Corrigé du devoir maison n°2 A RENDRE POUR LE JEUDI 9 OCTOBRE 2025

Exercice 1

Soit l'application f définie par $f(x) = \frac{x-5}{2x+3}$.

1. Déterminer l'ensemble de définition E de f.

f est définie pour tout réel x tel que $2x + 3 \neq 0$ soit $x \neq -\frac{3}{2}$. Ainsi, $E = \mathbb{R} \setminus \{-\frac{3}{2}\}.$

2. Démontrer que f est bijective de E vers un ensemble à définir et déterminer sa réciproque.

Soit $y \in \mathbb{R}$. On a $y = f(x) \Leftrightarrow \frac{x-5}{2x+3} = y \Leftrightarrow x-5 = y(2x+3) \Leftrightarrow x(-2y+1) = 3y+5$.

- Si $y = \frac{1}{2}$, ceci équivant à $0 = \frac{13}{2}$, ce qui est absurde donc $\frac{1}{2}$ n'admet pas d'antécédent

• Si $y \neq \frac{1}{2}$, ceci équivaut à $x = \frac{3y+5}{-2y+1}$. On définit f^{-1} par $f^{-1}(y) = \frac{3y+5}{-2y+1}$ sur $\mathbb{R} \setminus \{\frac{1}{2}\}$.

On a $f(E) = \mathbb{R} \setminus \{\frac{1}{2}\}$ et pour tout $y \in \mathbb{R} \setminus \{\frac{1}{2}\}$, y admet un unique antécédent x par f qui est $f^{-1}(y)$, ce qui prouve que f est bijective de E sur f(E) et f^{-1} est sa réciproque.

Exercice 2

Considérons l'application f de \mathbb{R} dans \mathbb{R} définie par $f(x) = x^2 - 5x + 4$ pour tout $x \in \mathbb{R}$.

1. f est-elle injective? surjective?

On remarque aisément que f(0) = f(5) = 4. Or $0 \neq 5$ donc f n'est pas injective.

De plus, pour tout réel x, on a :

$$f(x) = x^2 - 5x + 4 = (x - \frac{5}{2})^2 - (\frac{5}{2})^2 + 4 = (x - \frac{5}{2})^2 - \frac{25}{4} + \frac{16}{4} = (x - \frac{5}{2})^2 - \frac{9}{4}$$

Donc $f(x) \geqslant -\frac{9}{4}$.

Tous les réels de l'intervalle] $-\infty$; $-\frac{9}{4}$ [ne sont pas atteints donc f n'est pas surjective.

2. Déterminer les ensembles $f(\mathbb{R})$, f([-4;1]) et $f([-1;+\infty[)$.

• D'après la question précédente, $\operatorname{Im} f \subset [-\frac{9}{4}\,;+\infty[$. Réciproquement, soit $y \in [-\frac{9}{4}\,;+\infty[$. On a alors :

$$f(x) = y \iff \left(x - \frac{5}{2}\right)^2 - \frac{9}{4} = y$$

$$\iff \left(x - \frac{5}{2}\right)^2 = y + \frac{9}{4}$$

Comme $y \in \left[-\frac{9}{4}; +\infty\right[$, on a $y + \frac{9}{4} \geqslant 0$ donc $(x - \frac{5}{2})^2 = y + \frac{9}{4}$ admet au moins une solution (à savoir $\frac{5}{2} + \sqrt{y + \frac{9}{4}}$). Donc $\left[-\frac{9}{4}; +\infty\right[\subset \operatorname{Im} f$.

Par double inclusion, on a $f(\mathbb{R}) = \operatorname{Im} f = \left[-\frac{9}{4}; +\infty \right]$.

Autre raisonnement possible : f est continue sur \mathbb{R} , son minimum vaut $-\frac{9}{4}$ (atteint en $\frac{5}{2}$) et $\lim_{x\to+\infty} f(x) = +\infty$ donc $f(\mathbb{R}) = \operatorname{Im} f \subset [-\frac{9}{4}; +\infty[$.

- f étant décroissante et continue sur $]-\infty; \frac{5}{2}]$ et $[-4;1] \subset]-\infty; \frac{5}{2}]$, on a : f([-4;1]) = [f(1);f(-4)] = [0;40].
- $f([-1; +\infty[) = f([-1; \frac{5}{2}]) \cup f([\frac{5}{2}; +\infty[) = [f(\frac{5}{2}); f(-1)] \cup [f(\frac{5}{2}); +\infty[)$

 $\operatorname{donc}\left[f([-1;+\infty[)=\left[-\frac{9}{4};10\right]\cup\left[-\frac{9}{4};+\infty\right[=\left[-\frac{9}{4};+\infty\right[]\right]\right] \text{ en utilisant le fait que } f \text{ est}$

décroissante et continue sur $]-\infty;\frac{5}{2}]$ et croissante et continue sur $[\frac{5}{2};+\infty[$ et que $\lim_{x\to+\infty}f(x)=+\infty.$

Exercice 3

Soit E un ensemble, A, B deux parties fixées de E. Soit $\phi : \begin{cases} \mathcal{P}(E) & \longrightarrow & \mathcal{P}(A) \times \mathcal{P}(B) \\ X & \longmapsto & (X \cap A, X \cap B) \end{cases}$

- 1. Déterminer $\phi(\emptyset)$ et $\phi(\overline{A \cup B})$.
 - $\bullet \ \phi(\emptyset) = (\emptyset \cap A, \emptyset \cap B) = (\emptyset, \emptyset)$
 - $\phi(\overline{A \cup B}) = (\overline{A \cup B} \cap A, \overline{A \cup B} \cap B) = (\overline{A} \cap \overline{B} \cap A, \overline{A} \cap \overline{B} \cap B) = (\emptyset, \emptyset)$ d'après les lois de De Morgan.
- 2. A quelle condition sur A et B, ϕ est-elle injective?
 - D'après la question précédente, $\phi(\overline{A \cup B}) = \phi(\emptyset) = (\emptyset, \emptyset)$ donc une condition nécessaire d'injectivité est que $\emptyset = \overline{A \cup B}$ soit $E = A \cup B$.
 - Réciproquement, si $E = A \cup B$, soient $X, X' \in \mathcal{P}(E)$ tels que $X \neq X'$. Montrons que $\phi(X) \neq \phi(X')$.

 $X \neq X'$ donc soit $\exists x \in X \text{ et } x \notin X' \text{ soit } \exists x \in X' \text{ et } x \notin X.$

Si $\exists x \in X \text{ et } x \notin X', \ \phi(X) = (X \cap A, X \cap B) \text{ et } \phi(X') = (X' \cap A, X' \cap B).$

Or $x \in E = A \cup B$ donc soit $x \in A$, soit $x \in B$ (ou les deux!).

Si $x \in A$, $X \cap A \neq X' \cap A$ donc $\phi(X) \neq \phi(X')$.

Si $x \in B$, $X \cap B \neq X' \cap B$ donc $\phi(X) \neq \phi(X')$.

On raisonne de même si $\exists x \in X'$ et $x \notin X$.

• En conclusion ϕ est injective si, et seulement si, $E = A \cup B$.

- 3. Est-ce que le couple (\emptyset, B) possède un antécédent par ϕ ?
 - (\emptyset, B) possède un antécédent par ϕ si $\exists X \in \mathcal{P}(E)$ tel que $\phi(X) = (\emptyset, B)$ ce qui signifie $X \cap A = \emptyset$ et $X \cap B = B$.

Cela est équivalent à $X \subset \overline{A}$ et $B \subset X$. Donc $B \subset \overline{A} \Leftrightarrow A \cap B = \emptyset$ (condition nécessaire).

• Réciproquement, si $A \cap B = \emptyset$ alors $\phi(B) = (B \cap A, B \cap B) = (\emptyset, B)$.

Donc B est bien un antécédent de (\emptyset, B) par ϕ .

- Ainsi, le couple (\emptyset, B) possède un antécédent par ϕ si, et seulement si, $A \cap B = \emptyset$.
- 4. A quelle condition sur A et B, ϕ est-elle surjective?
 - \bullet D'après la question précédente, $A\cap B=\emptyset$ est une condition nécessaire pour que ϕ soit surjective.
 - Réciproquement, si $A \cap B = \emptyset$, soit $A' \in \mathcal{P}(A)$ et $B' \in \mathcal{P}(B)$.

Posons $X = A' \cup B' \in \mathcal{P}(E)$.

 $\phi(X) = ((A' \cup B') \cap A, (A' \cup B') \cap B) = ((A' \cap A) \cup (B' \cap A), (A' \cap B) \cup (B' \cap B)) = (A', B')$ d'après les lois de De Morgan et car $A' \cap A = A', B' \cap A = \emptyset, A' \cap B = \emptyset$ et $B' \cap B = B'$.

- En conclusion ϕ est surjective si, et seulement si, $A \cap B = \emptyset$.
- 5. En déduire des conditions nécessaires et suffisantes sur A et B pour que ϕ soit bijective. Déterminer ϕ^{-1} dans ce cas.

D'après les questions précédentes, ϕ est surjective si, et seulement si, $E = A \cup B$ et $A \cap B = \emptyset$ autrement dit si, et seulement, A et B forment une partition de E. On a alors $\phi^{-1}((C,D)) = C \cup D$.

Exercice 4

Déterminer, en fonction de $n \in \mathbb{N}$, le nombre de solutions de l'équation

$$x + y + z = n,$$
 $(x, y, z) \in \mathbb{N}^3$

Une solution de cette équation est un triplet (k, k', p) où $k \in [0; n]$, $k' \in [0; n-k]$ et p est fixé (car il vaut n-k-k'). Ainsi, il suffit de dénombrer ce nombre de triplets. Il y en a autant que

la somme $\sum_{k=0}^{n} \sum_{k'=0}^{n-k} 1$ soit :

$$\sum_{k=0}^{n} \sum_{k'=0}^{n-k} 1 = \sum_{k=0}^{n} n - k + 1$$

$$= \sum_{k=0}^{n} n + 1 - \sum_{k=0}^{n} k$$

$$= (n+1)^{2} - \frac{n(n+1)}{2}$$

$$= \frac{(n+1)(2(n+1) - n)}{2}$$

$$= \frac{(n+1)(n+2)}{2}$$