Corrigé du devoir maison n°3 A rendre pour le mercredi 5 novembre 2025

Problème

Dans ce problème, on note ω le nombre complexe $e^{2i\pi/3}$. On pourra remarquer que $w^3=1$. On définit la fonction $f:\mathbb{C}^3\to\mathbb{C}$ par

$$\forall (z_1, z_2, z_3) \in \mathbb{C}^3, \quad f(z_1, z_2, z_3) = z_1 + \omega z_2 + \omega^2 z_3.$$

Partie A — Analyse complexe

1. (a) Développer le produit $(1-\omega)(1+\omega+\omega^2)$ et en déduire que f(1,1,1)=0.

On sait que $(1 - \omega)(1 + \omega + \omega^2) = 1 - \omega^3 = 0$. Comme $\omega \neq 1$, on obtient que $1 + \omega + \omega^2 = f(1, 1, 1) = 0$.

(b) Calculer $f(1, \omega, \omega^2)$ et $f(1, \omega^2, \omega)$.

Un calcul direct assure que

$$f(1, \omega, \omega^2) = 1 + \omega^2 + \omega^4 = 1 + \omega^2 + \omega = 0$$

et que

$$f(1, \omega^2, \omega) = 1 + \omega^3 + \omega^3 = 3.$$

2. (a) Donner le module et un argument du nombre complexe $-\omega$.

On a
$$|-\omega| = |-e^{i2\pi/3}| = 1$$
 et
$$\arg(-e^{i2\pi/3}) = \arg(e^{-i\pi} \times e^{i2\pi/3}) = \arg(e^{-i\pi/3}) = -\pi/3.$$

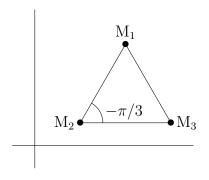
(b) Donner le module du nombre complexe $1 - \omega$.

On calcule

$$|1 - \omega| = \left| 1 - \left(-\frac{1}{2} + i\frac{\sqrt{3}}{2} \right) \right| = \left| \frac{3}{2} - i\frac{\sqrt{3}}{2} \right| = \sqrt{\frac{9}{4} + \frac{3}{4}} = \sqrt{3}.$$

Partie B — Triangles équilatéraux

On munit le plan usuel d'un repère orthonormé direct et on identifie les points du plan à leur affixe complexe. Étant donnés trois points M_1 , M_2 et M_3 deux à deux distincts, on dit que le triangle $M_1M_2M_3$ est équilatéral direct lorsque $M_2M_1 = M_2M_3$ et la mesure de l'angle orienté $\widehat{M_1M_2M_3}$ vaut $-\pi/3$. La figure suivante montre un exemple de triangle équilatéral direct.



Soient M_1, M_2 et M_3 trois points deux à deux distincts, et z_1, z_2 et z_3 leurs affixes respectives.

1. Montrer que $M_1M_2M_3$ est équilatéral direct si et seulement si $\frac{z_3-z_2}{z_1-z_2}=-\omega$

Le triangle $\mathrm{M}_{1}\mathrm{M}_{2}\mathrm{M}_{3}$ est équilatéral direct si et seulement si

$$M_1 M_2 = M_2 M_3$$
 et $\widehat{M_1 M_2 M_3} = -\pi/3$.

On a d'une part les équivalences

$$M_1M_2 = M_2M_3 \Leftrightarrow |z_1 - z_2| = |z_3 - z_2|$$

 $\Leftrightarrow \left| \frac{z_3 - z_2}{z_2 - z_1} \right| = 1 \text{ car } z_2 \neq z_1$

et d'autre part les équivalences

$$\widehat{\mathbf{M}_1 \mathbf{M}_2 \mathbf{M}_3} = -\pi/3 \Leftrightarrow (\rightarrow \mathbf{M}_2 \mathbf{M}_1, \rightarrow \mathbf{M}_2 \mathbf{M}_3) = -\pi/3$$
$$\Leftrightarrow \arg\left(\frac{z_3 - z_2}{z_2 - z_1}\right) = -\pi/3.$$

Ainsi, $M_1M_2M_3$ est équilatéral direct si et seulement si $\frac{z_3-z_2}{z_1-z_2}=-\omega$.

2. En déduire que le triangle $M_1M_2M_3$ est équilatéral direct si et seulement si $f(z_1,z_2,z_3)=0$.

En reprenant la condition précédente :

$$\frac{z_3 - z_2}{z_1 - z_2} = -\omega \Leftrightarrow z_3 - z_2 = -\omega z_1 + \omega z_2$$

$$\Leftrightarrow \omega z_1 - (1 + \omega) z_2 + z_3 = 0$$

$$\Leftrightarrow \omega z_1 + \omega^2 z_2 + z_3 = 0 \text{ car } 1 + \omega + \omega^2 = 0$$

$$\Leftrightarrow z_1 + \omega z_2 + \omega^2 z_3 = 0$$

$$\Leftrightarrow f(z_1, z_2, z_3) = 0$$

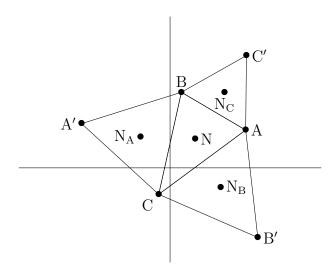
Ainsi le triangle $M_1M_2M_3$ est équilatéral direct si et seulement si $f(z_1, z_2, z_3) = 0$.

Partie C — Un résultat géométrique

On donne la définition suivante : étant donné un triangle quelconque $M_1M_2M_3$ du plan complexe, dont les sommets M_1, M_2 et M_3 ont pour affixes z_1, z_2 et z_3 , on appelle **centre de gravité** de $M_1M_2M_3$ le point d'affixe

$$\frac{z_1 + z_2 + z_3}{3}$$

Pour la suite du problème, on place dans la configuration suivante. On fixe trois points A, B et C deux à deux distincts du plan complexe. On construit les points A', B' et C' tels que les triangles A'CB, B'AC et C'BA sont équilatéraux directs. On appelle N, N_A, N_B, N_C les centres de gravité des triangles ABC, A'CB, B'AC et C'BA. On notera $\alpha, \beta, \gamma, \alpha', \beta', \gamma', z_{\rm N}, z_{\rm N_A}, z_{\rm N_B}$ et $z_{\rm N_C}$, les affixes respectives des points A, B, C, A', B', C', N, N_A N_B et N_C.



1. Exprimer α', β' et γ' en fonction de α, β, γ et ω .

En utilisant la condition équivalente de la partie B, A'CB est équilatéral direct si et seulement si

$$\frac{\alpha' - \beta}{\gamma - \beta} = -\omega$$

Ce qui équivaut à $\alpha' = \beta - \omega (\gamma - \beta)$.

De même ACB' est équilatéral direct si et seulement si

$$\frac{\beta' - \gamma}{\alpha - \gamma} = -\omega$$

Ce qui équivaut à $\beta' = \gamma - \omega (\alpha - \gamma)$.

Puis BAC' est équilatéral direct si et seulement si

$$\frac{\gamma' - \alpha}{\beta - \alpha} = -\omega$$

Ce qui équivaut à

$$\gamma' = \alpha - \omega \left(\beta - \alpha\right)$$

- 2. On pose $\delta = \alpha + \omega \beta + \omega^2 \beta$.
 - (a) Montrer que $z_{N_B} z_N = -\frac{\omega \delta}{3}$.

Erreur d'énoncé :
$$\delta = \alpha + \omega \gamma + \omega^2 \beta$$

$$z_{N_B} = \frac{1}{3} (\alpha + \gamma + \gamma - \omega (\alpha - \gamma)) = \frac{1}{3} ((1 - \omega) \alpha + (2 + \omega) \gamma)$$

$$z_N = \frac{1}{3} (\alpha + \beta + \gamma).$$
D'où :
$$z_{N_B} - z_N = \frac{1}{3} (-\omega \alpha - \beta + (1 + \omega) \gamma)$$

$$= \frac{1}{3} (-\omega \alpha - \beta - \omega^2 \gamma)$$

$$= -\frac{\omega}{3} (\alpha + \omega \gamma + \omega^2 \beta)$$

$$= -\frac{\omega \delta}{3}$$

(b) Exprimer de même $z_{\rm N_C}-z_{\rm N}$ et $z_{\rm N_A}-z_{\rm N}$ en fonction de ω et δ .

En suivant le même raisonnement, on trouve :

$$z_{N_C} - z_N = -\frac{\omega^2 \delta}{3}$$

et

$$z_{N_A} - z_N = -\frac{\delta}{3}$$

(c) Exprimer la longueur $N_A N_B$ en fonction de $|\delta|$.

$$\begin{split} \mathbf{N_AN_B} &= |z_{N_B} - z_{N_A}| \\ &= |(z_{N_B} - z_N) - (z_{N_A} - z_N)| \\ &= \left| -\frac{\omega\delta}{3} + \frac{1}{3}\delta \right| \\ &= \frac{1}{3} |\delta| \times |1 - \omega| \\ &= \frac{|\delta|}{\sqrt{3}} \; \mathrm{d'après\ la\ question\ A2b}. \\ &= \frac{\sqrt{3} |\delta|}{3} \end{split}$$