Corrigé du devoir surveillé de mathématiques n°1 Samedi 20 septembre 2025 (2h00)

Exercice 1

Soit $n \in \mathbb{N}$. Calculer les sommes suivantes :

1.
$$\sum_{k=0}^{n} (k-3)(k-1)$$
.

$$\sum_{k=0}^{n} (k-3)(k-1) = \sum_{k=0}^{n} k^2 - 4k + 3 = \sum_{k=0}^{n} k^2 - 4\sum_{k=0}^{n} k + 3\sum_{k=0}^{n} 1$$
Ainsi
$$\sum_{k=0}^{n} (k-3)(k-1) = \frac{n(n+1)(2n+1)}{6} - 4 \times \frac{n(n+1)}{2} + 3(n+1) = \frac{n(n+1)(2n+1) - 12n(n+1) + 18(n+1)}{6} = \frac{(n+1)\left[n(2n+1) - 12n + 18\right]}{6}$$
donc
$$\sum_{k=0}^{n} (k-3)(k-1) = \frac{(n+1)(2n^2 - 11n + 18)}{6}.$$

$$2. \sum_{k=0}^{n} 3^{k-1} 5^{-2k}.$$

$$\sum_{k=0}^{n} 3^{k-1} 5^{-2k} = 3^{-1} \sum_{k=0}^{n} 3^k \times (5^{-2})^k = 3^{-1} \sum_{k=0}^{n} \left(\frac{3}{25}\right)^k.$$
Puisque $\frac{3}{25} \neq 1$, on a $\sum_{k=0}^{n} 3^{k-1} 5^{-2k} = 3^{-1} \times \frac{1 - \left(\frac{3}{25}\right)^{n+1}}{1 - \frac{3}{25}} = 3^{-1} \times \frac{1 - \left(\frac{3}{25}\right)^{n+1}}{\frac{22}{25}}$ donc
$$\sum_{k=0}^{n} 3^{k-1} 5^{-2k} = \frac{25}{66} \left(1 - \left(\frac{3}{25}\right)^{n+1}\right).$$

3.
$$\sum_{i=0}^{n} \sum_{j=i}^{n} \frac{3i}{j+1}.$$

$$\sum_{i=0}^{n} \sum_{j=i}^{n} \frac{3i}{j+1} = \sum_{j=0}^{n} \sum_{i=0}^{j} \frac{3i}{j+1} = \sum_{j=0}^{n} \frac{3}{j+1} \sum_{i=0}^{j} i = \sum_{j=0}^{n} \frac{3j(j+1)}{2(j+1)} = \frac{3}{2} \sum_{j=0}^{n} j = \frac{3}{2} \frac{n(n+1)}{2}$$

$$\operatorname{donc} \left[\sum_{i=0}^{n} \sum_{j=i}^{n} \frac{3i}{j+1} = \frac{3n(n+1)}{4} \right].$$

Exercice 2

On définit la suite (u_n) par, pour tout entier $n \ge 2$, $u_n = \prod_{k=2}^n \left(1 - \frac{1}{k^2}\right)$.

1. Calculer u_2 et u_3 . On écrire les résultats sous forme de fraction irréductible.

On a:
$$u_2 = 1 - \frac{1}{4} = \frac{3}{4}$$

et $u_3 = \left(1 - \frac{1}{4}\right) \times \left(1 - \frac{1}{9}\right) = \frac{3}{4} \times \frac{8}{9} = \frac{2}{3}$

2. Montrer que, pour tout entier $n \ge 2$, $u_n = \frac{n+1}{2n}$.

Pour tout entier
$$n \ge 2$$
, $u_n = \prod_{k=2}^n \left(1 - \frac{1}{k^2}\right) = \prod_{k=2}^n \left(\frac{k^2 - 1}{k^2}\right) = \prod_{k=2}^n \left(\frac{(k-1)(k+1)}{k^2}\right) = \prod_{k=2}^n (k-1) \times \prod_{k=2}^n (k+1) = \prod_{k=2}^{n-1} k \times \prod_{k=3}^{n+1} k$

$$\prod_{k=2}^n k^2 = \prod_{k=2}^n k^2 = \prod_{k=2}^n k^2 = \prod_{k=2}^n k \times \frac{n+1}{2} \prod_{k=2}^n k$$
On en déduit que $u_n = \frac{1}{n} \prod_{k=2}^n k \times \frac{n+1}{2} \prod_{k=2}^n k = \frac{n+1}{2n} \times \frac{\prod_{k=2}^n k \times k}{\prod_{k=2}^n k^2}$

$$\operatorname{donc} \left[u_n = \frac{n+1}{2n}\right].$$

3. En déduire la limite de la suite (u_n) .

Pour tout entier
$$n \ge 2$$
, $u_n = \frac{n+1}{2n} = \frac{n(1+\frac{1}{n})}{2n} = \frac{1+\frac{1}{n}}{2}$.

Or $\lim_{n \to +\infty} \frac{1}{n} = 0$.

Donc $\lim_{n \to +\infty} u_n = \frac{1}{2}$.

Exercice 3

Résoudre les équations suivantes :

$$1. \ \frac{5x}{x+1} - \frac{4x}{x-2} = 0$$

Pour tous $x \neq -1$ et $x \neq 2$:

$$\frac{5x}{x+1} - \frac{4x}{x-2} = 0 \iff \frac{5x}{x+1} = \frac{4x}{x-2}$$

$$\iff \frac{5x}{x+1} = \frac{4x}{x-2}$$

$$\iff 5x(x-2) = 4x(x+1)$$

$$\iff x[5(x-2) - 4(x+1)] = 0$$

$$\iff x(x-14) = 0$$

$$\iff x = 0 \text{ ou } x = 14$$

L'ensemble des solutions est donc $\mathscr{S} = \{0; 14\}$

2.
$$|3x+1| = |5x-8|$$

On a:

$$|3x+1| = |5x-8| \iff 3x+1 = 5x-8 \text{ ou } 3x+1 = -5x+8$$

 $\iff 9 = 2x \text{ ou } 8x = 7$
 $\iff x = \frac{9}{2} \text{ ou } \frac{7}{8}$

L'ensemble des solutions est donc $\mathscr{S} = \left\{ \frac{9}{2}, \frac{7}{8} \right\}$

3.
$$\sqrt{3x+2} = \sqrt{x^2+x-6}$$

On raisonne par analyse-synthèse.

• Analyse : Soit x un réel pour lequel l'équation est bien définie.

En élevant cette équation au carré, on obtient $3x + 2 = x^2 + x - 6$ d'où $x^2 - 2x - 8 = 0$. On a alors $\Delta = 4 + 32 = 36$.

Ce trinôme du second degré admet pour racines $x_1 = \frac{2-6}{2} = -2$ et $x_2 = \frac{2+6}{2} = 4$ donc si x est solution de l'équation de départ, nécessairement x = -2 ou x = 4.

• Synthèse : Vérifions si x = -2 et x = 4 sont bien solutions de l'équation.

Si x=-2, on a 3x+2=-6+2=-4 donc l'équation n'est pas définie pour x=-2 donc x=-2 n'est pas solution de l'équation.

Si x=4, on a bien $\sqrt{3x+2}=\sqrt{14}$ et $\sqrt{x^2+x-6}=\sqrt{16+4-6}=\sqrt{14}$ donc x=4 est solution de l'équation.

3

Ainsi, l'unique solution de l'équation est x = 4.

L'ensemble des solutions est donc $\mathscr{S} = \{4\}$.

Exercice 4

L'objectif de cet exercice est de démontrer que, pour tout $n \in \mathbb{N}^*$, $\lfloor \sqrt{n} + \sqrt{n+1} \rfloor = \lfloor \sqrt{4n+2} \rfloor$.

1. Soit $n \in \mathbb{N}^*$. On souhaite montrer que $\lfloor \sqrt{n} + \sqrt{n+1} \rfloor \leqslant \lfloor \sqrt{4n+2} \rfloor$.

(a) Montrer que
$$(\sqrt{4n+2})^2 - (\sqrt{n} + \sqrt{n+1})^2 = \frac{\sqrt{n+1} - \sqrt{n}}{\sqrt{n} + \sqrt{n+1}}$$

On a:
$$(\sqrt{4n+2})^2 - (\sqrt{n} + \sqrt{n+1})^2 = 4n + 2 - (n+2\sqrt{n}\sqrt{n+1} + n+1)$$

$$= 2n + 1 - 2\sqrt{n}\sqrt{n+1}$$

$$= 2\sqrt{n}(\sqrt{n} - \sqrt{n+1}) + 1$$

$$= 2\sqrt{n}\frac{\sqrt{n^2} - \sqrt{n+1}^2}{\sqrt{n} + \sqrt{n+1}} + \frac{\sqrt{n} + \sqrt{n+1}}{\sqrt{n} + \sqrt{n+1}}$$

$$= \frac{-2\sqrt{n} + \sqrt{n} + \sqrt{n+1}}{\sqrt{n} + \sqrt{n+1}}$$

$$= \frac{\sqrt{n+1} - \sqrt{n}}{\sqrt{n} + \sqrt{n+1}}$$
On a bien
$$(\sqrt{4n+2})^2 - (\sqrt{n} + \sqrt{n+1})^2 = \frac{\sqrt{n+1} - \sqrt{n}}{\sqrt{n} + \sqrt{n+1}} .$$

(b) En déduire que $\lfloor \sqrt{n} + \sqrt{n+1} \rfloor \leqslant \lfloor \sqrt{4n+2} \rfloor$.

Comme
$$(\sqrt{4n+2})^2 - (\sqrt{n} + \sqrt{n+1})^2 = \frac{\sqrt{n+1} - \sqrt{n}}{\sqrt{n} + \sqrt{n+1}} > 0$$
, on a alors $(\sqrt{4n+2})^2 > (\sqrt{n} + \sqrt{n+1})^2$. Donc, par la stricte croissance de la fonction racine carrée, $\sqrt{n} + \sqrt{n+1} < \sqrt{4n+2}$. Enfin, par croissance de la fonction partie entière, $\lfloor \sqrt{n} + \sqrt{n+1} \rfloor \leqslant \lfloor \sqrt{4n+2} \rfloor$.

- 2. Par l'absurde, on suppose qu'il existe $n \in \mathbb{N}^*$ tel que $\lfloor \sqrt{n} + \sqrt{n+1} \rfloor < \lfloor \sqrt{4n+2} \rfloor$.
 - (a) Montrer alors que $\sqrt{n} + \sqrt{n+1} \le |\sqrt{4n+2}|$.

Les nombres
$$\lfloor \sqrt{n} + \sqrt{n+1} \rfloor$$
 et $\lfloor \sqrt{4n+2} \rfloor$ étant entiers, $\lfloor \sqrt{n} + \sqrt{n+1} \rfloor < \lfloor \sqrt{4n+2} \rfloor$ implique que $\lfloor \sqrt{n} + \sqrt{n+1} \rfloor + 1 \leqslant \lfloor \sqrt{4n+2} \rfloor$. Or, pour tout réel $x, x \leqslant \lfloor x \rfloor + 1$. Donc, en particulier, $\sqrt{n} + \sqrt{n+1} \leqslant \lfloor \sqrt{n} + \sqrt{n+1} \rfloor + 1$. Par conséquent, $\lfloor \sqrt{n} + \sqrt{n+1} \leqslant \lfloor \sqrt{4n+2} \rfloor$.

(b) En déduire que $|\sqrt{4n+2}|^2 = 4n + 2$.

Par croissance de la fonction carrée, $(\sqrt{n}+\sqrt{n+1})^2 \leqslant (\lfloor \sqrt{4n+2} \rfloor)^2$. Donc $n+2\sqrt{n}\sqrt{n+1}+n+1 \leqslant (\lfloor \sqrt{4n+2} \rfloor)^2$ soit $2n+2\sqrt{n}\sqrt{n+1}+1 \leqslant (\lfloor \sqrt{4n+2} \rfloor)^2$. On remarque que $\sqrt{n} < \sqrt{n+1}$ donc $2n+2\sqrt{n}\sqrt{n}+1 < 2n+2\sqrt{n}\sqrt{n+1}+1$ soit $4n+1 < 2n+2\sqrt{n}\sqrt{n+1}+1$ et donc $4n+1 < (\lfloor \sqrt{4n+2} \rfloor)^2$. Comme $\lfloor \sqrt{4n+2} \rfloor \leqslant \sqrt{4n+2}$, on a $(\lfloor \sqrt{4n+2} \rfloor)^2 \leqslant \sqrt{4n+2}^2 = 4n+2$. Ainsi, $(\lfloor \sqrt{4n+2} \rfloor)^2 \in]4n+1;4n+2]$. Or le seul entier de l'intervalle]4n+1;4n+2] est 4n+2. On a ainsi $\lfloor \lfloor \sqrt{4n+2} \rfloor^2 = 4n+2$.

(c) Soit $p \in \mathbb{N}$. Montrer que p^2 pair $\Longrightarrow p$ pair.

Montrons la contraposée : p impair $\Longrightarrow p^2$ impair. Soit $p \in \mathbb{N}$ impair. Il existe $k \in \mathbb{N}$ tel que p = 2k + 1. On a alors $p^2 = (2k + 1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$ où $2k^2 + 2k \in \mathbb{N}$ donc p^2 est impair. On en déduit que p^2 pair $\Longrightarrow p$ pair.

(d) En déduire que l'égalité de la question 2. (b) est absurde.

Comme $\lfloor \sqrt{4n+2} \rfloor^2 = 4n+2 = 2(2n+1)$ avec $2n+1 \in \mathbb{N}$, on en déduit que $\lfloor \sqrt{4n+2} \rfloor^2$ est pair.

Donc d'après la question précédente, $\lfloor \sqrt{4n+2} \rfloor$ est pair.

Il existe donc $m \in \mathbb{N}$ tel que $|\sqrt{4n+\overline{2}}| = 2m$.

On a alors $[\sqrt{4n+2}]^2 = (2m)^2 = 4m^2 = 4n+2$.

Donc $2m^2 = 2n + 1$, ce qui est absurde (un entier ne peut pas être à la fois pair et impair.

L'hypothèse « il existe $n \in \mathbb{N}^*$ tel que $\lfloor \sqrt{n} + \sqrt{n+1} \rfloor < \lfloor \sqrt{4n+2} \rfloor$ » est donc fausse.

(e) Conclure.

Pour tout $n \in \mathbb{N}$, on a montré que $\lfloor \sqrt{n} + \sqrt{n+1} \rfloor \leq \lfloor \sqrt{4n+2} \rfloor$ puis que l'inégalité $\lfloor \sqrt{n} + \sqrt{n+1} \rfloor < \lfloor \sqrt{4n+2} \rfloor$ était impossible, on en déduit que $\lfloor \sqrt{n} + \sqrt{n+1} \rfloor = \lfloor \sqrt{4n+2} \rfloor$.

5

Problème 1

Soit $(u_n)_{n\in\mathbb{N}^*}$ une suite de nombres réels.

On dit que la suite $(u_n)_{n\in\mathbb{N}^*}$ vérifie la propriété \mathscr{P} si pour tout $n\in\mathbb{N}^*$, $\sum_{k=1}^n u_k^3 = \left(\sum_{k=1}^n u_k\right)^2$.

1. Enoncer la négation de la propriété \mathscr{P} .

On a:
$$\neg \left(\forall n \in \mathbb{N}^*, \sum_{k=1}^n u_k^3 = \left(\sum_{k=1}^n u_k \right)^2 \right) \Longleftrightarrow \exists n \in \mathbb{N}^*, \quad \sum_{k=1}^n u_k^3 \neq \left(\sum_{k=1}^n u_k \right)^2.$$

2. Donner un exemple de suite (non constante) ne vérifiant pas la propriété \mathscr{P} .

Il suffit de prendre la suite $(u_n)_{n\in\mathbb{N}^*}$ définie par $u_1=2$ et $u_k=0$ pour tout $k\geqslant 2$. On alors $\sum_{k=1}^1 u_k^3=2^3=8\neq \left(\sum_{k=1}^1 u_k\right)^2=2^2=4$. La négation de $\mathscr P$ est donc vérifiée.

3. Déterminer les suites constantes vérifiant la propriété \mathscr{P} .

Soit $(u_n)_{n\in\mathbb{N}^*}$ une suite constante. Il existe donc $C\in\mathbb{R}$ tel que $\forall n\in\mathbb{N}^*, u_n=C$.

Soit $n \in \mathbb{N}^*$. On a alors :

$$\sum_{k=1}^{n} u_k^3 = nC^3 \text{ et } \left(\sum_{k=1}^{n} u_k\right)^2 = C^2 n^2.$$

 $n \neq 0$ donc $C^3 = nC^2$ soit $C^2(C - n) = 0$.

Ceci étant vrai pour tout $n \in \mathbb{N}^*$, cela implique que $C^2 = 0$ et donc C = 0.

La suite nulle est la seule suite constante qui vérifie la propriété ${\mathscr P}.$

4. On cherche à savoir si la suite $(v_n)_{n\in\mathbb{N}^*}$, définie par, pour tout $n\in\mathbb{N}^*$, $v_n=n$, vérifie la propriété \mathscr{P} . Soit $n\in\mathbb{N}^*$.

6

(a) Donner la valeur de la somme $\sum_{k=1}^{n} k$.

On a
$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}.$$

(b) Démontrer que, pour tout $n \in \mathbb{N}^*$, $\sum_{k=1}^n k^3 = \left(\frac{n(n+1)}{2}\right)^2$.

Montrons par récurrence que, pour tout $n \in \mathbb{N}^*$, $\sum_{k=1}^n k^3 = \left(\frac{n(n+1)}{2}\right)^2$.

Initialisation : Pour n = 1, on a :

$$\sum_{k=1}^{1} k^3 = 1^3 = 1, \text{ et } \left(\frac{1 \cdot (1+1)}{2}\right)^2 = \left(\frac{2}{2}\right)^2 = 1.$$

La formule est donc vérifiée au rang n = 1.

Hérédité : Supposons que pour un certain entier $n \geq 1$, la formule soit vraie, c'est-à-dire :

$$\sum_{k=1}^{n} k^3 = \left(\frac{n(n+1)}{2}\right)^2.$$

Montrons qu'elle reste vraie au rang n + 1.

On a:

$$\sum_{k=1}^{n+1} k^3 = \left(\sum_{k=1}^n k^3\right) + (n+1)^3.$$

En utilisant l'hypothèse de récurrence :

$$\sum_{k=1}^{n+1} k^3 = \left(\frac{n(n+1)}{2}\right)^2 + (n+1)^3$$

$$= \frac{n^2(n+1)^2}{4} + (n+1)^3$$

$$= (n+1)^2 \left(\frac{n^2}{4} + (n+1)\right)$$

$$= (n+1)^2 \left(\frac{n^2 + 4n + 4}{4}\right)$$

$$= (n+1)^2 \cdot \frac{(n+2)^2}{4}$$

$$= \left(\frac{(n+1)(n+2)}{2}\right)^2$$

C'est exactement la formule attendue au rang n + 1.

Conclusion : Par le principe de récurrence, la formule est vraie pour tout entier $n \ge 1$.

$$\sum_{k=1}^{n} k^3 = \left(\frac{n(n+1)}{2}\right)^2$$

7

(c) Conclure.

Pour tout
$$n \in \mathbb{N}^*$$
, on a bien $\sum_{k=1}^n v_k^3 = \left(\sum_{k=1}^n v_k\right)^2$.
La suite $(v_n)_{n \in \mathbb{N}^*}$ vérifie donc la propriété \mathscr{P} .

Problème 2

Pour toute partie A de \mathbb{R} et tout réel $a \in A$, on dit que a est un point isolé de A si la propriété suivante est vérifiée :

$$\exists \varepsilon > 0, \quad A \cap [a - \varepsilon, a + \varepsilon] = \{a\}.$$
 (*)

1. Soit $n \in \mathbb{N}$. Montrer que n est un point isolé de \mathbb{N} .

On cherche un réel $\varepsilon > 0$ tel que $\mathbb{N} \cap]n - \varepsilon, n + \varepsilon [= \{n\}]$. Il suffit de prendre $\varepsilon = \frac{1}{2}$. Alors $\mathbb{N} \cap]n - \frac{1}{2}, n + \frac{1}{2}[= \{n\}]$ (car le seul entier de l'intervalle $]n - \frac{1}{2}, n + \frac{1}{2}[$ est n). On a bien trouvé un réel $\varepsilon > 0$ tel que $\mathbb{N} \cap]n - \varepsilon, n + \varepsilon [= \{n\}]$. Par conséquent, la propriété (*) est vérifiée et donc n est un point isolé de \mathbb{N} .

2. Existe-t-il un point de Z qui n'est pas isolé? Justifier.

Soit $n \in \mathbb{Z}$. En raisonnant comme à la question précédente, on a $\mathbb{Z} \cap]n - \frac{1}{2}, n + \frac{1}{2}[=\{n\}]$ donc n est un point isolé de \mathbb{Z} . Puisque ceci est vrai pour n'importe quel entier $n \in \mathbb{Z}$, on en déduit que tous les points de \mathbb{Z} sont isolés, et donc qu'il n'existe pas de point de \mathbb{Z} qui n'est pas isolé.

3. (a) Écrire la négation de la propriété (*).

(b) On a:
$$\neg (\exists \varepsilon > 0, A \cap]a - \varepsilon, a + \varepsilon [= \{a\}) \iff \forall \varepsilon > 0, A \cap]a - \varepsilon, a + \varepsilon [\neq \{a\}]$$
.

(c) Soit $x \in \mathbb{R}$. Montrer que x n'est pas un point isolé de \mathbb{R} .

Pour montrer que x n'est pas un point isolé de \mathbb{R} , il suffit de prouver que la propriété (*) n'est pas vérifiée, donc que sa négation est vérifiée, c'est-à-dire, d'après le résultat de la question précédente, que :

$$\forall \varepsilon > 0, \quad \mathbb{R} \cap]x - \varepsilon, x + \varepsilon \neq \{x\}.$$

On commence donc par fixer un réel $\varepsilon>0.$ On a :

 $\frac{x+x+\varepsilon}{2} = x + \frac{\varepsilon}{2} \in \mathbb{R} \cap]x - \varepsilon, x + \varepsilon [\text{ car, comme } \varepsilon > 0, \text{ on a } x - \varepsilon < x + \frac{\varepsilon}{2} < x + \varepsilon.$ Donc $\mathbb{R} \cap]x - \varepsilon, x + \varepsilon [=]x - \varepsilon, x + \varepsilon [\neq \{x\}.$

Puisque ceci est vrai pour n'importe quel réel $\varepsilon > 0$, on a bien montré que :

$$\forall \varepsilon>0, \quad \mathbb{R}\cap]x-\varepsilon, x+\varepsilon [\neq \{x\}.$$

Par conséquent, la négation de la propriété (*) est vérifiée et donc x n'est pas un point isolé de \mathbb{R} .

Remarque : l'intervalle $]x - \varepsilon, x + \varepsilon[$ contient une infinité de réels.

4. (a) Dans cette question, on fixe un rationnel $\frac{p}{q} \in \mathbb{Q}$ où $(p,q) \in \mathbb{Z} \times \mathbb{N}^*$, un réel $\varepsilon > 0$, et un entier $n \in \mathbb{N}$ supérieur à $2/\varepsilon$. Montrer que :

8

$$0 < \left| r - \frac{p}{q} \right| < \varepsilon$$
 où $r = \frac{np + q}{nq} \in \mathbb{Q}$.

(b) On a:

$$\left|r - \frac{p}{q}\right| = \left|\frac{np+q}{nq} - \frac{p}{q}\right| = \left|\frac{np+q-np}{nq}\right| = \left|\frac{q}{nq}\right| = \left|\frac{1}{n}\right| = \frac{1}{n}$$
 car n est positif.

Or $n \geqslant 2/\varepsilon > 0$ donc $\frac{1}{n} > 0$ et $\frac{1}{n} \leqslant \frac{1}{2/\varepsilon} = \frac{\varepsilon}{2} < \varepsilon$. On en déduit bien que :

$$0 < \left| r - \frac{p}{q} \right| < \varepsilon.$$

(c) En déduire qu'aucun point de $\mathbb Q$ n'est isolé.

Puisque $\left|r-\frac{p}{q}\right|<\varepsilon$ d'après le résultat de la question précédente, on en déduit, d'après les propriétés de la valeur absolue, que $r\in]\frac{p}{q}-\varepsilon, \frac{p}{q}+\varepsilon[$. De plus, $r\in \mathbb{Q}$ et $r\neq \frac{p}{q}$ (car $\left|r-\frac{p}{q}\right|>0$ d'après le résultat de la question précédente). Par conséquent, l'intervalle $]\frac{p}{q}-\varepsilon, \frac{p}{q}+\varepsilon[$ contient au moins deux rationnels différents : $\frac{p}{q}$ et r. Puisque ceci est vrai pour n'importe quel réel $\varepsilon>0$, on a montré que :

$$\forall \varepsilon > 0, \quad \mathbb{Q} \cap \left[\frac{p}{q} - \varepsilon, \frac{p}{q} + \varepsilon \right] \neq \left\{ \frac{p}{q} \right\}.$$

Par conséquent, la négation de la propriété (*) est vérifiée et donc $\frac{p}{q}$ n'est pas un point isolé de \mathbb{Q} . Puisque ceci est vrai pour n'importe quel rationnel $\frac{p}{q} \in \mathbb{Q}$, on en déduit que tous les points de \mathbb{Q} ne sont pas isolés, et donc qu'aucun point de \mathbb{Q} n'est isolé.

5. (a) Soit $B = [1, 2] \cup \{0\}$. Prouver que 0 est le seul point isolé de B.

On a $[1,2]\cap]-\frac{1}{2},\frac{1}{2}[=\emptyset$ donc $B\cap]0-\frac{1}{2},0+\frac{1}{2}[=\{0\}]$. Ainsi, on a trouvé un réel $\varepsilon=\frac{1}{2}>0$ tel que $B\cap]0-\varepsilon,0+\varepsilon[=\{0\}]$. On en déduit que 0 est un point isolé de B. Montrons que c'est le seul, c'est-à-dire que les autres points de B ne sont pas isolés. Soit x un autre point de B, donc $x\in[1,2]$. On fixe un réel $\varepsilon>0$. Alors l'ensemble $[1,2]\cap]x-\varepsilon,x+\varepsilon[$ contient une infinité de réels, donc $B\cap]x-\varepsilon,x+\varepsilon[\neq\{x\}]$. Puisque ceci est vrai pour tout réel $\varepsilon>0$, on en déduit que x n'est pas un point isolé de B. Puisque ceci est vrai pour tout $x\in[1,2]$, on en déduit finalement que 0 est le seul point isolé de B.

(b) Soit $C = \left\{ \frac{1}{n} \middle| n \in \mathbb{N}^* \right\} \cup \{0\}$. Prouver que 0 est le seul point non isolé de C.

On fixe un réel $\varepsilon > 0$ et un entier $n \in \mathbb{N}$ supérieur à $2/\varepsilon$. On a $\frac{1}{n} \leqslant \frac{1}{2/\varepsilon} = \frac{\varepsilon}{2} < \varepsilon$ donc :

$$\frac{1}{n} \in]0 - \varepsilon, 0 + \varepsilon[.$$

Autrement dit, $C \cap]0 - \varepsilon, 0 + \varepsilon [\neq \{0\}]$ pour tout $\varepsilon > 0$. On en déduit que 0 n'est pas un point isolé de C.

Montrons que c'est le seul, c'est-à-dire que les autres points de C sont isolés. Soit $\frac{1}{n}$ un autre point de C, où $n \in \mathbb{N}^*$ est fixé. On raisonne par analyse-synthèse.

• Analyse : On cherche un réel $\varepsilon > 0$ tel que $C \cap]\frac{1}{n} - \varepsilon, \frac{1}{n} + \varepsilon = \{\frac{1}{n}\}$. Puisque $\frac{1}{n+1}$ est l'élément de C qui précède $\frac{1}{n}$, il faut que ε soit plus petit que la distance entre $\frac{1}{n+1}$ et $\frac{1}{n}$, c'est-à-dire :

$$\varepsilon < \frac{1}{n} - \frac{1}{n+1} = \frac{n+1-n}{n(n+1)} = \frac{1}{n(n+1)}$$

De même, puis que $\frac{1}{n-1}$ est l'élément de C qui suit $\frac{1}{n}$, il faut que ε soit plus petit que la distance entre $\frac{1}{n-1}$ et $\frac{1}{n}$, c'est-à-dire :

$$\varepsilon < \frac{1}{n-1} - \frac{1}{n} = \frac{n - (n-1)}{(n-1)n} = \frac{1}{(n-1)n}$$

Il suffit donc que:

$$\varepsilon < \min\left(\frac{1}{n(n+1)}, \frac{1}{(n-1)n}\right) = \frac{1}{n(n+1)} \quad \operatorname{car} n(n+1) > (n-1)n.$$

• Synthèse : On pose $\varepsilon = \frac{1}{2n(n+1)}$. D'après les calculs de l'analyse, on a :

$$C \cap \left[\frac{1}{n} - \varepsilon, \frac{1}{n} + \varepsilon \right] = \left\{ \frac{1}{n} \right\}.$$

On en déduit que $\frac{1}{n}$ est un point isolé de C. Puisque ceci est vrai pour tout $n \in \mathbb{N}^*$, on a bien montré que 0 est le seul point non isolé de C.

6. Soient $A \subset \mathbb{R}$ et $a \in A$. Démontrer que a est un point isolé de A si et seulement si la propriété suivante est vérifiée :

$$\exists \varepsilon > 0, \quad A \cap [a - \varepsilon, a + \varepsilon] = \{a\}.$$
 (**)

$$\exists \varepsilon > 0, \quad A \cap [a - \varepsilon, a + \varepsilon] = \{a\}.$$
 (**)

Pour ne pas confondre la variable muette ε dans la propriété (*) et la variable muette ε dans la propriété (**), on utilise des notations différentes. Montrons que :

$$\exists \varepsilon_1 > 0, \quad A \cap [a - \varepsilon_1, a + \varepsilon_1] = \{a\} \iff \exists \varepsilon_2 > 0, \quad A \cap [a - \varepsilon_2, a + \varepsilon_2] = \{a\}.$$

On raisonne par double implication.

 1^{re} implication \Leftarrow .

On suppose qu'il existe un réel $\varepsilon_2 > 0$ tel que $A \cap [a - \varepsilon_2, a + \varepsilon_2] = \{a\}$. On cherche $\varepsilon_1 > 0$ tel que $A \cap [a - \varepsilon_1, a + \varepsilon_1] = \{a\}$. Or :

$${a} \subset A \cap [a - \varepsilon_2, a + \varepsilon_2 \subset A \cap [a - \varepsilon_2, a + \varepsilon_2] = {a}.$$

Donc $A \cap [a - \varepsilon_2, a + \varepsilon_2] = \{a\}$. Par conséquent, il suffit de poser $\varepsilon_1 = \varepsilon_2$.

Attention : contrairement à la première implication, il ne suffit pas de poser $\varepsilon_2 = \varepsilon_1$. En effet, si $a - \varepsilon_1 \in A$ ou si $a + \varepsilon_1 \in A$, on a $A \cap]$ $a - \varepsilon_1$, $a + \varepsilon_1 [= \{a\} \text{ mais } A \cap [a - \varepsilon_1, a + \varepsilon_1] \neq \{a\}$. Il faut donc choisir un ε_2 plus petit.

On a:

$$\{a\}\subset A\cap \left[a-\frac{\varepsilon_1}{2},a+\frac{\varepsilon_1}{2}\right]\subset A\cap \right]a-\varepsilon_1,a+\varepsilon_1[=\{a\}.$$

Donc $A \cap \left[a - \frac{\varepsilon_1}{2}, a + \frac{\varepsilon_1}{2}\right] = \{a\}$. Par conséquent, il suffit de poser $\varepsilon_2 = \frac{\varepsilon_1}{2}$.

Conclusion. Pour double implication, on a montré que les propriétés (*) et (**) sont équivalentes, et donc que a est un point isolé de A si et seulement si la propriété (**) est vérifiée.