Liste d'exercices n°9

Calcul différentiel et intégral

Exercice 1. Déterminer l'ensemble de définition \mathcal{D} de f puis calculer sa dérivée f' en précisant son ensemble de définition \mathcal{D}' .

1.
$$f(x) = 15x^2(4x - 2)$$

2.
$$f(x) = 2^x$$

3.
$$f(x) = (\tan x)^2$$

4.
$$f(x) = 3\left(\frac{1}{x^3} + \frac{1}{x}\right)$$

5.
$$f(x) = \ln\left(\sqrt{\frac{1+x}{1-x}}\right)$$

6.
$$f(x) = x^3 \cos(2x+1)$$

7.
$$f(x) = e^{\sqrt{x^2 + x + 1}}$$

8.
$$f(x) = \frac{e^{-2x}}{e^{3x^2+4}}$$

Exercice 2. Calculer la dérivée de chacune des fonctions suivantes, puis construire leur tableau de variation détaillé sur leur ensemble de définition.

1.
$$f: x \mapsto 2x^3 + 3x^2 - 12x + 7$$

2.
$$f: x \mapsto \frac{x+3}{-3x+4}$$

3.
$$f: x \mapsto \frac{x - x^2}{x + 1}$$

Exercice 3. Montrer que pour tout réel x, $1 + x + \frac{x^2}{2} \leqslant e^x$.

Exercice 4. Etudier les variations de la fonction f définie sur \mathbb{R} par $f(x) = (x^2 - 1)e^{-x}$.

Exercice 5. Calculer, pour tout $n \in \mathbb{N}$, les dérivées n-ièmes des fonctions suivantes.

3.
$$f: x \longmapsto \frac{1}{2-x}$$

4.
$$g: x \longmapsto e^{-x}$$

Exercice 6. Soient les fonctions $f: \mathbb{R}^2 \to \mathbb{R}$ définie par

$$f(x,y) = x^2y + e^{xy} - 3x + 2.$$

et $g: \mathbb{R}^2 \to \mathbb{R}$ définie par

$$g(x,y) = xy^2 + ye^x - \ln(1 + x^2 + y^2).$$

Calculer les dérivées partielles des fonctions f et g.

Exercice 7. Trouver une primitive des fonctions suivantes.

1.
$$t \longmapsto (2t+1)^7$$

$$2. \ u \longmapsto \frac{1}{3u}$$

3.
$$x \longmapsto e^{\sin(x)}\cos(x)$$

4.
$$t \longmapsto \frac{\sin(t)}{\cos^2(t)}$$

5.
$$x \longmapsto \frac{\ln(x)}{x}$$

6.
$$x \longmapsto \frac{e^{\sqrt{x}}}{\sqrt{x}}$$

7.
$$u \longmapsto \frac{1}{u \ln(u)}$$

Exercice 8. On considère la fonction f définie par :

pour tout réel
$$x$$
 de $[0; 1]$, $f(x) = \frac{2x+5}{x+1}$.

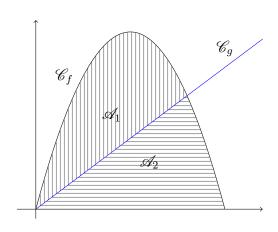
1. (a) Donner, en justifiant, les réels a et b
 tels que, pour tout $x \in [0\ ;\ 1],$

$$f(x) = a + \frac{b}{x+1}.$$

- (b) Soit L l'intégrale définie par : $L = \int_0^1 f(x) dx$. Calculer la valeur exacte de L.
- 2. En appliquant la méthode précédente, calculer $\int_0^1 \frac{6x-1}{x+3} dx$.

Exercice 9.

On a tracé ci-contre la courbe représentative de la fonction f définie par $f(x) = -3x^2 + 15x$ et celle de la fonction g définie par g(x) = 3x. On définit \mathcal{A}_1 la surface remplie de lignes verticales et \mathcal{A}_2 celle remplie de lignes horizontales.



Laquelle des aires de ces deux surfaces est la plus grande? Justifier.

Exercice 10.

- 1. Donner le domaine de définition \mathcal{D} de la fonction $t \longmapsto \frac{t+7}{t^2+2t-3}$.
- 2. Trouver deux réels a et b tels que pour tout $t \in \mathcal{D}$, on ait

$$\frac{t+7}{t^2+2t-3} = \frac{a}{t-1} + \frac{b}{t+3}.$$

3. En déduire la valeur de l'intégrale suivante :

$$I = \int_{-2}^{0} \frac{t+7}{t^2 + 2t - 3} dt.$$

Exercice 11. Trouver une primitive de la fonction suivante :

$$x \longmapsto \frac{1}{\sqrt{x-1} + \sqrt{x+1}}.$$

Exercice 12. Calculer les intégrales suivantes.

1.
$$\int_0^{\pi} \cos^2(2t)dt$$
 3. $\int_0^{\pi} \cos^3(t) \sin^4(t)dt$ 2. $\int_0^{\pi} \sin^3(t)dt$ 4. $\int_0^{\pi} \cos^2(t) \sin^4(t)dt$

Exercice 13. Calculer les intégrales suivantes.

$$1. \int_0^1 x^3 e^{3x} \mathrm{d}x$$

2.
$$\int_0^1 e^{-x} \sin(x) dx$$

3.
$$\int_0^1 t^2 \arctan(t) dt$$

Exercice 14. Trouver une primitive des fonctions suivantes.

1.
$$x \longmapsto \ln^2(x)$$

$$4. \ x \longmapsto \frac{1}{x^2 + 2x + 5}$$

2.
$$t \longmapsto \sin(\sqrt[3]{t})$$

5. (a)
$$t \longmapsto \sqrt{1-t^2}$$

3.
$$t \mapsto t \ln(t)$$
.

(b)
$$x \longmapsto \sqrt{9-4x^2}$$

Exercice 15.

Considérons les intégrales suivantes :

$$C = \int_0^{\frac{\pi}{2}} \frac{\cos(t)}{\cos(t) + \sin(t)} dt \quad \text{et} \quad S = \int_0^{\frac{\pi}{2}} \frac{\sin(t)}{\cos(t) + \sin(t)} dt.$$

- 1. A l'aide d'un changement de variable affine, montrer que C = S.
- 2. Calculer C + S, puis en déduire les valeurs de C et de S.
- 3. Considérons l'intégrale suivante :

$$I = \int_0^1 \frac{\mathrm{d}t}{t + \sqrt{1 - t^2}}.$$

- (a) Vérifier que l'intégrale I est bien définie.
- (b) A l'aide d'un changement de variable, calculer l'intégrale I.

Exercice 16. Calculer les intégrales suivantes.

1.
$$\int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{\sin(x)}{3 + 2\cos(2x)} dx$$

On pourra faire le changement de variable $u = \cos(x)$.

$$2. \int_0^{\frac{\pi}{4}} \frac{\cos(x)}{3 + 2\cos(2x)} dx$$

On pourra faire le changement de variable $u = \sin(x)$.