'équation y = m, où $m \in \mathbb{R}$, en $+\infty$ (ou en $-\infty$) si

$$\lim_{x \to +\infty} f(x) = m \quad (\text{ou } \lim_{x \to -\infty} f(x) = m).$$

2. Si \mathcal{D}_f est de la forme]a,b] (ou [b,a[), on dit que f admet une asymptote verticale d'équation x=a si

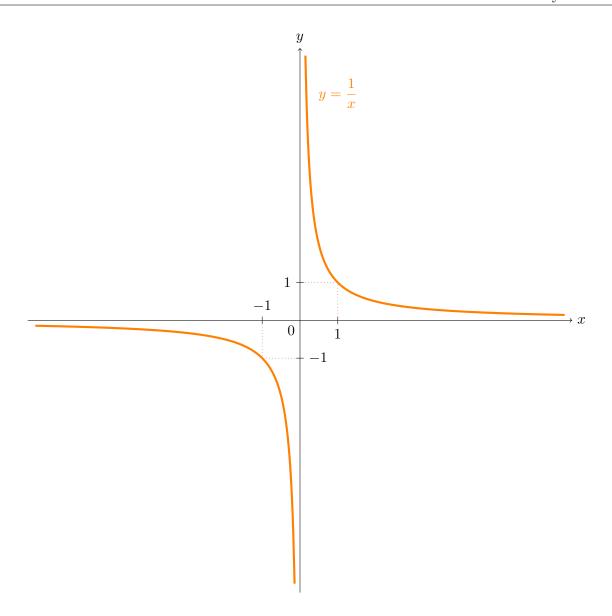
$$\lim_{x \to a^+} f(x) = \pm \infty \quad \text{(ou } \lim_{x \to a^-} f(x) = \pm \infty \text{)}.$$

Exemple 12. La fonction

$$f: \mathbb{R}^* \longrightarrow \mathbb{R}^*$$

$$x \longmapsto \frac{1}{x}$$

admet une asymptote horizontale d'équation y=0 en $-\infty$ et en $+\infty$ et une asymptote verticale d'équation x=0.



8.2 Fonctions usuelles

8.2.1 Fonctions affines

Définition 9: Fonctions affines

On appelle fonction affine toute fonction de la forme

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
$$x \longmapsto ax + b$$

où $(a,b) \in \mathbb{R}^2$.

Si b = 0, on dit que f est linéaire.

La courbe représentative de f est une droite de pente a et d'ordonnée à l'origine égale à b (elle passe donc par l'origine si b=0).

Remarque 8. Pour tout $(x,y) \in \mathbb{R}^2$ avec $x \neq y$, on a $a = \frac{f(y) - f(x)}{y - x}$.

Proposition 7: Monotonie des fonctions affines

Soit f une fonction affine de pente a.

- 1. Si a > 0, alors f est strictement croissante sur \mathbb{R} .
- 2. Si a < 0, alors f est strictement décroissante sur \mathbb{R} .
- 3. Si a=0, alors f est constante égale à b sur \mathbb{R} .

Démonstration. Ceci découle de la formule énoncée dans la remarque.

En effet, si x < y, alors f(y) - f(x) = a(y - x) est du signe de a et le résultat en découle.

Proposition 8: Limites des fonctions affines

Soit $(a, b) \in \mathbb{R}^2$. On considère la fonction affine

$$\begin{array}{ccc} f: \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & ax+b. \end{array}$$

- 1. Si a > 0, alors $\lim_{x \to +\infty} f(x) = +\infty$ et $\lim_{x \to -\infty} f(x) = -\infty$.
- 2. Si a < 0, alors $\lim_{x \to +\infty} f(x) = -\infty$ et $\lim_{x \to -\infty} f(x) = +\infty$.
- 3. Si a = 0, alors $\lim_{x \to +\infty} f(x) = \lim_{x \to -\infty} f(x) = b$.

8.2.2 Fonctions puissances d'exposant entier

On étudie dans cette section les fonctions de la forme $f: x \mapsto x^n$ où $n \in \mathbb{Z}$. Si $n \geqslant 0$, une telle fonction est définie sur \mathbb{R} et si n < 0, elle est définie sur \mathbb{R}^* .

On a vu ci-dessus que si n est pair, cette fonction est paire, et si n est impair, cette fonction est impaire.

Proposition 9: Dérivée des fonctions puissances

Soit $n \in \mathbb{Z}^*$. On pose $x \mapsto x^n$ où $\mathcal{D}_f = \begin{cases} \mathbb{R} & \text{si } n \geqslant 0 \\ \mathbb{R}^* & \text{si } n < 0. \end{cases}$ Alors f_n est dérivable sur \mathcal{D}_f et pour tout $x \in \mathcal{D}_f$, on a

$$f_n'(x) = nx^{n-1}.$$

Remarque 9. Si $n=0, f_0$ est la fonction constante égale à 1 et on retrouve que sa dérivée est la fonction constante égale à 0.

Démonstration. Montrons par récurrence sur $n \in \mathbb{N}^*$ que pour tout $n \in \mathbb{N}^*$ et pour tout $x \in \mathbb{N}^*$ $\mathbb{R}, f_n'(x) = nx^{n-1}.$

- Si n=1, pour tout $x \in \mathbb{R}$, $f_1(x)=x$ et $f_1'(x)=1=nx^{n-1}$ donc la formule est vraie pour n=1.
- Soit $n \in \mathbb{N}^*$ tel que f_n est dérivable sur \mathbb{R} et pour tout $x \in \mathbb{R}$, $f'_n(x) = nx^{n-1}$. Montrons que f_{n+1} est dérivable sur \mathbb{R} et que pour tout $x \in \mathbb{R}, f'_{n+1}(x) = (n+1)x^n$.

On a pour tout $x \in \mathbb{R}$, $f_{n+1}(x) = x^{n+1} = x \times x^n = x \times f_n(x)$. Ainsi, f_{n+1} est dérivable sur \mathbb{R} comme produit de fonctions dérivables sur \mathbb{R} et on a pour tout $x \in \mathbb{R}$,

$$f'_{n+1}(x) = f_n(x) + xf'_n(x) = x^n + x \times nx^{n-1} = x^n + nx^n = (n+1)x^n,$$

ce qui prouve la formule au rang n+1 et achève la récurrence.

On a prouvé la formule pour tout n > 0. Il reste à prouver la formule pour n < 0.

Soit n < 0. On a alors pour tout $x \in \mathbb{R}^*$, $f_n(x) = x^n = \frac{1}{x^{-n}} = \frac{1}{f_{-n}(x)}$ avec $-n \in \mathbb{N}^*$.

Puisque f_n est l'inverse d'une fonction dérivable sur \mathbb{R}^* et qui ne s'annule pas sur \mathbb{R}^* , on en déduit que f_n est dérivable sur \mathbb{R}^* et que pour tout $x \in \mathbb{R}^*$,

$$f'_n(x) = \frac{-f'_{-n}(x)}{f_{-n}(x)^2} = -\frac{-nx^{-n-1}}{x^{-2n}} = nx^{n-1}$$

donc la formule est vraie également pour n < 0.

• Soit n > 0.

Si n est pair (donc n-1 impair), on trouve le tableau de variation suivant pour f_n :

x	$-\infty$	0		$+\infty$
$f'_n(x)$	_	0	+	
f_n	$+\infty$			+∞

 \int (pour n=2, on reconnaît les variations de la

function $x \longmapsto x^2$.

Si n est impair (donc n-1 pair), on trouve le tableau de variation suivant pour f_n :

x	$-\infty$ $+\infty$
$f'_n(x)$	+
f_n	+∞

 \rfloor avec $f_n(0) = 0$ (pour n = 3, on reconnaît les variations de la

function $x \longmapsto x^3$).

• Soit n < 0.

Si n est pair (donc n-1 impair), on trouve le tableau de variation suivant pour f_n :

x	$-\infty$	() +c	∞
$f'_n(x)$	+		_	
f_n	0	, +∞	$+\infty$ 0	

(pour n = -2, on reconnaît les variations de la fonction $x \mapsto \frac{1}{x^2}$).

Si n est impair (donc (n-1) pair), on trouve le tableau de variation suivant pour f_n :

x	$-\infty$ () +∞
$f'_n(x)$	_	_
f_n	0	$+\infty$ 0

Pour n = -1, on reconnaît les variations de la fonction inverse $x \mapsto \frac{1}{x}$.

8.2.3 Racine carrée

On a déjà vu dans le chapitre « Nombres réels »les propriétés élémentaires de la fonction racine carrée

$$\begin{array}{ccc} f: \mathbb{R}_+ & \longrightarrow & \mathbb{R}_+ \\ x & \longmapsto & \sqrt{x} \end{array}.$$

On a notamment vu que la fonction racine carrée est strictement croissante sur \mathbb{R}_+ et vérifie

$$\lim_{x \to +\infty} \sqrt{x} = +\infty.$$

Ainsi, elle est bijective de \mathbb{R}_+ dans \mathbb{R}_+ et sa bijection réciproque est

$$f^{-1}: \mathbb{R}_+ \longrightarrow \mathbb{R}_+$$
$$x \longmapsto x^2.$$

Proposition 10: Dérivée de la fonction racine carrée

La fonction racine carrée $f: x \longmapsto \sqrt{x}$ est dérivable sur \mathbb{R}_+^* et pour tout $x \in \mathbb{R}_+^*$, on a

$$f'(x) = \frac{1}{2\sqrt{x}}.$$

Démonstration. Soit $a \in \mathbb{R}_+$.

Alors pour tout $x \neq a$, on a

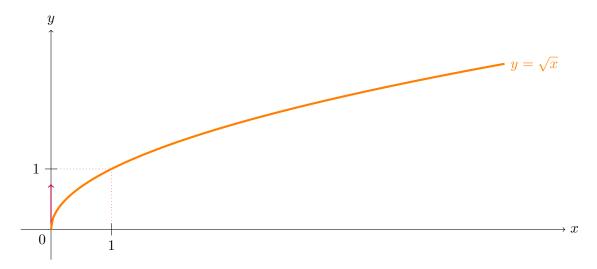
$$\frac{\sqrt{x} - \sqrt{a}}{x - a} = \frac{(\sqrt{x} - \sqrt{a})(\sqrt{x} + \sqrt{a})}{(x - a)(\sqrt{x} + \sqrt{a})} = \frac{x - a}{(x - a)(\sqrt{x} + \sqrt{a})} = \frac{1}{\sqrt{x} + \sqrt{a}}.$$

On cherche la limite de ce taux de variation quand x tend vers a. On remarque que si a=0, alors $\lim_{x\to a}\frac{1}{\sqrt{x}+\sqrt{a}}=\lim_{x\to 0}\frac{1}{\sqrt{x}}=+\infty$ donc la fonction racine carrée n'est pas dérivable en 0 et sa courbe représentative admet une tangente verticale en l'origine.

Si $a \neq 0$, on a $\lim_{x \to a} \frac{1}{\sqrt{x} + \sqrt{a}} = \frac{1}{2\sqrt{a}}$ donc la fonction racine carrée est dérivable en a et vérifie $f'(a) = \frac{1}{2\sqrt{a}}$.

Remarque 10. On remarque que pour tout x > 0, f'(x) > 0, ce qui confirme que la fonction racine carrée est strictement croissante sur \mathbb{R}_+^* .

La courbe représentative de la fonction racine carrée est la suivante :



8.2.4 Logarithme néperien

Définition 10: Logarithme néperien

On appelle logarithme néperien, et on note ln, la fonction définie sur \mathbb{R}_+^* qui vérifie les propriétés suivantes :

- 1. ln(1) = 0.
- 2. ln est dérivable sur \mathbb{R}_+^* et pour tout x > 0, $\ln'(x) = \frac{1}{x}$.

Remarque 11. • L'existence de la fonction logarithme est une conséquence du théorème fondamental de l'analyse qui sera vu ultérieurement. On notera à ce moment-là :

$$\forall x > 0, \ln(x) = \int_{1}^{x} \frac{dt}{t}.$$

• Outre ln(1) = 0, il est bon de connaître un ordre de grandeur pour ln(2):

$$ln(2) \simeq 0,69...$$

Proposition 11: Monotonie et signe du logarithme néperien

La fonction ln est strictement croissante sur \mathbb{R}_{+}^{*} .

En particulier, pour tout $x \in]0,1[,\ln(x) < 0$ et pour tout $x > 1,\ln(x) > 0$.

Démonstration. Pour tout x > 0, $\ln'(x) = \frac{1}{x} > 0$ donc la fonction ln est strictement croissante sur \mathbb{R}_+^* .

Puisque par définition, $\ln(1)=0$, ceci implique que pour tout $x\in]0,1[,\ln(x)<0$ et pour tout $x>1,\ln(x)>0$.

Proposition 12: Dérivation de ln(u)

Soit I un intervalle inclus dans \mathbb{R} , soit $u:I\longrightarrow\mathbb{R}_+^*$ une application dérivable sur I. Alors $\ln\circ u$ est dérivable sur I et pour tout $x\in I$,

$$(\ln \circ u)'(x) = \frac{u'(x)}{u(x)}.$$

Démonstration. La fonction $\ln \circ u$ est dérivable sur I comme composée de fonctions dérivables et on a pour tout $x \in I$,

$$(\ln \circ u)'(x) = u'(x) \times \ln'(u(x)) = \frac{u'(x)}{u(x)}.$$

Exemple 13. Soit $f: \mathbb{R}_+^* \longrightarrow \mathbb{R}$ La fonction f est dérivable sur \mathbb{R}_+^* et pour tout x > 0:

$$f'(x) = \frac{1}{2\sqrt{x}} \times \frac{1}{\sqrt{x}} = \frac{1}{2x}.$$

Proposition 13: Propriétés du logarithme néperien

- 1. Pour tout $(x, y) \in (\mathbb{R}_{+}^{*})^{2}$, $\ln(xy) = \ln(x) + \ln(y)$.
- 2. Pour tout $x \in \mathbb{R}_+^*$, $\ln(\frac{1}{x}) = -\ln(x)$.
- 3. Pour tout $(x, y) \in (\mathbb{R}_+^*)^2$, $\ln(\frac{x}{y}) = \ln(x) \ln(y)$.
- 4. Pour tout $n \in \mathbb{Z}$, pour tout $x \in \mathbb{R}_+^*$, $\ln(x^n) = n \ln(x)$.
- 5. Pour tout $(p,q) \in \mathbb{Z} \times \mathbb{N}^*$, pour tout $x \in \mathbb{R}_+^*$, $\ln(x^{\frac{p}{q}}) = \frac{p}{q} \ln(x)$.

Démonstration.

1. Soit $y \in \mathbb{R}_+^*$ fixé. On considère la fonction

$$f: \mathbb{R}_+^* \longrightarrow \mathbb{R}$$

$$x \longmapsto \ln(xy) - \ln(x) - \ln(y).$$

Par composition de fonctions dérivables sur \mathbb{R}_+^* , f est dérivable sur \mathbb{R}_+^* et on a pour tout x > 0:

$$f'(x) = \frac{y}{xy} - \frac{1}{x} = \frac{1}{x} - \frac{1}{x} = 0.$$

La fonction f est donc constante sur \mathbb{R}_+^* égale à $f(1) = \ln(y) - \ln(1) - \ln(y) = 0$.

Ainsi, pour tout x > 0, f(x) = 0 donc pour tout x > 0, $\ln(xy) = \ln(x) + \ln(y)$.

Ceci étant vrai pour tout y > 0, on a bien pour tout $(x, y) \in (\mathbb{R}_+^*)^2$, $\ln(xy) = \ln(x) + \ln(y)$.

2. D'après l'alinéa précédent, pour tout x > 0, on a

$$0 = \ln(1) = \ln\left(x \times \frac{1}{x}\right) = \ln(x) + \ln\left(\frac{1}{x}\right)$$

d'où $\ln(\frac{1}{x}) = -\ln(x)$.

3. Soient $(x,y) \in (\mathbb{R}_+^*)^2$. D'après les deux alinéas précédents, on a

$$\ln\left(\frac{x}{y}\right) = \ln\left(x \times \frac{1}{y}\right) = \ln(x) + \ln\left(\frac{1}{y}\right) = \ln(x) - \ln(y).$$

- 4. Soit $x \in \mathbb{R}_+^*$. Montrons par récurrence sur $n \in \mathbb{N}$ que pour tout $n \in \mathbb{N}$, $\ln(x^n) = n \ln(x)$.
 - Pour n=0, on a $\ln(x^0)=\ln(1)=0=0\times\ln(x)$ donc la propriété est vraie au rang n=0.
 - Soit $n \in \mathbb{N}$ fixé. On suppose que $\ln(x^n) = n \ln(x)$. Montrons que $\ln(x^{n+1}) = (n+1) \ln(x)$.

En utilisant la propriété montrée dans le premier alinéa et l'hypothèse de récurrence, on a

$$\ln(x^{n+1}) = \ln(x^n \times x) = \ln(x^n) + \ln(x) = n \ln(x) + \ln(x) = (n+1) \ln(x),$$

ce qui prouve la propriété au rang n+1 et achève la récurrence.

Il reste à montrer la propriété pour les entiers strictement négatifs.

Soit n < 0. Alors -n > 0 et d'après le deuxième alinéa et la propriété que l'on vient de montrer pour les entiers positifs, on a

$$\ln(x^n) = \ln\left(\frac{1}{x^{-n}}\right) = -\ln(x^{-n}) = -(-n\ln(x)) = n\ln(x).$$

On a donc bien montré que pour tout entier $n \in \mathbb{Z}, \ln(x^n) = n \ln(x)$.

5. Soient $(p,q) \in \mathbb{Z} \times \mathbb{N}^*$, soit $x \in \mathbb{R}_+^*$.

D'après la propriété précédente, on a

$$q \ln(x^{\frac{p}{q}}) = \ln(x^{q^{\frac{p}{q}}}) = \ln(x^p) = p \ln(x)$$

donc $\ln(x^{\frac{p}{q}}) = \frac{p}{q} \ln(x)$.

Exemple 14. • $\ln(8) = 3\ln(2)$.

- $\ln(\frac{3}{25}) = \ln(3) \ln(25) = \ln(3) 2\ln(5)$.
- Pour tout x > 0, $\ln(\sqrt{x}) = \ln(x^{\frac{1}{2}}) = \frac{1}{2}\ln(x)$.

Proposition 14: Limites

- 1. $\lim_{x \to +\infty} \ln(x) = +\infty.$
- 2. $\lim_{x \to 0^+} \ln(x) = -\infty$.
- 3. $\lim_{x \to +\infty} \frac{\ln(x)}{x} = 0^+$.
- 4. $\lim_{x \to 0^+} x \ln(x) = 0^-$.
- 5. $\lim_{x \to 0^+} \frac{\ln(1+x)}{x} = 1.$

Démonstration.

1. On admet ce résultat pour l'instant. Il découlera des propriétés des intégrales.

2. Soit x > 0. Posons $X = \frac{1}{x}$. Quand x tend vers $0^+, X$ tend vers $+\infty$ donc

$$\lim_{x\to 0^+} \ln(x) = \lim_{X\to +\infty} \ln\left(\frac{1}{X}\right) = \lim_{X\to +\infty} -\ln(X) = -\infty.$$

3. Etudions la fonction $f: \mathbb{R}_+^* \longrightarrow \mathbb{R} \atop x \longmapsto \ln(x) - 2\sqrt{x}$. La fonction f est dérivables sur \mathbb{R}_+^* et pour tout x > 0,

$$f'(x) = \frac{1}{x} - \frac{1}{\sqrt{x}} = \frac{1 - \sqrt{x}}{x}.$$

On obtient le tableau de variation suivant pour f:

x	0	1	$+\infty$
f'(x)		+ 0	_
f	$-\infty$	-2	

Ainsi, pour tout x > 0, f(x) < 0 donc $\ln(x) < 2\sqrt{x}$.

On en déduit que pour tout $x > 1, 0 < \frac{\ln(x)}{x} < \frac{2}{\sqrt{x}}$.

Puisque $\lim_{x\to+\infty}\frac{2}{\sqrt{x}}=0^+$, d'après le théorème des gendarmes, on en déduit que

$$\lim_{x \to +\infty} \frac{\ln(x)}{x} = 0^+.$$

4. Soit x > 0. Posons $X = \frac{1}{x}$. Quand x tend vers $0^+, X$ tend vers $+\infty$ donc

$$\lim_{x\to 0^+} x \ln(x) = \lim_{X\to +\infty} \frac{\ln(\frac{1}{X})}{X} = \lim_{X\to +\infty} -\frac{\ln(X)}{X} = 0^-.$$

5. Soit x > 0. Posons X = 1 + x. Quand x tend vers $0^+, X$ tend vers 1 donc

$$\lim_{x \to 0^+} \frac{\ln(1+x)}{x} = \lim_{X \to 1} \frac{\ln(X) - \ln(1)}{X - 1} = \ln'(1) = \frac{1}{1} = 1.$$

Remarque 12. • La dernière propriété s'écrit également $\ln(1+x) \sim x$.

• On a montré que pour tout x > 0, $\ln(x) < 2\sqrt{x} \Leftrightarrow \frac{1}{2}\ln(x) < \sqrt{x} \Leftrightarrow \ln(\sqrt{x}) < \sqrt{x}$.

En appliquant ceci à x^2 , on obtient que pour tout $x>0, \ln(\sqrt{x^2})<\sqrt{x^2}$ d'où

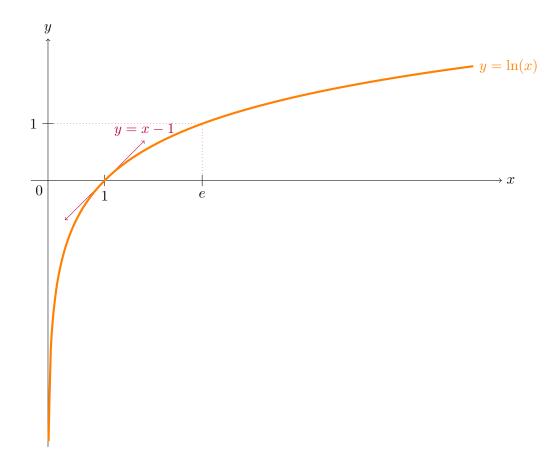
$$\forall x > 0, \ln(x) < x.$$

• On a $\lim_{x \to +\infty} \frac{\ln(x)}{x} = 0$ donc par composition de limites, $\lim_{x \to +\infty} \frac{\ln(\sqrt{x})}{\sqrt{x}} = 0$, ce qui implique que $\lim_{x \to +\infty} \frac{1}{2} \frac{\ln(x)}{\sqrt{x}} = 0$ d'où $\lim_{x \to +\infty} \frac{\ln(x)}{\sqrt{x}} = 0$.

Puisque la fonction ln est dérivable sur \mathbb{R}_+^* , elle est continue sur \mathbb{R}_+^* . On a vu qu'elle y est strictement croissante, que $\lim_{x\to 0^+} \ln(x) = -\infty$ et $\lim_{x\to +\infty} \ln(x) = +\infty$.

Ainsi, la réalise une bijection de \mathbb{R}_+^* sur \mathbb{R} .

Sa courbe représentative est la suivante :



L'équation de la tangente à la courbe au point (1,0) est

$$y = \ln'(1)(x-1) + \ln(1) = x - 1.$$

Puisque ln est bijective de \mathbb{R}_+^* sur \mathbb{R} , il existe un unique réel dont l'image par ln est 1. On note ce nombre réel e et on a $e \simeq 2,718281828...$

8.2.5 Fonction exponentielle

Définition 11: Fonction exponentielle

On appelle fonction exponentielle, et on note exp, la bijection réciproque du logarithme néperien définie sur \mathbb{R} , i.e.

$$\exp: \mathbb{R} \longrightarrow \mathbb{R}_+^*$$

$$x \longmapsto \exp(x).$$

On a ainsi

$$\forall x \in \mathbb{R}, \ln(\exp(x)) = x \text{ et } \forall x > 0, \exp(\ln(x)) = x.$$

Remarque 13. • Par définition, pour tout réel x, $\exp(x)$ est l'unique réel strictement positif tel que $\ln(\exp(x)) = x$.

- On note en particulier que pour tout réel x, $\exp(x) > 0$.
- Par définition, la fonction exponentielle réalise donc une bijection de \mathbb{R} sur \mathbb{R}_+^* .
- Puisque $\ln(1) = 0$ et $\ln(e) = 1$, on a $\exp(0) = 1$ et $\exp(1) = e$.

Proposition 15: Dérivée et monotonie de la fonction exponentielle

La fonction exponentielle est dérivable sur \mathbb{R} et vérifie pour tout $x \in \mathbb{R}$,

$$\exp'(x) = \exp(x).$$

En particulier, la fonction exponentielle est strictement croissante sur \mathbb{R} .

Remarque 14. La stricte croissance est en fait une conséquence du fait que la fonction exponentielle est la bijection réciproque du logarithme néperien, qui est elle-même une fonction strictement croissante.

Démonstration. Soit $a \in \mathbb{R}$. On cherche à déterminer $\lim_{x \to a} \frac{\exp(x) - \exp(a)}{x - a}$.

Pour tout $x \in \mathbb{R}$, posons $X = \exp(x)$, de telle sorte que $x = \ln(X)$. Quand x tend vers a, X tend vers $\exp(a)$. On a alors

$$\lim_{x \to a} \frac{\exp(x) - \exp(a)}{x - a} = \lim_{X \to \exp(a)} \frac{X - \exp(a)}{\ln(X) - \ln(\exp(a))} = \frac{1}{\ln'(\exp(a))} = \frac{1}{\frac{1}{\exp(a)}} = \exp(a),$$

ce qui prouve que la fonction exponentielle est dérivable en a et que $\exp'(a) = \exp(a)$.

Ceci étant vrai pour tout $a \in \mathbb{R}$, on a bien que $\exp' = \exp$.

Puisque pour tout x > 0, $\exp'(x) = \exp(x) > 0$, on en déduit que la fonction exponentielle est strictement croissante sur \mathbb{R} .

Remarque 15. On retrouve la caractérisation bien connue de la fonction exponentielle : c'est l'unique fonction définie sur \mathbb{R} et à valeurs dans \mathbb{R}_+^* telle que

$$\begin{cases} \exp(0) &= 1\\ \exp' &= \exp \end{cases}$$

C'est une propriété remarquable de la fonction exponentielle : c'est une fonction égale à sa dérivée.

Corollaire 1: Dérivation de $\exp \circ u$

Soit I un intervalle inclus dans \mathbb{R} , soit $u: I \longrightarrow \mathbb{R}$ une application dérivable sur I. Alors $\exp \circ u$ est dérivable sur I et pour tout $x \in I$,

$$(\exp \circ u)'(x) = u'(x) \exp(u(x)).$$

Démonstration. La fonction $\exp \circ u$ est dérivable sur I comme composée de fonctions dérivables sur I et on a pour tout $x \in I$,

$$(\exp \circ u)'(x) = u'(x) \exp'(u(x)) = u'(x) \exp(u(x)).$$

Exemple 15. Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ $x \longmapsto \exp(x^2)$.

La fonction f est dérivable sur \mathbb{R} et pour tout $x \in \mathbb{R}$,

$$f'(x) = 2x \exp(x^2).$$

Proposition 16: Propriétés de la fonction exponentielle

- 1. Pour tout $(x, y) \in \mathbb{R}^2$, $\exp(x + y) = \exp(x) \exp(y)$.
- 2. Pour tout $x \in \mathbb{R}$, $\exp(-x) = \frac{1}{\exp(x)}$.
- 3. Pour tout $(x,y) \in \mathbb{R}^2$, $\exp(x-y) = \frac{\exp(x)}{\exp(y)}$.
- 4. Pour tout $n \in \mathbb{Z}$, pour tout $x \in \mathbb{R}$, $(\exp(x))^n = \exp(nx)$.
- 5. Pour tout $(p,q) \in \mathbb{Z} \times \mathbb{N}^*$, pour tout $x \in \mathbb{R}$,

$$(\exp(x))^{\frac{p}{q}} = \exp\left(\frac{p}{q}x\right).$$

Démonstration. On utilise les propriétés du logarithme néperien.

1. Pour tout $(x, y) \in \mathbb{R}^2$, on a

$$\ln(\exp(x)\exp(y)) = \ln(\exp(x)) + \ln(\exp(y)) = x + y = \ln(\exp(x + y)),$$

ce qui implique par injectivité du logarithme néperien que $\exp(x+y) = \exp(x)\exp(y)$.

2. Pour tout $x \in \mathbb{R}$, on a

$$\ln\left(\frac{1}{\exp(x)}\right) = -\ln(\exp(x)) = -x = \ln(\exp(-x)),$$

ce qui implique par injectivité du logarithme néperien que $\exp(-x) = \frac{1}{\exp(x)}$.

3. Pour tout $(x, y) \in \mathbb{R}^2$, on a

$$\ln\left(\frac{\exp(x)}{\exp(y)}\right) = \ln(\exp(x)) - \ln(\exp(y)) = x - y = \ln(\exp(x - y)),$$

ce qui implique par injectivité du logarithme néperien que $\exp(x-y) = \frac{\exp(x)}{\exp(y)}$.

4. Pour tout $n \in \mathbb{Z}$, pour tout $x \in \mathbb{R}$, on a

$$\ln((\exp(x))^n) = n\ln(\exp(x)) = nx = \ln(\exp(nx)),$$

ce qui implique par injectivité du logarithme néperien que $(\exp(x))^n = \exp(nx)$.

5. Pour tout $(p,q) \in \mathbb{Z} \times \mathbb{N}^*$, pour tout $x \in \mathbb{R}$, on a

$$\ln((\exp(x))^{\frac{p}{q}}) = \frac{p}{q}\ln(\exp(x)) = \frac{p}{q}x = \ln\left(\exp\left(\frac{p}{q}x\right)\right),$$

ce qui implique par injectivité du logarithme néperien que $(\exp(x))^{\frac{p}{q}} = \exp\left(\frac{p}{q}x\right)$.

Remarque 16. On remarque que la fonction exponentielle vérifie les mêmes propriétés que les puissances.

Dorénavant, on notera donc pour tout réel $x, e^x = \exp(x)$.

En effet, cette notation est légitime car $e^1 = \exp(1) = e$ et pour tout $(x, y) \in \mathbb{R}^2$,

$$e^{x+y} = \exp(x+y) = \exp(x)\exp(y) = e^x e^y$$
 et $e^{-x} = \exp(-x) = \frac{1}{\exp(x)} = \frac{1}{e^x}$.

Exemple 16. • $e^6 = (e^2)^3 = (e^3)^2$.

• Pour tout $x \in \mathbb{R}, \sqrt{e^x} = e^{\frac{x}{2}}$.

Proposition 17: Limites

$$1. \lim_{x \to +\infty} e^x = +\infty.$$

2.
$$\lim_{x \to -\infty} e^x = 0^+$$
.

$$3. \lim_{x \to +\infty} \frac{e^x}{x} = +\infty.$$

4.
$$\lim_{x \to -\infty} x e^x = 0^-$$
.

5.
$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1.$$

Démonstration.

1. On a montré que pour tout $x > 0, \ln(x) < x$. Ainsi, pour tout $x \in \mathbb{R}, \ln(e^x) < e^x$ d'où pour tout $x \in \mathbb{R}, x < e^x$.

Puisque $\lim_{x\to +\infty} x = +\infty$, par comparaison, on obtient que $\lim_{x\to +\infty} e^x = +\infty$.

2. Soit x < 0. Posons X = -x. Quand x tend vers $-\infty$, X tend vers $+\infty$ et on a

$$\lim_{x \to -\infty} e^x = \lim_{X \to +\infty} e^{-X} = \lim_{X \to +\infty} \frac{1}{e^X} = 0^+,$$

 $\operatorname{car} \lim_{X \to +\infty} e^X = +\infty.$

3. Soit $x \in \mathbb{R}$. Posons $X = e^x$, d'où $x = \ln(X)$. Quand x tend vers $+\infty$, X tend vers $+\infty$ et on a

$$\lim_{x \to +\infty} \frac{e^x}{x} = \lim_{X \to +\infty} \frac{X}{\ln(X)} = +\infty$$

$$\operatorname{car} \lim_{X \to +\infty} \frac{\ln(X)}{X} = 0^+.$$

4. Soit x < 0. Posons X = -x. Quand x tend vers $-\infty$, X tend vers $+\infty$ et on a

$$\lim_{x \to -\infty} x e^x = \lim_{X \to +\infty} -X e^{-X} = \lim_{X \to +\infty} -\frac{X}{e^X} = 0^-$$

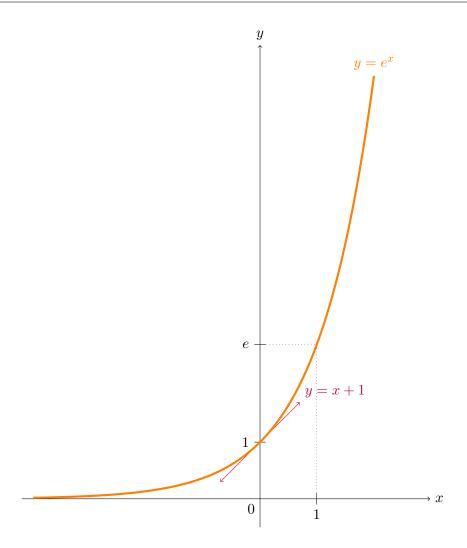
$$\operatorname{car} \lim_{X \to +\infty} \frac{e^X}{X} = +\infty.$$

5. On a

$$\lim_{x \to 0} \frac{e^x - 1}{x} = \lim_{x \to 0} \frac{e^x - 1}{x - 0} = \exp'(0) = e^0 = 1.$$

Remarque 17. La dernière propriété s'écrit également $e^x - 1 \sim x$.

La courbe représentative de la fonction exponentielle est la suivante :



C'est la courbe symétrique de la courbe représentative du logarithme néperien par rapport à la première bissectrice.

L'équation de la tangente à la courbe au point (0,1) est

$$y = \exp'(0)(x - 0) + \exp(0) = x + 1.$$

Enfin, la fonction exponentielle permet de répondre à une question soulevée dans le chapitre « Nombres réels », à savoir quel sens donner à a^b pour $(a,b) \in \mathbb{R}_+^* \times \mathbb{R}$.

Définition 12: Notation a^b

Pour tout $(a, b) \in \mathbb{R}_+^* \times \mathbb{R}$, on note

$$a^b = e^{b \ln(a)}$$
.

Remarque 18. Ceci est cohérent avec les propriétés déjà vues pour les puissances rationnelles : en effet, soient $(p,q) \in \mathbb{Z} \times \mathbb{N}^*$. Soit $a \in \mathbb{R}_+^*$.

Alors

$$e^{\frac{p}{q}\ln(a)} = e^{\ln(a^{\frac{p}{q}})} = a^{\frac{p}{q}}.$$

La généralisation des puissances rationnelles aux puissances réelles devient alors naturelle.

Rappelons que si $x \in \mathbb{R}^*$, on peut même définir sans aucun mal x^n pour tout $n \in \mathbb{Z}$.

Grâce aux propriétés de la fonction exponentielle, on retrouve ainsi les propriétés des puissances entières et rationnelles étendues aux puissances réelles :

Proposition 18

Soient $(a, a') \in (\mathbb{R}_+^*)^2$. Soient $(b, b') \in \mathbb{R}^2$. On a les propriétés suivantes :

$$\begin{aligned} 1)(aa')^b &= a^b a'^b; \quad 2)a^b a^{b'} &= a^{b+b'}; \quad 3)(a^b)^{b'} &= a^{bb'}; \\ 4)\left(\frac{a}{a'}\right)^b &= \frac{a^b}{a'^b}; \quad 5)\frac{a^b}{a^{b'}} &= a^{b-b'}. \end{aligned}$$

Démonstration.

1.

$$(aa')^b = e^{b\ln(aa')} = e^{b(\ln(a) + \ln(a'))} = e^{b\ln(a) + b\ln(a')} = e^{b\ln(a)}e^{b\ln(a')} = a^ba'^b.$$

2.

$$a^{b}a^{b'} = e^{b\ln(a)}e^{b'\ln(a)} = e^{(b+b')\ln(a)} = a^{b+b'}$$

3.

$$(a^b)^{b'} = e^{b'\ln(a^b)} = e^{b'\ln(e^{b\ln(a)})} = e^{b'b\ln(a)} = a^{bb'}.$$

4.

$$\left(\frac{a}{a'}\right)^b = e^{b\ln(\frac{a}{a'})} = e^{b(\ln(a) - \ln(a'))} = e^{b\ln(a) - b\ln(a')} = \frac{e^{b\ln(a)}}{e^{b\ln(a')}} = \frac{a^b}{a'^b}$$

5.

$$\frac{a^b}{a^{b'}} = \frac{e^{b \ln(a)}}{e^{b' \ln(a)}} = e^{(b-b') \ln(a)} = a^{b-b'}.$$

Remarque 19. On en déduit que pour tout $(a,b) \in \mathbb{R}_+^* \times \mathbb{R}, \ln(a^b) = b \ln(a)$ puisque

$$\ln(a^b) = \ln(e^{b\ln(a)}) = b\ln(a).$$

De même, pour tout $(a,b) \in \mathbb{R}^2$, $(e^a)^b = e^{b\ln(e^a)} = e^{ab}$.

8.2.6 Fonctions exponentielles de base a

Définition 13: Fonction exponentielle de base a

Soit $a \in \mathbb{R}_+^*$. On appelle fonction exponentielle de base a la fonction

$$\begin{array}{ccc} f_a: \mathbb{R} & \longrightarrow & \mathbb{R}_+^* \\ x & \longmapsto & a^x \end{array}.$$

Remarque 20. Soit a > 0. Pour tout $x \in \mathbb{R}$, on a $f_a(x) = e^{x \ln(a)} > 0$. On a en outre $f_a(1) = a$.

Exemple 17. 1. Pour a = e, on retrouve la fonction exponentielle étudiée dans la section précédente. 2. Pour a = 1, la fonction f_a est constante égale à 1.

Proposition 19: Dérivée et monotonie des fonctions exponentielles de base a

Soit $a \in \mathbb{R}_+^*$. La fonction exponentielle de base a, notée f_a , est dérivable sur \mathbb{R} de dérivée

$$\forall x \in \mathbb{R}, f_a'(x) = \ln(a)a^x.$$

En particulier, si 0 < a < 1, la fonction f_a est strictement décroissante sur \mathbb{R} et si a > 1, la fonction f_a est strictement croissante sur \mathbb{R} .

Année 2025-2026 PANETTA / WASSFI

Démonstration. Soit a > 0. La fonction f_a est dérivable sur \mathbb{R} comme composée de fonctions dérivables sur \mathbb{R} et on a

$$\forall x \in \mathbb{R}, f_a'(x) = \ln(a) \exp'(x \ln(a)) = \ln(a) e^{x \ln(a)} = \ln(a) a^x.$$

Pour tout $x \in \mathbb{R}, a^x = e^{x \ln(a)} > 0$ donc $f'_a(x)$ est du signe de $\ln(a)$.

Ainsi, si $0 < a < 1, \ln(a) < 0$ donc pour tout $x \in \mathbb{R}, f'_a(x) < 0$ ce qui implique que la fonction f_a est strictement décroissante sur \mathbb{R} .

Si a=1, on retrouve que pour tout $x \in \mathbb{R}$, $f'_a(x)=0$ donc la fonction f_a est constante sur \mathbb{R} égale à $f_a(0)=a^0=1$.

Si a > 1, $\ln(a) > 0$ donc pour tout $x \in \mathbb{R}$, $f'_a(x) > 0$ ce qui implique que la fonction f_a est strictement croissante sur \mathbb{R} .

Proposition 20: Limites des fonctions exponentielles de base a

Soit a > 0.

- 1. Si a > 1, alors $\lim_{x \to -\infty} a^x = 0$ et $\lim_{x \to +\infty} a^x = +\infty$.
- 2. Si 0 < a < 1, alors $\lim_{x \to -\infty} a^x = +\infty$ et $\lim_{x \to +\infty} a^x = 0$.

Démonstration.

1. Supposons que a > 1. Dans ce cas, $\ln(a) > 0$ donc $\lim_{x \to -\infty} \ln(a)x = -\infty$ et $\lim_{x \to +\infty} \ln(a)x = +\infty$ donc en composant par l'exponentielle, on obtient que

$$\lim_{x \to -\infty} a^x = \lim_{x \to -\infty} e^{x \ln(a)} = 0$$

et

$$\lim_{x \to +\infty} a^x = \lim_{x \to +\infty} e^{x \ln(a)} = +\infty.$$

2. Supposons que 0 < a < 1. Dans ce cas, $\ln(a) < 0$ donc $\lim_{x \to -\infty} \ln(a)x = +\infty$ et $\lim_{x \to +\infty} \ln(a)x = -\infty$ donc en composant par l'exponentielle, on obtient que

$$\lim_{x \to -\infty} a^x = \lim_{x \to -\infty} e^{x \ln(a)} = +\infty$$

et

$$\lim_{x \to +\infty} a^x = \lim_{x \to +\infty} e^{x \ln(a)} = 0.$$

8.2.7 Fonction logarithme décimal

Définition 14: Fonction logarithme décimal (log)

On appelle fonction logarithme décimal, et on note log, la fonction définie sur \mathbb{R}_+^* par

$$\forall x > 0, \log(x) = \frac{\ln(x)}{\ln(10)}.$$

Remarque 21. Cette fonction a un intérêt tout particulier en physique-chimie. Elle est particulièrement pratique pour manipuler des puissances de 10.

Exemple 18. Pour tout $n \in \mathbb{Z}, \log(10^n) = \frac{\ln(10^n)}{\ln(10)} = \frac{n \ln(10)}{\ln(10)} = n.$

En particulier, $\log(\frac{1}{10}) = -1$, $\log(1) = 0$, $\log(10) = 1$, $\log(100) = 2$, $\log(1000) = 3$...

Proposition 21: Dérivée et monotonie du logarithme décimal

La fonction logarithme décimal est dérivable sur \mathbb{R}_+^* et on a

$$\forall x > 0, \log'(x) = \frac{1}{x \ln(10)}.$$

La fonction log est alors strictement croissante sur \mathbb{R}_{+}^{*} .

Démonstration. Puisque le logarithme néperien est dérivable sur \mathbb{R}_+^* , le logarithme décimal l'est également et par linéarité de la dérivée, on a pour tout x > 0:

$$\log'(x) = \frac{1}{\ln(10)} \ln'(x) = \frac{1}{x \ln(10)}.$$

Ainsi, pour tout x > 0, $\log'(x) > 0$ donc la fonction log est strictement croissante sur \mathbb{R}_+^* .

Proposition 22: Limites du logarithme décimal

On a

$$\lim_{x \to 0^+} \log(x) = -\infty \quad \text{et} \quad \lim_{x \to +\infty} \log(x) = +\infty.$$

Démonstration. Puisque ln(10) > 0, les limites du logarithme décimal sont les mêmes que celles du logarithme néperien.

Remarque 22. Des deux propriétés précédentes, on déduit que le logarithme néperien réalise une bijection de \mathbb{R}_+^* dans \mathbb{R} dont la bijection réciproque est $f_{10}: x \longmapsto 10^x$.

En effet, pour tout $(x,y) \in \mathbb{R}_+^* \times \mathbb{R}$, on a

$$\log(x) = y \Leftrightarrow \frac{\ln(x)}{\ln(10)} = y \Leftrightarrow \ln(x) = y \ln(10) \Leftrightarrow x = e^{y \ln(10)} = 10^y.$$

Proposition 23: Propriétés du logarithme décimal

Le logarithme décimal vérifie les mêmes propriétés que le logarithme néperien, à savoir :

- 1. Pour tout $(x, y) \in (\mathbb{R}_+^*)^2$, $\log(xy) = \log(x) + \log(y)$.
- 2. Pour tout $(x,y) \in (\mathbb{R}_+^*)^2$, $\log(\frac{x}{y}) = \log(x) \log(y)$ et $\log(\frac{1}{x}) = -\log(x)$.
- 3. Pour tout x > 0, pour tout $\alpha \in \mathbb{R}$, $\log(x^{\alpha}) = \alpha \log(x)$.

Démonstration.

1. Soient $(x,y) \in (\mathbb{R}_+^*)^2$. On a

$$\log(xy) = \frac{\ln(xy)}{\ln(10)} = \frac{\ln(x) + \ln(y)}{\ln(10)} = \frac{\ln(x)}{\ln(10)} + \frac{\ln(y)}{\ln(10)} = \log(x) + \log(y).$$

2. Soient $(x,y) \in (\mathbb{R}_+^*)^2$. On a

$$\log\left(\frac{x}{y}\right) = \frac{\ln(\frac{x}{y})}{\ln(10)} = \frac{\ln(x) - \ln(y)}{\ln(10)} = \frac{\ln(x)}{\ln(10)} - \frac{\ln(y)}{\ln(10)} = \log(x) - \log(y).$$

On en déduit que $\log(\frac{1}{x}) = \log(1) - \log(x) = -\log(x)$.

3. Soit $x \in \mathbb{R}_+^*$, soit $\alpha \in \mathbb{R}$. On a

$$\log(x^{\alpha}) = \frac{\ln(x^{\alpha})}{\ln(10)} = \frac{\alpha \ln(x)}{\ln(10)} = \alpha \log(x).$$

8.2.8 Fonctions puissances

On s'intéresse dans cette section aux fonctions de la forme

$$\begin{array}{ccc} f_{\alpha}: \mathbb{R}_{+}^{*} & \longrightarrow & \mathbb{R}_{+}^{*} \\ x & \longmapsto & x^{\alpha} \end{array}$$

où $\alpha \in \mathbb{R} \setminus \mathbb{Z}$. En effet, on a déjà étudié le cas des fonctions puissances d'exposant entier (i.e. $\alpha \in \mathbb{Z}$).

Remarque 23. Si $\alpha = \frac{1}{2}$, on retrouve la racine carrée qui est définie sur \mathbb{R}_+ .

Plus généralement, si $\alpha = \frac{1}{n}$ pour $n \in \mathbb{N}^*$, on retrouve les racines n-èmes vues dans le chapitre « Nombres réels ».

Proposition 24: Dérivation des fonctions puissances

Soit $\alpha \in \mathbb{R} \setminus \mathbb{Z}$. La fonction $f_{\alpha} : x \longmapsto x^{\alpha}$ est dérivable sur \mathbb{R}_{+}^{*} et on a

$$\forall x > 0, f'_{\alpha}(x) = \alpha x^{\alpha - 1}.$$

Ainsi, si $\alpha > 0$, la fonction f_{α} est strictement croissante sur \mathbb{R}_{+}^{*} et si $\alpha < 0$, la fonction f_{α} est strictement décroissante sur \mathbb{R}_{+}^{*} .

Démonstration. Pour tout x > 0, on a $x^{\alpha} = \exp(\alpha \ln(x))$. Ainsi la fonction f_{α} est dérivable sur \mathbb{R}_{+}^{*} comme composée de fonctions dérivables sur \mathbb{R}_{+}^{*} et on a pour tout x > 0:

$$f'_{\alpha}(x) = \alpha \ln'(x) \exp'(\alpha \ln(x)) = \frac{\alpha}{x} e^{\alpha \ln(x)} = \frac{\alpha}{x} x^{\alpha} = \alpha x^{\alpha - 1}.$$

Ainsi, pour tout x > 0, $f'_{\alpha}(x)$ est du signe de α et on en déduit la monotonie de f_{α} .

Remarque 24. Cette formule généralise donc celle obtenue pour les fonctions puissances d'exposant entier.

Proposition 25: Limites des fonctions puissances

Soit $\alpha \in \mathbb{R} \setminus \mathbb{Z}$.

1. Si $\alpha > 0$, alors

$$\lim_{x \to 0^+} x^{\alpha} = 0 \quad \text{et} \quad \lim_{x \to +\infty} x^{\alpha} = +\infty.$$

2. Si $\alpha < 0$, alors

$$\lim_{x \to 0^+} x^{\alpha} = +\infty \quad \text{et} \quad \lim_{x \to +\infty} x^{\alpha} = 0.$$

Démonstration.

1. Supposons que $\alpha > 0$. On a alors $\lim_{x \to 0^+} \alpha \ln(x) = -\infty$ et $\lim_{x \to +\infty} \alpha \ln(x) = +\infty$ donc en composant par l'exponentielle, on obtient

$$\lim_{x \to 0^+} x^{\alpha} = \lim_{x \to 0^+} e^{\alpha \ln(x)} = 0 \quad \text{et} \quad \lim_{x \to +\infty} x^{\alpha} = \lim_{x \to +\infty} e^{\alpha \ln(x)} = +\infty.$$

2. Supposons que $\alpha < 0$. On a alors $\lim_{x \to 0^+} \alpha \ln(x) = +\infty$ et $\lim_{x \to +\infty} \alpha \ln(x) = -\infty$ donc en composant par l'exponentielle, on obtient

$$\lim_{x \to 0^+} x^{\alpha} = \lim_{x \to 0^+} e^{\alpha \ln(x)} = +\infty \quad \text{et} \quad \lim_{x \to +\infty} x^{\alpha} = \lim_{x \to +\infty} e^{\alpha \ln(x)} = 0.$$

Remarque 25. On en déduit que si $\alpha \in \mathbb{R} \setminus \mathbb{Z}$, la fonction $f_{\alpha} : x \mapsto x^{\alpha}$ réalise une bijection de \mathbb{R}_{+}^{*} sur \mathbb{R}_{+}^{*} dont la bijection réciproque est $x \mapsto x^{\frac{1}{\alpha}}$.

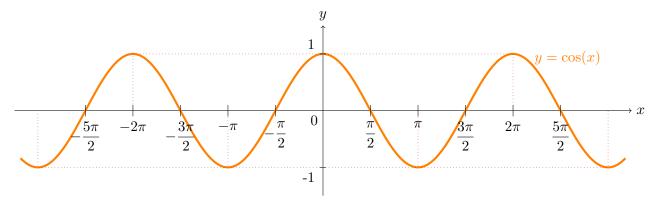
En effet, on a pour tout $(x,y) \in (\mathbb{R}_+^*)^2, x^{\alpha} = y \Leftrightarrow (x^{\alpha})^{\frac{1}{\alpha}} = y^{\frac{1}{\alpha}} \Leftrightarrow x = y^{\frac{1}{\alpha}}.$

8.2.9 Fonctions circulaires

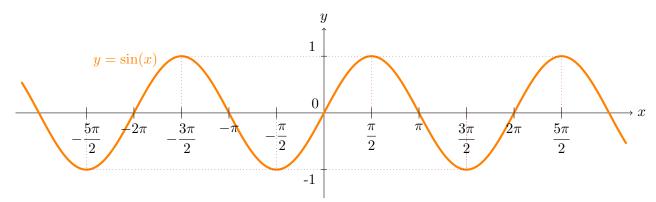
On a vu dans le chapitre « Trigonométrie » les propriétés élémentaires des fonctions cosinus et sinus, à savoir qu'elles sont définies sur \mathbb{R} , 2π -périodiques et d'image [-1,1]. La fonction cosinus est paire tandis que la fonction sinus est impaire.

Il suffit donc de les étudier sur un intervalle de longueur π pour pour pouvoir tracer leur courbe représentative sur $\mathbb R$ tout entier.

On sait que la fonction cosinus est décroissante sur $[0,\pi]$ avec $\cos(0) = 1$ et $\cos(\pi) = -1$. Ceci permet de tracer la courbe du cosinus sur $[0,\pi]$. On la complète sur $[-\pi,\pi]$ par symétrie par rapport à l'axe des ordonnées puis sur $\mathbb R$ tout entier par 2π -périodicité. On obtient la courbe suivante :



On sait que la fonction sinus est croissante sur $[0, \frac{\pi}{2}]$ et décroissante sur $[\frac{\pi}{2}, \pi]$ avec $\sin(0) = 0$, $\sin(\frac{\pi}{2}) = 1$ et $\sin(\pi) = 0$. Ceci permet de tracer la courbe du sinus sur $[0, \pi]$. On la complète sur $[-\pi, \pi]$ par symétrie par rapport à l'origine puis sur \mathbb{R} tout entier par 2π -périodicité. On obtient la courbe suivante :



Enfin, on admettra la propriété suivante :

Proposition 26: Dérivation du cosinus et du sinus

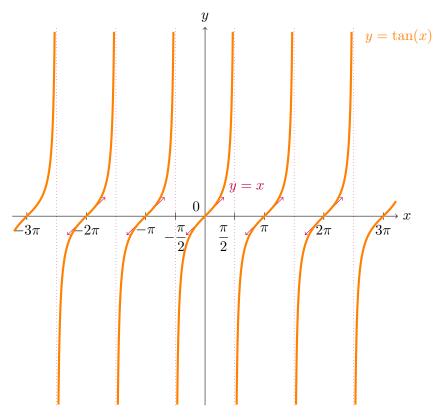
Les fonctions cosinus et sinus sont dérivables sur \mathbb{R} et on a pour tout $x \in \mathbb{R}$,

$$\sin'(x) = \cos(x)$$
 et $\cos'(x) = -\sin(x)$.

On a également vu que la fonction tangente est définie sur $\bigcup_{k\in\mathbb{Z}} \left[-\frac{\pi}{2} + k\pi, \frac{\pi}{2} + k\pi\right]$, est impaire et π -périodique.

On sait que la fonction tangente est strictement croissante sur $[0, \frac{\pi}{2}[$ avec $\tan(0) = 0$ et $\lim_{x \to \frac{\pi}{2}^-} \tan(x) = +\infty$ (car $\lim_{x \to \frac{\pi}{2}^-} \sin(x) = 1$ et $\lim_{x \to \frac{\pi}{2}^-} \cos(x) = 0^+$). Ceci permet de tracer la courbe de la tangente sur $[0, \frac{\pi}{2}[$. On la complète sur $] - \frac{\pi}{2}, \frac{\pi}{2}[$ par symétrie

Ceci permet de tracer la courbe de la tangente sur $\left[0,\frac{\pi}{2}\right]$. On la complète sur $\left]-\frac{\pi}{2},\frac{\pi}{2}\right[$ par symétrie par rapport à l'origine puis sur $\bigcup_{k\in\mathbb{Z}}\left]-\frac{\pi}{2}+k\pi,\frac{\pi}{2}+k\pi\right[$ par π -périodicité. On retrouve en particulier que $\lim_{x\to-\frac{\pi}{2}^+}\tan(x)=-\infty$ et que $\tan(\left]-\frac{\pi}{2},\frac{\pi}{2}\right[)=\mathbb{R}$. On obtient la courbe suivante :



On remarque que pour tout $k \in \mathbb{Z}$, la droite d'équation $x = \frac{\pi}{2} + k\pi$ est une asymptote verticale. Enfin, on a le résultat suivant :

Proposition 27: Dérivation de la fonction tangente

La fonction tangente est dérivable sur $\bigcup_{k\in\mathbb{Z}}]-\frac{\pi}{2}+k\pi, \frac{\pi}{2}+k\pi[$ et on a pour tout $x\not\equiv\frac{\pi}{2}[\pi],$

$$\tan'(x) = 1 + \tan^2(x) = \frac{1}{\cos^2(x)}.$$

 $\begin{aligned} \mathbf{D\acute{e}monstration.} & \text{ Pour tout } x \in \bigcup_{k \in \mathbb{Z}}] - \frac{\pi}{2} + k\pi, \frac{\pi}{2} + k\pi[, \tan(x) = \frac{\sin(x)}{\cos(x)}. \text{ Ainsi, la fonction tangente} \\ & \text{est d\acute{e}rivable sur } \bigcup_{k \in \mathbb{Z}}] - \frac{\pi}{2} + k\pi, \frac{\pi}{2} + k\pi[\text{ comme quotient de fonctions d\acute{e}rivables sur } \bigcup_{k \in \mathbb{Z}}] - \frac{\pi}{2} + k\pi, \frac{\pi}{2} + k\pi[, \frac{\pi}{2} + k\pi[, \frac{\pi}{2} + k\pi], \frac{\pi}{2} + k\pi[, \frac{\pi}{$

$$\tan'(x) = \frac{\sin'(x)\cos(x) - \sin(x)\cos'(x)}{\cos^2(x)} = \frac{\cos^2(x) + \sin^2(x)}{\cos^2(x)} = \frac{1}{\cos^2(x)}.$$

D'autre part, on a également pour tout $x \not\equiv \frac{\pi}{2}[\pi]$,

$$\frac{\cos^2(x) + \sin^2(x)}{\cos^2(x)} = \frac{\cos^2(x)}{\cos^2(x)} + \frac{\sin^2(x)}{\cos^2(x)} = 1 + \tan^2(x).$$

On a donc bien pour tout $x \not\equiv \frac{\pi}{2}[\pi], \tan'(x) = 1 + \tan^2(x) = \frac{1}{\cos^2(x)}.$

Ainsi, l'équation de la tangente à la courbe représentative de la fonction tangente au point (0,0) est

$$y = \tan'(0)(x - 0) + \tan(0) = (1 + \tan^2(0))x = x.$$