Devoir maison n°4 A rendre pour le mercredi 5 novembre 2025

Problème

Dans ce problème, on note ω le nombre complexe $e^{2i\pi/3}$. On pourra remarquer que $w^3=1$. On définit la fonction $f:\mathbb{C}^3\to\mathbb{C}$ par

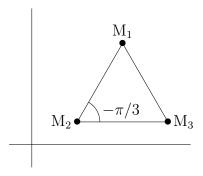
$$\forall (z_1, z_2, z_3) \in \mathbb{C}^3, \quad f(z_1, z_2, z_3) = z_1 + \omega z_2 + \omega^2 z_3.$$

Partie A — Analyse complexe

- 1. (a) Développer le produit $(1-\omega)(1+\omega+\omega^2)$ et en déduire que f(1,1,1)=0.
 - (b) Calculer $f(1, \omega, \omega^2)$ et $f(1, \omega^2, \omega)$.
- 2. (a) Donner le module et un argument du nombre complexe $-\omega$.
 - (b) Donner le module du nombre complexe 1ω .

Partie B — Triangles équilatéraux

On munit le plan usuel d'un repère orthonormé direct et on identifie les points du plan à leur affixe complexe. Étant donnés trois points M_1 , M_2 et M_3 deux à deux distincts, on dit que le triangle $M_1M_2M_3$ est équilatéral direct lorsque $M_2M_1 = M_2M_3$ et la mesure de l'angle orienté $\widehat{M_1M_2M_3}$ vaut $-\pi/3$. La figure suivante montre un exemple de triangle équilatéral direct.



Soient M_1, M_2 et M_3 trois points deux à deux distincts, et z_1, z_2 et z_3 leurs affixes respectives.

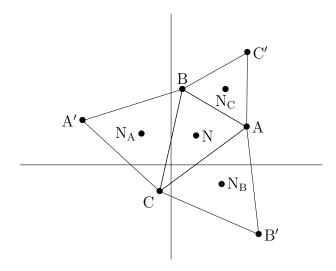
- 1. Montrer que $M_1M_2M_3$ est équilatéral direct si et seulement si $\frac{z_3-z_2}{z_1-z_2}=-\omega$
- 2. En déduire que le triangle $M_1M_2M_3$ est équilatéral direct si et seulement si $f(z_1, z_2, z_3) = 0$.

Partie C — Un résultat géométrique

On donne la définition suivante : étant donné un triangle quelconque $M_1M_2M_3$ du plan complexe, dont les sommets M_1, M_2 et M_3 ont pour affixes z_1, z_2 et z_3 , on appelle **centre de gravité** de $M_1M_2M_3$ le point d'affixe

$$\frac{z_1 + z_2 + z_3}{3}$$

Pour la suite du problème, on place dans la configuration suivante. On fixe trois points A, B et C deux à deux distincts du plan complexe. On construit les points A', B' et C' tels que les triangles A'CB, B'AC et C'BA sont équilatéraux directs. On appelle N, N_A, N_B, N_C les centres de gravité des triangles ABC, A'CB, B'AC et C'BA. On notera α , β , γ , α' , β' , γ' , $z_{\rm N}$, $z_{\rm N_A}$, $z_{\rm N_B}$ et $z_{\rm N_C}$, les affixes respectives des points A, B, C, A', B', C', N, N_A N_B et N_C.



- 1. Exprimer α', β' et γ' en fonction de α, β, γ et ω .
- 2. On pose $\delta = \alpha + \omega \beta + \omega^2 \beta$.
 - (a) Montrer que $z_{\rm N_B} z_{\rm N} = -\frac{\omega \delta}{3}$.
 - (b) Exprimer de même $z_{\rm N_C}-z_{\rm N}$ et $z_{\rm N_A}-z_{\rm N}$ en fonction de ω et δ .
 - (c) Exprimer la longueur $N_A N_B$ en fonction de $|\delta|$.