9

Calcul différentiel et intégral

10 Calcul différentiel et intégral 1 10.1 Calculs de dérivées et applications 2 10.1.1 Opérations sur les dérivées 2
10.1 Calculs de dérivées et applications
zonz carcaro de derrives et approations
10.1.1 Opérations sur les dérivées
10.1.2 Dérivées d'ordre supérieur
10.1.3 Monotonie et signe de la dérivée
10.2 Fonctions réelles de deux variables réelles
10.2.1 Définition et propriétés
10.2.2 Fonctions partielles
10.2.3 Dérivées partielles
10.3 Primitives
10.3.1 Définition et propriétés
10.3.2 Primitives usuelles
10.4 Intégrale
10.4.1 Définition de l'intégrale
10.4.2 Propriétés de l'intégrale
10.4.3 Valeur moyenne d'une fonction
10.4.4 Théorème fondamental de l'analyse
10.5 Méthodes de calculs
10.5.1 Intégration par parties
10.5.2 Changement de variable

Dans tout le chapitre, I désigne un intervalle réel.

9.1 Calculs de dérivées et applications

9.1.1 Opérations sur les dérivées

Proposition 1: Opérations élémentaires sur les dérivées

Soit u, v deux fonctions dérivables sur un intervalle I.

Éléments de départ	Opérations	Fonctions dérivées
u et v	Somme $u + v$	(u+v)' = u' + v'
u et v	Produit uv	(uv)' = u'v + uv'
u, k nombre réel	Produit ku	(ku)' = ku'
v ne s'annule sur I	Inverse $\frac{1}{v}$	$\left(\frac{1}{v}\right)' = \frac{-v'}{v^2}$
u et v , v ne s'annule sur I	Quotient $\frac{u}{v}$	$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$

Proposition 2: Dérivation d'une fonction composée

Soit $f: I \longrightarrow J$, soit $g: J \longrightarrow \mathbb{R}$. Soit $a \in I$.

On suppose que f est dérivable I et que g est dérivable sur J

Alors $g \circ f$ est dérivable sur I et

$$(g \circ f)' = f' \times g' \circ f.$$

Corollaire 1: Dérivation de fonctions composées

Soit u, v deux fonctions dérivables sur un intervalle I.

Éléments de départ	Opérations	Fonctions dérivées
$u \text{ et } n \in \mathbb{N}$	Puissance	$(u^n)' = n \times u' \times u^{n-1}$
$u \text{ et } n \in \mathbb{N}$	Puissance négative	$\left(\frac{1}{u^n}\right)' = -\frac{nu'}{u^{n+1}}$
u (u > 0)	Racine	$(\sqrt{u})' = \frac{u'}{2\sqrt{u}}$
u	Exponentielle	$(\exp(u))' = u' \times \exp u$
u (u > 0)	Logarithme	$(\ln(u))' = \frac{u'}{u}$
u	Cosinus	$(\cos(u))' = -u' \times \sin(u)$
u	Sinus	$(\sin(u))' = u' \times \cos(u)$

Démonstration. Ceci découle de la proposition précédente et des dérivées des fonctions usuelles.

Exemple 1. Soient f, g et h les fonctions définies sur \mathbb{R} par $f(x) = xe^x$, $g(x) = x^2 + 3x - 7$ et $h(x) = \frac{5}{x^2 + 1}$. Pour tout réel x, on a :

•
$$f'(x) = (x+1)e^x$$
 • $g'(x) = 2x+3$ • $h'(x) = -\frac{10x}{(x^2+1)^2}$

Exemple 2. La fonction $\tan = \frac{\sin}{\cos}$ est dérivable sur $]-\frac{\pi}{2}+k\pi, \frac{\pi}{2}+k\pi[$ pour tout $k \in \mathbb{Z}$, et on a pour tout $k \in \mathbb{Z}$, pour tout $x \in]-\frac{\pi}{2}+k\pi, \frac{\pi}{2}+k\pi[$,

$$\tan'(x) = \frac{\sin'(x)\cos(x) - \sin(x)\cos'(x)}{\cos^2(x)} = \frac{\cos^2(x) + \sin^2(x)}{\cos^2(x)} = \frac{1}{\cos^2(x)} = 1 + \tan^2(x).$$

Remarque 1. En physique, la dérivée d'une fonction f de variable x se note $\frac{df}{dx}(\frac{df}{dx}(x_0))$ si on considère la dérivée de f en x_0). Cette notation indique que la dérivée de f en x_0 correspond au rapport de la variation infinitésimale de f (notée df) et de la variation infinitésimale de x (notée dx) autour de x_0 .

Exemple 3. Si $f: x \mapsto x^2 + 3$ alors $\frac{df}{dx}(x_0) = 2x_0$

Exemple 4. La fonction $\tan = \frac{\sin}{\cos}$ est dérivable sur $]-\frac{\pi}{2}+k\pi, \frac{\pi}{2}+k\pi[$ pour tout $k \in \mathbb{Z}$, et on a pour tout $k \in \mathbb{Z}$, pour tout $x \in]-\frac{\pi}{2}+k\pi, \frac{\pi}{2}+k\pi[$,

$$\tan'(x) = \frac{\sin'(x)\cos(x) - \sin(x)\cos'(x)}{\cos^2(x)} = \frac{\cos^2(x) + \sin^2(x)}{\cos^2(x)} = \frac{1}{\cos^2(x)} = 1 + \tan^2(x).$$

Proposition 3: Dérivation d'une fonction réciproque

Soient I et J des intervalles réels. Soit $f:I\longrightarrow J$ une application continue sur I, strictement monotone et bijective de bijection réciproque $f^{-1}:J\longrightarrow I$.

Soit $a \in I$ tel que f est dérivable en a avec $f'(a) \neq 0$.

Alors f^{-1} est dérivable en f(a) et

$$(f^{-1})'(f(a)) = \frac{1}{f'(a)}.$$

Ainsi, si f est dérivable sur I alors pour tout $x \in J$, f^{-1} est dérivable en x si et seulement si $f'(f^{-1}(x)) \neq 0$ et dans ce cas, on a

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}.$$

Rappelons que la bijection réciproque de tan :] $-\frac{\pi}{2}, \frac{\pi}{2}[\longrightarrow \mathbb{R} \text{ est arctan : } \mathbb{R} \longrightarrow] -\frac{\pi}{2}, \frac{\pi}{2}[$.

Corollaire 2: Dérivée de la fonction arctan

La fonction arctan est dérivable sur \mathbb{R} de dérivée

$$\forall x \in \mathbb{R}, \arctan'(x) = \frac{1}{1+x^2}.$$

Démonstration. Pour tout $x \in]-\frac{\pi}{2}, \frac{\pi}{2}[$, on a $\tan'(x)=1+\tan^2(x)\neq 0$ donc d'après la proposition précédente, arctan est dérivable sur $\mathbb R$ et on a pour tout $x \in \mathbb R$,

$$\arctan'(x) = \frac{1}{\tan'(\arctan(x))} = \frac{1}{1 + \tan^2(\arctan(x))}.$$

Or, pour tout $x \in \mathbb{R}$, $\tan(\arctan(x)) = x$ donc pour tout $x \in \mathbb{R}$, $\arctan'(x) = \frac{1}{1+x^2}$.

9.1.2 Dérivées d'ordre supérieur

Définition 1: Dérivée n-ème

Soit $f: I \longrightarrow \mathbb{R}$, soit $a \in I$. Soit $n \in \mathbb{N}$.

On appelle dérivée n-ème de f en a le nombre :

- $f^{(0)}(a) = f(a)$ et $f^{(0)} = f$ si n = 0;
- $f^{(n)}(a) = (f^{(n-1)})'(a)$ si $f^{(n-1)}$ existe et est dérivable en a si $n \ge 1$. On dit alors que f est n fois dérivable en a.

On dit que f est n fois dérivable sur I si f est n fois dérivable en tout point de I et on note $f^{(n)}$ la dérivée n-ème de f sur I.

Remarque 2. On a $f^{(0)} = f$, $f^{(1)} = f'$, $f^{(2)} = f''$...

Exemple 5. Soit $n \in \mathbb{N}$. Soit $f: x \longmapsto x^n$ définie sur \mathbb{R} .

Alors pour tout $k \in [0, n]$, pour tout $x \in \mathbb{R}$,

$$f^{(k)}(x) = \frac{n!}{(n-k)!} x^{n-k}.$$

9.1.3 Monotonie et signe de la dérivée

Théorème 1: Lien entre signe de la dérivée et monotonie

Soit $f: I \longrightarrow \mathbb{R}$ une fonction dérivable sur un intervalle I.

- 1. La fonction f est croissante sur I si et seulement si pour tout $x \in I$, $f'(x) \ge 0$.
- 2. La fonction f est décroissante sur I si et seulement si pour tout $x \in I$, $f'(x) \leq 0$.
- 3. La fonction f est constante sur I si et seulement si pour tout $x \in I$, f'(x) = 0.

Remarque 3. Ce résultat n'est valable que sur un intervalle. Soit $f: x \mapsto \frac{1}{x}$ pour $x \in \mathbb{R}^*$. Pour tout $x \in \mathbb{R}^*$, $f'(x) = -\frac{1}{x^2} < 0$ mais f n'est pas décroissante sur \mathbb{R}^* puisque f(-1) = -1 < 1 = f(1).

Théorème 2: Stricte monotonie et signe de la dérivée

Soit $f: I \longrightarrow \mathbb{R}$ une fonction dérivable sur I.

- 1. Si pour tout $x \in I$, f'(x) > 0, alors la fonction f est strictement croissante sur I.
- 2. Si pour tout $x \in I$, f'(x) < 0, alors la fonction f est strictement décroissante sur I.

Remarque 4. • La même preuve montre que si f est continue sur [a, b] et dérivable sur]a, b[, alors si pour tout $x \in]a, b[, f'(x) > 0$ (resp. f'(x) < 0), f est strictement croissante (resp. strictement décroissante) sur [a, b].

• La réciproque est fausse. En effet, soit $f: x \longmapsto x^3$. La fonction f est strictement croissante sur \mathbb{R} mais f'(0) = 0.

9.2 Fonctions réelles de deux variables réelles

9.2.1 Définition et propriétés

Définition 2: Fonctions réelles de deux variables réelles

On appelle fonction réelle de deux variables réelles toute fonction f définie sur un domaine $D \subset \mathbb{R}^2$ et à valeurs dans \mathbb{R} . On note

$$\begin{array}{ccc} f:D & \longrightarrow & \mathbb{R} \\ (x,y) & \longmapsto & f(x,y). \end{array}$$

Exemple 6. • Les fonctions polynomiales à deux variables sont définies sur \mathbb{R}^2 tout entier, par exemple $f(x,y) = 3x^3y + x^2y^2 - xy^4 + y - 1$.

- Certaines fonctions sont définies sur des demi-plans, par exemple $f:(x,y)\longmapsto \ln(x)+y$ est définie sur $D=\mathbb{R}_+^*\times\mathbb{R}$, qui est le demi-plan supérieur du plan \mathbb{R}^2 (privé de l'axe des abscisses).
- Certaines fonctions sont définies sur des pavés de la forme $[a, b] \times [c, d]$, par exemple la fonction $f:(x, y) \longmapsto \sqrt{1 x^2} + \sqrt{1 y^2}$ est définie sur $\mathcal{D} = [-1, 1]^2$.
- Certaines fonctions sont définies sur des disques, par exemple la fonction $f:(x,y) \mapsto \sqrt{1-x^2-y^2}$ est définie sur le disque de centre (0,0) et de rayon 1.

9.2.2 Fonctions partielles

Définition 3: Fonctions partielles

Soit $\mathcal{D} \subset \mathbb{R}^2$. Soit

$$f: \begin{array}{ccc} \mathcal{D} & \longrightarrow \mathbb{R} \\ (x,y) & \longmapsto & f(x,y) \end{array}$$

une fonction de deux variables réelles.

Pour tout $(x_0, y_0) \in \mathcal{D}$, on appelle première fonction partielle en (x_0, y_0) la fonction

$$f_{y_0}: x \longmapsto f(x, y_0)$$

et deuxième fonction partielle en (x_0, y_0) la fonction

$$f_{x_0}: y \longmapsto f(x_0, y).$$

Remarque 5. • La courbe de la première fonction partielle de f en (x_0, y_0) s'obtient en intersectant la surface représentative de la fonction f avec le plan d'équation $y = y_0$.

• La courbe de la deuxième fonction partielle de f en (x_0, y_0) s'obtient en intersectant la surface représentative de la fonction f avec le plan d'équation $x = x_0$.

Dérivées partielles 9.2.3

Définition 4: Dérivées partielles

Soit $\mathcal{D} \subset \mathbb{R}^2$. Soit $f: \begin{array}{ccc} \mathcal{D} & \longrightarrow \mathbb{R} \\ (x,y) & \longmapsto & f(x,y) \end{array}$ une fonction de deux variables réelles. Pour tout $(x_0,y_0) \in \mathcal{D}$, on considère les fonctions partielles $f_{y_0}: x \longmapsto f(x,y_0)$ et

 $f_{x_0}: y \longmapsto f(x_0,y).$

• On dit que f admet une dérivée partielle par rapport à la première variable en (x_0, y_0) si la première fonction partielle f_{y_0} est dérivable en x_0 et dans ce cas, on note

$$\frac{\partial f}{\partial x}(x_0, y_0) = f'_{y_0}(x_0).$$

• On dit que f admet une dérivée partielle par rapport à la deuxième variable en (x_0, y_0) si la deuxième fonction partielle f_{x_0} est dérivable en y_0 et dans ce cas, on note

$$\frac{\partial f}{\partial y}(x_0, y_0) = f'_{x_0}(y_0).$$

Remarque 6. • Pour calculer $\frac{\partial f}{\partial x}(x,y)$ en un point $(x,y) \in \mathbb{R}^2$, on dérive f(x,y) par rapport à x en traitant y comme une constante.

• Pour calculer $\frac{\partial f}{\partial u}(x,y)$ en un point $(x,y) \in \mathbb{R}^2$, on dérive f(x,y) par rapport à y en traitant x comme une constante.

Exemple 7. Soit $f:(x,y) \longmapsto x^2y^3 + 3yx - x$ pour tout $(x,y) \in \mathbb{R}^2$.

Pour tout $(x,y) \in \mathbb{R}^2$, on a $f'_y(x) = 2xy^3 + 3y - 1$ et $f'_x(y) = 3x^2y^2 + 3x$.

Ainsi, pour tout $(x,y) \in \mathbb{R}^2$, $\frac{\partial f}{\partial x}(x,y) = 2xy^3 + 3y - 1$ et $\frac{\partial f}{\partial y}(x,y) = 3x^2y^2 + 3x$.

En particulier, on a $\frac{\partial f}{\partial x}(1,-1) = -6$ et $\frac{\partial f}{\partial y}(1,-1) = 6$.

9.3 Primitives

9.3.1Définition et propriétés

Définition 5: Primitive

Soit $f: I \longrightarrow \mathbb{R}$.

Une primitive de f sur I est une fonction $F:I\longrightarrow \mathbb{R}$ dérivable sur I telle que

$$\forall x \in I, F'(x) = f(x).$$

Exemple 8. La fonction $F: x \longmapsto x \ln(x) - x$ est une primitive sur \mathbb{R}_+^* du logarithme néperien. En effet, F est dérivable sur \mathbb{R}_+^* comme produit et somme de fonctions dérivables sur \mathbb{R}_+^* et on a pour tout $x \in \mathbb{R}_+^*$,

$$F'(x) = \ln(x) + x \times \frac{1}{x} - 1 = \ln(x).$$

Proposition 4

Soit $f: I \longrightarrow \mathbb{R}$. Soit $F: I \longrightarrow \mathbb{R}$ une primitive de f sur I. Soit $G: I \longrightarrow \mathbb{R}$.

Alors G est une primitive de f sur I si et seulement si il existe $c \in \mathbb{R}$ tel que pour tout $x \in I, G(x) = F(x) + c$.

Démonstration. • Supposons que G est une primitive de f sur I. Alors G-F est dérivable sur I et pour tout $x \in I$, (G-F)'(x) = G'(x) - F'(x) = f(x) - f(x) = 0 donc la fonction G-F est constante sur I, i.e. il existe $c \in \mathbb{R}$ tel que pour tout $x \in I$, G(x) - F(x) = c, donc pour tout $x \in I$, G(x) = F(x) + c.

• Supposons qu'il existe $c \in \mathbb{R}$ tel que pour tout $x \in I, G(x) = F(x) + c$.

Alors G est dérivable sur I et pour tout $x \in I, G'(x) = F'(x) = f(x)$ donc G est une primitive de f sur I.

Remarque 7. Autrement dit, si une fonction admet une primitive sur un intervalle, elle en admet une infinité, toutes égales à une constante additive près.

Le théorème suivant, que l'on admet provisoirement, donne une condition suffisante d'existence de primitives pour une fonction.

Théorème 3

Soit $f: I \longrightarrow \mathbb{R}$ une fonction continue sur I. Alors f admet des primitives sur I.

9.3.2 Primitives usuelles

A partir des dérivées de fonctions usuelles, on obtient les primitives usuelles suivantes (en notant F une primitive de f):

f(x)	F(x)	Domaine
$a,a\in\mathbb{R}$	ax	\mathbb{R}
$e^{ax} (a \neq 0)$	$\frac{1}{a}e^{ax}$	\mathbb{R}
$\frac{1}{x}$	$\ln(x)$	\mathbb{R}^*
$\frac{1}{ax+b}$	$\frac{1}{a}\ln(ax+b)$ $x^{\alpha+1}$	$\mathbb{R}\setminus\{-rac{b}{a}\}$
$x^{\alpha}, \alpha \neq -1$	$\alpha+1$	\mathbb{R} si $lpha \in \mathbb{N}$, \mathbb{R}^* si $lpha \in \mathbb{Z} \setminus \mathbb{N}$, \mathbb{R}^*_+ si $lpha \in \mathbb{R} \setminus \mathbb{Z}$
$\ln(x)$	$x \ln(x) - x$	\mathbb{R}_+^*
$a^x, a \in \mathbb{R}_+^* \setminus \{1\}$	$\frac{1}{\ln(a)}a^x$	\mathbb{R}
$\cos(ax+b), (a,b) \in \mathbb{R}^* \times \mathbb{R}$	$\frac{1}{a}\sin(ax+b)$	\mathbb{R}
$\sin(ax+b), (a,b) \in \mathbb{R}^* \times \mathbb{R}$	$-\frac{1}{a}\cos(ax+b)$	\mathbb{R}
$\frac{1}{\cos^2(x)}$	$\tan(x)$	$\bigcup_{k \in \mathbb{Z}} \left[-\frac{\pi}{2} + k\pi, \frac{\pi}{2} + k\pi \right], k \in \mathbb{Z}$
$\tan(x)$	$-\ln(\cos(x))$	$\bigcup_{k \in \mathbb{Z}} \left[-\frac{\pi}{2} + k\pi, \frac{\pi}{2} + k\pi \right], k \in \mathbb{Z}$
$\frac{1}{1+x^2}$	$\arctan(x)$	\mathbb{R}

Enfin, le tableau suivant s'obtient en utilisant la formule de dérivation d'une composée de fonctions dérivables.

Soit $u: I \longrightarrow \mathbb{R}$ une fonction dérivable sur I. La troisième ligne est valable si $u(I) \subset \mathbb{R}^*$ et la quatrième si $u(I) \subset \mathbb{R}^*_+$.

Fonction	Primitive
$u'e^u$	e^u
$u'u^n, n \in \mathbb{Z} \setminus \{-1\}$	$\frac{1}{n+1}u^{n+1}$
$\frac{u'}{u}$	$\ln(u)$
$\frac{u'}{\sqrt{u}}$	$2\sqrt{u}$
$u'\sin(u)$	$-\cos(u)$
$u'\cos(u)$	$\sin(u)$

Exemple 9. Les fonctions suivantes F sont des primitives des fonctions f:

1.
$$f(x) = e^x + 3x^2 + \frac{1}{x^2}$$
 et $F(x) = e^x + x^3 - \frac{1}{x} + 1$.

2.
$$f(x) = -e^{3x} - 2e^{-2x}$$
 et $F(x) = -\frac{e^{3x}}{3} + e^{-2x}$.

3.
$$f(x) = \frac{x}{1+x^2}$$
 et $F(x) = \frac{1}{2}\ln(1+x^2)$.

4.
$$f(x) = \sin(2x)(\cos(2x) + 1)^4$$
 et $F(x) = -\frac{1}{10}(\cos(2x) + 1)^5$.

9.4 Intégrale

9.4.1 Définition de l'intégrale

Soit $(a,b) \in \mathbb{R}^2$ tel que $[a;b] \subset I$ et \mathscr{C}_f la courbe représentative de f dans un repère orthogonal $(O;\overrightarrow{\imath};\overrightarrow{\jmath})$.

Fonction positive

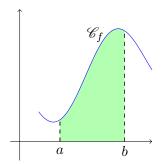
Définition 6

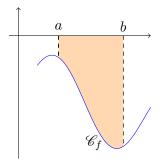
L'aire délimitée par \mathscr{C}_f , l'axe des abscisses et les droites d'équation x = a et x = b est notée $\int_a^b f(x) dx$ (qui se lit « intégrale de a à b de f(x) dx »).

Fonction négative

Définition 7

L'opposée de l'aire délimitée par \mathscr{C}_f , l'axe des abscisses et les droites d'équation x = a et x = b est notée $\int_a^b f(x) dx.$

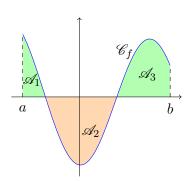




Fonction de signe quelconque

Définition 8

 $\int_{a}^{b} f(x) dx \text{ correspond à l'aire délimitée par } \mathscr{C}_{f}, \text{ l'axe des abscisses et les droites d'équation } x = a \text{ et } x = b,$ comptée positivement lorsque est \mathscr{C}_{f} est au-dessus de l'axe des abscisses et comptée négativement lorsque \mathscr{C}_{f} est en dessous. En considérant la figure, on obtient : $\int_{a}^{b} f(x) dx = \mathscr{A}_{1} - \mathscr{A}_{2} + \mathscr{A}_{3}$



Exemple 10. • Soit $f : [a, b] \longrightarrow \mathbb{R}$. une fonction constante égale à $k \in \mathbb{R}_+$. La fonction f est bien continue et positive sur [a, b].

L'aire sous la courbe de f est donc l'aire d'un rectangle de longueur b-a et de largeur k, donc

$$\int_{a}^{b} kdt = k(b-a).$$

En notant $F: \begin{bmatrix} [a,b] & \longrightarrow & \mathbb{R} \\ x & \longmapsto & kx \end{bmatrix}$ une primitive de f sur [a,b], on remarque que

$$\int_{a}^{b} kdt = F(b) - F(a).$$

• Soit $a \in \mathbb{R}_+$. Soit $f: \begin{bmatrix} [0,a] & \longrightarrow & \mathbb{R} \\ x & \longmapsto & x \end{bmatrix}$. La fonction f est bien continue et positive sur [0,a].

L'aire sous la courbe de f est l'aire du triangle dont les sommets sont les points (0,0), (a,0) et (a,a). C'est donc l'aire d'un triangle de base a et de hauteur a donc l'aire vaut $\frac{1}{2}a \times a = \frac{a^2}{2}$.

Ainsi,
$$\int_0^a t dt = \frac{a^2}{2}$$
. En notant $F: \begin{bmatrix} [0,a] & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \frac{x^2}{2} \end{bmatrix}$ une primitive de f sur $[0,a]$, on

remarque que $\int_0^a t dt = F(a) - F(0)$.

$$\begin{array}{ccc} f:[0,2] & \longrightarrow & \mathbb{R} \\ \bullet \text{ Soit} & x & \longmapsto & \left\{ \begin{array}{ccc} x & \text{si } x \in [0,1] \\ 2-x & \text{si } x \in]1,2]. \end{array} \right.$$

La fonction f est continue sur [0,1] et sur [1,2]. De plus, $\lim_{x\to 1} 2-x = \lim_{x\to 1} x = 1 = f(1)$ donc f est continue en 1.

Ainsi f est continue sur [0,2].

En outre, pour tout $x \in [0,1], x \ge 0$ et pour tout $x \in]1,2], 2-x \ge 0$ donc f est bien continue et positive sur [0,2].

L'aire sous la courbe de f entre 0 et 2 est l'aire du triangle dont les sommets sont les points (0,0),(2,0) et (1,1). C'est donc l'aire d'un triangle de base 2 et de hauteur 1, donc l'aire vaut $\frac{1}{2}2 \times 1 = 1$.

Ainsi,
$$\int_0^2 f(t)dt = 1$$
.

Remarque 8. L'élément infinitésimal dx précise par rapport à quelle variable on intègre et est indispensable, notamment pour effectuer des changements de variable. Il ne faut donc jamais l'omettre!

Cela dit, le x est une variable muette et, à l'instar d'une somme, on note indifféremment $\int_a^b f(t)dt = \int_a^b f(x)dx = \int_a^b f(u)du.$

9.4.2 Propriétés de l'intégrale

Proposition 5: Linéarité

Soit f et g deux fonctions continues sur un intervalle I et $a, b \in I$.

Alors, pour tous réels α et β , on a :

$$\int_{a}^{b} \alpha f(x) + \beta g(x) dx = \alpha \int_{a}^{b} f(x) dx + \beta \int_{a}^{b} g(x) dx.$$

Proposition 6: Relation de Chasles

$$ightharpoonup$$
 Pour tout $a \in I$, $\int_a^a f(x) dx = 0$.

$$ightharpoonup$$
 Pour tous $a, b, c \in I$, $\int_a^c f(x) dx = \int_a^b f(x) dx + \int_b^c f(x) dx$.

$$ightharpoonup$$
 Pour tous $a, b \in I$, $\int_{b}^{a} f(x) dx = -\int_{a}^{b} f(x) dx$.

Proposition 7: Positivité de l'intégrale

- ightharpoonup Si pour tous $x \in [a;b], f(x) \ge 0$ alors $\int_a^b f(x) dx \ge 0$.
- ightharpoonup Si pour tous $x \in [a;b], f(x) \le g(x)$ alors $\int_a^b f(x) \mathrm{d}x \le \int_a^b g(x) \mathrm{d}x.$

Exemple 11. Pour tout $x \in [0; \frac{\pi}{2}]$, $\cos x \ge 0$ donc $\int_0^{\pi/2} \cos(x) dx \ge 0$.

9.4.3 Valeur moyenne d'une fonction

Proposition 8: Encadrement de l'intégrale

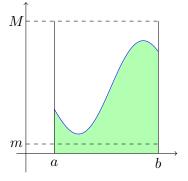
Soit $f:[a,b]:\longrightarrow \mathbb{R}$ une fonction continue.

1. (Inégalité de la moyenne) Soient $(m,M)\in\mathbb{R}^2$ tels que pour tout $x\in[a,b], m\leqslant f(x)\leqslant M.$ Alors

$$m(b-a) \leqslant \int_a^b f(t)dt \leqslant M(b-a).$$

2. On a

$$\left| \int_a^b f(t)dt \right| \leqslant \int_a^b |f(t)|dt.$$



Remarque 9. D'après le théorème des bornes atteintes, une fonction continue sur un segment est bornée et atteint ses bornes donc on a toujours

$$(b-a)\min_{x\in[a,b]} f(x) \leqslant \int_a^b f(t)dt \leqslant (b-a)\max_{x\in[a,b]} f(x).$$

Démonstration.

1. Par hypothèse, on a pour tout $x \in [a, b], m \leq f(x) \leq M$. Par croissance de l'intégrale, on en déduit

$$\int_{a}^{b} m dt \leqslant \int_{a}^{b} f(t) dt \leqslant \int_{a}^{b} M dt$$

d'où
$$m(b-a) \leqslant \int_a^b f(t)dt \leqslant M(b-a).$$

2. Pour tout $x \in [a,b]$, on a $f(x) \leqslant |f(x)|$ et $-f(x) \leqslant |f(x)|$ d'où pour tout $x \in [a,b]$,

$$-|f(x)| \leqslant f(x) \leqslant |f(x)|.$$

Par croissance de l'intégrale, on en déduit que $\int_a^b -|f(t)|dt \leqslant \int_a^b f(t)dt \leqslant \int_a^b |f(t)|dt$ i.e.

$$-\int_{a}^{b} |f(t)|dt \leqslant \int_{a}^{b} f(t)dt \leqslant \int_{a}^{b} |f(t)|dt,$$

d'où
$$\left| \int_a^b f(t)dt \right| \leqslant \int_a^b |f(t)|dt.$$

Exemple 12. • Puisque pour tout $x \in [0, \pi], -1 \leqslant \cos(x) \leqslant 1$, alors $-\pi \leqslant \int_0^{\pi} \cos(t) dt \leqslant \pi$.

• Soit $I = \int_0^{\pi/2} t \sin t dt$. On a pour tout $t \in [0; \frac{\pi}{2}]$, $0 \leqslant t \sin t \leqslant \frac{\pi}{2}$ donc $0 \le \int_0^{\pi/2} t \sin t dt \le \frac{\pi}{2} \times (\frac{\pi}{2} - 0)$ d'où $0 \le I \le \frac{\pi^2}{4}$.

Définition 9: Valeur moyenne d'une fonction continue sur un segment

Soit $f:[a,b] \longrightarrow \mathbb{R}$ une fonction continue sur [a,b] avec a < b. On appelle valeur moyenne de la fonction f sur [a,b] le nombre réel

$$\frac{1}{b-a} \int_a^b f(t) dt.$$



Remarque 10. C'est la version continue d'une moyenne discrète du type $\frac{1}{n}\sum_{k=1}^{n}x_k$.

Exemple 13. • La valeur moyenne de la fonction f définie par f(x) = 2x + 3 sur l'intervalle [1;2] est $\mu = \frac{1}{2-1} \int_{1}^{2} 2x + 3 dx = \frac{(5+7) \times 1}{2} = 6$.

- Si une fonction continue f est d'intégrale nulle sur [a,b], alors sa valeur moyenne est 0. Ceci confirme l'intuition géométrique, à savoir que si l'aire négative en dessous de l'axe des abscisses est égale à l'aire positive au-dessus de l'axe des abscisses, alors la valeur moyenne de la fonction est nulle.
- Soit $k \in \mathbb{R}$. On a $\frac{1}{b-a} \int_a^b k dt = k$ donc la valeur moyenne d'une fonction constante égale à k est k
- Soit $a \ge 0$. Soit $f: \begin{bmatrix} [0,a] & \longrightarrow & \mathbb{R} \\ x & \longmapsto & x \end{bmatrix}$. On a vu que $\int_0^a f(t)dt = \frac{a^2}{2}$ donc la valeur moyenne de f sur [0,a] est

$$\frac{1}{a-0} \int_0^a f(t)dt = \frac{a}{2}.$$

9.4.4 Théorème fondamental de l'analyse

Théorème 4: Théorème fondamental de l'analyse

Soit $f: I \longrightarrow \mathbb{R}$ une fonction continue sur l'intervalle I. Soit $a \in I$.

On considère la fonction F définie sur I par $F(x) = \int_{a}^{x} f(t)dt$.

La fonction F est l'unique primitive de f sur I s'annulant en a, i.e.

$$\forall x \in I, F'(x) = f(x)$$
 et $F(a) = 0$.

Exemple 14. La primitive de la fonction f définie par $f(x)=3x^2+3x-1$ qui s'annule en 1 est la fonction définie par $F(x)-F(a)=x^3+\frac{3}{2}x^2-x-(1^3+\frac{3}{2}1^2-1)=x^3+\frac{3}{2}x^2-x-\frac{3}{2}$

Remarque 11. • Ainsi, toute fonction continue sur un intervalle y admet des primitives (une infinité, égales à une constante additive près). Ceci légitime la définition de la fonction logarithme néperien sur \mathbb{R}_+^* par $\ln(x) = \int_1^x \frac{1}{t} dt = \int_1^x \frac{dt}{t}$ comme l'unique primitive de la fonction continue $t \longmapsto \frac{1}{t}$ sur \mathbb{R}_+^* s'annulant en 1.

• Si f est une fonction de classe C^1 sur I et si $a \in I$, alors

$$f(x) - f(a) = \int_{a}^{x} f'(t)dt.$$

En effet, la fonction $x \mapsto f(x) - f(a)$ est l'unique primitive de f' sur I qui s'annule en a. Plus généralement, on a le corollaire suivant :

Corollaire 3

Soit $f: I \longrightarrow \mathbb{R}$ une fonction continue sur l'intervalle I. Soit F une primitive de f sur I. Alors pour tout $(a,b) \in I^2$, on a

$$\int_{a}^{b} f(t)dt = F(b) - F(a).$$

On note $\int_{a}^{b} f(t)dt = F(b) - F(a) = [F(t)]_{a}^{b}$.

Démonstration. Soit $a \in I$.

La fonction $x \mapsto F(x) - F(a)$ est l'unique primitive de f sur I s'annulant en a donc pour tout $x \in I$,

$$\int_{a}^{x} f(t)dt = F(x) - F(a)$$

donc pour tout $b \in I$, $\int_a^b f(t)dt = F(b) - F(a)$ et ceci est vrai pour tout $(a,b) \in I^2$.

Remarque 12. Ce résultat fondamental permet de calculer facilement des intégrales en utilisant les primitives usuelles.

Exemple 15. • $\int_0^1 \frac{dx}{1+x^2} = [\arctan(x)]_0^1 = \arctan(1) - \arctan(0) = \frac{\pi}{4}$.

$$\bullet \int_0^1 \frac{1}{1+x} dx = [\ln(1+x)]_0^1 = \ln(2) - \ln(1) = \ln(2).$$

• Pour tout
$$n \in \mathbb{N}$$
, $\int_2^3 x^n dx = \left[\frac{x^{n+1}}{n+1}\right]_2^3 = \frac{3^{n+1} - 2^{n+1}}{n+1}$.

•
$$\int_{\ln(2)}^{\ln(3)} e^x dx = \left[e^x\right]_{\ln(2)}^{\ln(3)} = e^{\ln(3)} - e^{\ln(2)} = 3 - 2 = 1.$$

9.5 Méthodes de calculs

9.5.1 Intégration par parties

Proposition 9: Intégration par parties

Soient u et v deux fonctions dérivables sur [a,b] et dont les dérivées sont continues sur [a,b].

Alors

$$\int_{a}^{b} u'(t)v(t)dt = [u(t)v(t)]_{a}^{b} - \int_{a}^{b} u(t)v'(t)dt.$$

Démonstration. Notons que toutes les intégrales existent parce que u, v, u', v' et leurs produits sont bien continues sur [a, b].

Par linéarité de l'intégrale, on a

$$\int_{a}^{b} (u'(t)v(t) + u(t)v'(t))dt = \int_{a}^{b} u'(t)v(t)dt + \int_{a}^{b} u(t)v'(t)dt.$$

Or, la fonction uv est une primitive sur [a, b] de u'v + uv' donc

$$\int_{a}^{b} u'(t)v(t)dt + \int_{a}^{b} u(t)v'(t)dt = [u(t)v(t)]_{a}^{b}$$

d'où
$$\int_{a}^{b} u'(t)v(t)dt = [u(t)v(t)]_{a}^{b} - \int_{a}^{b} u(t)v'(t)dt.$$

Exemple 16. • Calculons $\int_0^1 te^t dt$. Pour cela, effectuons une intégration par parties en posant $u(t) = t, u'(t) = 1, v'(t) = e^t$ et $v(t) = e^t$. On a alors

$$\int_0^1 te^t dt = [te^t]_0^1 - \int_0^1 e^t dt = e - [e^t]_0^1 = e - (e - 1) = 1.$$

• L'intégration par parties est une méthode efficace pour déterminer des primitives.

Par exemple, déterminons la primitive de arctan sur \mathbb{R} qui s'annule en 0. On a alors pour tout $x \in \mathbb{R}, F(x) = \int_0^x \arctan(t) dt$.

Posons $u(t) = \arctan(t), u'(t) = \frac{1}{1+t^2}, v'(t) = 1$ et v(t) = t. On a alors pour tout $x \in \mathbb{R}$,

$$F(x) = [t\arctan(t)]_0^x - \int_0^x \frac{t}{1+t^2} dt = x\arctan(x) - \left[\frac{1}{2}\ln(1+t^2)\right]_0^x = x\arctan(x) - \frac{1}{2}\ln(1+x^2).$$

Ainsi, la fonction $x \mapsto x \arctan(x) - \frac{1}{2} \ln(1+x^2)$ est l'unique primitive de arctan sur \mathbb{R} qui s'annule en 0.

9.5.2 Changement de variable

Théorème 5

Soit $f: I \longrightarrow \mathbb{R}$ une fonction continue. Soit $\varphi: [\alpha, \beta] \longrightarrow I$ une fonction de classe \mathcal{C}^1 sur $[\alpha, \beta]$.

Alors

$$\int_{\varphi(\alpha)}^{\varphi(\beta)} f(t)dt = \int_{\alpha}^{\beta} (f \circ \varphi)(t) \varphi'(t)dt.$$

Remarque 13. • On n'a pas nécessairement $\varphi(\alpha) \leqslant \varphi(\beta)$.

• En pratique, quand on effectue un changement de variable pour calculer $\int_a^b f(t)dt$ en posant $t = \varphi(u) \Leftrightarrow u = \varphi^{-1}(t)$ où φ est bijective d'un intervalle I sur [a,b], on a $dt = \varphi'(u)du$. Si $t = a, u = \varphi^{-1}(a)$, si $t = b, u = \varphi^{-1}(b)$, on remplace t par $\varphi(u), dt$ par $\varphi'(u)$ et on obtient

$$\int_{a}^{b} f(t)dt = \int_{\varphi^{-1}(a)}^{\varphi^{-1}(b)} f(\varphi(u))\varphi'(u)du,$$

ce qui correspond à la formule ci-dessus en remplaçant a par $\varphi^{-1}(a)$ et b par $\varphi^{-1}(b)$.

• En pratique, quand on effectue un changement de variable pour calculer $\int_a^b f(\varphi(t))dt$, où $\varphi:[a,b]\longrightarrow \varphi([a,b])$ est bijective, on pose $u=\varphi(t)\Leftrightarrow t=\varphi^{-1}(u)$ d'où "en dérivant", $dt=(\varphi^{-1})'(u)du$.

Si $t=a,u=\varphi(a),$ si $t=b,u=\varphi(b),$ on remplace $\varphi(t)$ par u,dt par $(\varphi^{-1})'(u)du$ et on obtient

$$\int_{a}^{b} f(\varphi(t))dt = \int_{\varphi(a)}^{\varphi(b)} f(u)(\varphi^{-1})'(u)du.$$

Cette recette est justifiée car en appliquant le théorème, on a

$$\int_{\varphi(a)}^{\varphi(b)} f(u)(\varphi^{-1})'(u)du = \int_{\varphi(a)}^{\varphi(b)} ((f\circ\varphi)\circ\varphi^{-1})(u)(\varphi^{-1})'(u)du = \int_{\varphi^{-1}(\varphi(a))}^{\varphi^{-1}(\varphi(b))} f\circ\varphi(u)du = \int_a^b f(\varphi(u))du.$$

Exemple 17. • Calculons $\int_{-1}^{1} \sqrt{1-x^2} dx$.

Posons $\varphi: x \longmapsto \cos(x)$ sur $[0,\pi]$. D'après le théorème, on a

$$\int_{-1}^{1} \sqrt{1 - x^2} dx = \int_{\cos(\pi)}^{\cos(0)} \sqrt{1 - x^2} dx$$

$$= \int_{\pi}^{0} \sqrt{1 - \cos^2(x)} \cos'(x) dx$$

$$= \int_{\pi}^{0} \sqrt{\sin^2(x)} (-\sin(x)) dx$$

$$= \int_{0}^{\pi} |\sin(x)| \sin(x) dx$$

$$= \int_{0}^{\pi} \sin^2(x) dx \quad (\text{car pour tout } x \in [0, \pi], \sin(x) \ge 0)$$

$$= \int_{0}^{\pi} \frac{1 - \cos(2x)}{2} dx$$

$$= \frac{1}{2} \left(\int_{0}^{\pi} dx - \int_{0}^{\pi} \cos(2x) dx \right)$$

$$= \frac{\pi}{2} - \frac{1}{4} [\sin(2x)]_{0}^{\pi}$$

$$= \frac{\pi}{2}.$$

• Soit
$$a \in \mathbb{R}^*$$
. Calculons $\int_0^a \frac{dx}{x^2 + a^2}$.
On a $\int_0^a \frac{dx}{x^2 + a^2} = \int_0^a \frac{1}{a^2} \frac{dx}{\left(\frac{x}{a}\right)^2 + 1}$.
Posons $u = \frac{x}{a} \Leftrightarrow x = au$ d'où $dx = adu$.

$$\text{Ainsi, } \int_0^a \frac{1}{a^2} \frac{dx}{\left(\frac{x}{a}\right)^2 + 1} = \int_0^1 \frac{1}{a^2} \frac{adu}{u^2 + 1} = \frac{1}{a} \int_0^1 \frac{du}{u^2 + 1} = \frac{1}{a} [\arctan]_0^1 = \frac{\pi}{4a}.$$

• Calculons $\int_0^{\frac{\pi}{4}} \frac{1}{\cos(t)} dt$.

On pose $u=\sin(t)$ d'où $du=\cos(t)dt$ et ainsi $\frac{dt}{\cos(t)}=\frac{du}{\cos^2(t)}=\frac{du}{1-u^2}$. Par ailleurs, quand t=0, u=0 et quand $t=\frac{\pi}{4}, u=\frac{\sqrt{2}}{2}$ donc

$$\int_0^{\frac{\pi}{4}} \frac{1}{\cos(t)} dt = \int_0^{\frac{\sqrt{2}}{2}} \frac{du}{1 - u^2} = \int_0^{\frac{\sqrt{2}}{2}} \frac{du}{(1 - u)(1 + u)} = \frac{1}{2} \int_0^{\frac{\sqrt{2}}{2}} \left(\frac{1}{1 + u} + \frac{1}{1 - u} \right) du = \frac{1}{2} [\ln(1 + u) - \ln(1 - u)]_0^{\frac{\sqrt{2}}{2}} + \ln(1 + u) - \ln(1 - u)]_0^{\frac{\sqrt{2}}{2}} = \frac{1}{2} [\ln(1 + u) - \ln(1 - u)]_0^{\frac{\sqrt{2}}{2}} + \ln(1 + u) - \ln(1 - u)]_0^{\frac{\sqrt{2}}{2}} = \frac{1}{2} [\ln(1 + u) - \ln(1 - u)]_0^{\frac{\sqrt{2}}{2}} + \ln(1 + u) - \ln(1 - u)]_0^{\frac{\sqrt{2}}{2}} = \frac{1}{2} [\ln(1 + u) - \ln(1 - u)]_0^{\frac{\sqrt{2}}{2}} + \ln(1 + u) - \ln(1 - u)]_0^{\frac{\sqrt{2}}{2}} = \frac{1}{2} [\ln(1 + u) - \ln(1 - u)]_0^{\frac{\sqrt{2}}{2}} + \ln(1 + u) - \ln(1 - u)]_0^{\frac{\sqrt{2}}{2}} = \frac{1}{2} [\ln(1 + u) - \ln(1 - u)]_0^{\frac{\sqrt{2}}{2}} + \ln(1 + u) - \ln(1 - u)]_0^{\frac{\sqrt{2}}{2}} = \frac{1}{2} [\ln(1 + u) - \ln(1 - u)]_0^{\frac{\sqrt{2}}{2}} + \ln(1 + u) - \ln(1 - u)]_0^{\frac{\sqrt{2}}{2}} = \frac{1}{2} [\ln(1 + u) - \ln(1 - u)]_0^{\frac{\sqrt{2}}{2}} + \ln(1 + u) - \ln(1 - u)]_0^{\frac{\sqrt{2}}{2}} = \frac{1}{2} [\ln(1 + u) - \ln(1 - u)]_0^{\frac{\sqrt{2}}{2}} + \ln(1 + u) - \ln(1 - u)]_0^{\frac{\sqrt{2}}{2}} = \frac{1}{2} [\ln(1 + u) - \ln(1 - u)]_0^{\frac{\sqrt{2}}{2}} + \ln(1 + u) - \ln(1 - u)]_0^{\frac{\sqrt{2}}{2}} = \frac{1}{2} [\ln(1 + u) - \ln(1 - u)]_0^{\frac{\sqrt{2}}{2}} + \ln(1 - u) - \ln(1 - u)]_0^{\frac{\sqrt{2}}{2}} = \frac{1}{2} [\ln(1 + u) - \ln(1 - u)]_0^{\frac{\sqrt{2}}{2}} + \ln(1 - u) - \ln(1 - u)]_0^{\frac{\sqrt{2}}{2}} = \frac{1}{2} [\ln(1 + u) - \ln(1 - u)]_0^{\frac{\sqrt{2}}{2}} + \ln(1 - u) - \ln(1 - u)]_0^{\frac{\sqrt{2}}{2}} = \frac{1}{2} [\ln(1 + u) - \ln(1 - u)]_0^{\frac{\sqrt{2}}{2}} + \ln(1 - u) - \ln(1 - u)]_0^{\frac{\sqrt{2}}{2}} = \frac{1}{2} [\ln(1 + u) - \ln(1 - u)]_0^{\frac{\sqrt{2}}{2}} + \ln(1 - u) - \ln(1 - u)]_0^{\frac{\sqrt{2}}{2}} = \frac{1}{2} [\ln(1 + u) - \ln(1 - u)]_0^{\frac{\sqrt{2}}{2}} + \ln(1 - u) - \ln(1 - u)]_0^{\frac{\sqrt{2}}{2}} = \frac{1}{2} [\ln(1 - u) - \ln(1 - u)]_0^{\frac{\sqrt{2}}{2}} + \ln(1 - u) - \ln(1 - u)]_0^{\frac{\sqrt{2}}{2}} = \frac{1}{2} [\ln(1 - u) - \ln(1 - u)]_0^{\frac{\sqrt{2}}{2}} + \ln(1 - u) - \ln(1 - u)]_0^{\frac{\sqrt{2}}{2}} = \frac{1}{2} [\ln(1 - u) - \ln(1 - u)]_0^{\frac{\sqrt{2}}{2}} + \ln(1 - u) - \ln(1 - u)]_0^{\frac{\sqrt{2}}{2}} = \frac{1}{2} [\ln(1 - u) - \ln(1 - u)]_0^{\frac{\sqrt{2}}{2}} + \ln(1 - u) - \ln(1 - u)]_0^{\frac{\sqrt{2}}{2}} = \frac{1}{2} [\ln(1 - u) - \ln(1 - u)]_0^{\frac{\sqrt{2}}{2}} + \ln(1 - u) - \ln(1 - u)]_0^{\frac{\sqrt{2}}{2}} = \frac{1}{2} [\ln(1 - u) - \ln(1 - u)]_0^{\frac{\sqrt{2}}{2}} + \ln(1 - u) - \ln(1 - u)]_0^{\frac{\sqrt{2}}{2}} = \frac{1}{2}$$

$$\int_0^{\frac{\pi}{4}} \frac{1}{\cos(t)} dt = \frac{1}{2} \left(\ln \left(1 + \frac{\sqrt{2}}{2} \right) - \ln \left(1 - \frac{\sqrt{2}}{2} \right) \right) = \frac{1}{2} \left(\ln \left(2 + \sqrt{2} \right) - \ln \left(2 - \sqrt{2} \right) \right) = \frac{1}{2} \ln \left(\frac{2 + \sqrt{2}}{2 - \sqrt{2}} \right)$$

$$= \frac{1}{2} \ln \left(\frac{\sqrt{2} + 1}{\sqrt{2} - 1} \right) = \frac{1}{2} \ln ((\sqrt{2} + 1)^2) = \ln(\sqrt{2} + 1).$$

Année 2025–2026 A. Wassfi