Devoir maison n°3 A rendre pour le mercredi 5 novembre 2025

Exercice 1

Un anagramme est un mot formé en changeant de place les lettres d'un autre mot (sans rien ajouter ni enlever). Le mot formé peut avoir du sens ou pas.

- 1. Combien d'anagrammes du mot OCCURRENCE peut-on former?
- 2. Combien d'anagrammes du mot OCCURRENCE se terminant par une voyelle peut-on former?

Exercice 2

Résoudre les (in)équations suivantes.

1.
$$\cos x < \frac{\sqrt{3}}{2}$$
 où $x \in [0; 2\pi]$;

2.
$$\sin(4x+1) = \sin\left(\frac{\pi}{3}\right)$$
 où $x \in \mathbb{R}$;

3.
$$\sin^2 x - \frac{3}{2}\sin x - 1 = 0$$
 où $x \in [-\pi; 2\pi]$.

Exercice 3

Soit $\theta = e^{2i\pi/5}$. On définit alors $X = \theta + \theta^4$ et $Y = \theta^2 + \theta^3$.

- 1. Calculer θ^5 puis en déduire que $1+\theta+\theta^2+\theta^3+\theta^4=0.$
- 2. Montrer que les nombres complexes X et Y sont solutions de l'équation (E): $x^2+x-1=0$. On ne cherchera pas à calculer directement X et Y mais plutôt à exprimer X^2+X-1 et Y^2+Y-1 en fonction de θ pour utiliser ensuite les résultats de la question précédente.
- 3. Grâce aux formules d'Euler, prouver que $X=2\cos(\frac{2\pi}{5})$ et $Y=2\cos(\frac{4\pi}{5})$.
- 4. Résoudre l'équation (E) puis en déduire les valeurs exactes de $\cos(\frac{2\pi}{5})$ et $\cos(\frac{4\pi}{5})$.
- 5. Déterminer enfin les valeurs exactes de $\cos(\frac{\pi}{5})$ et $\cos(\frac{3\pi}{5})$.
- 6. Quelle est la valeur exacte de $\cos(\frac{348\pi}{5})$?