11

Suites réelles : partie 1

Table des matières	
11 Suites réelles : partie 1 11.1 Généralités	1
11.2 Suites usuelles	2
11.2.2 Suites géométriques	
11.2.4 Suites récurrentes linéaires d'ordre 2	10
11.3.1 Obtenir le terme d'une suite de rang donné	

11.1 Généralités

Définition 1

On appelle suite réelle toute application définie sur une partie de \mathbb{N} de la forme $\mathbb{N} \cap [n_0, +\infty[$ où $n_0 \in \mathbb{N}$ et à valeurs dans \mathbb{R} . Autrement dit, à tout entier naturel $n \geq n_0$, on associe un réel u(n) qu'on note u_n .

On note $(u_n)_{n>n_0}$ une telle suite.

Le nombre réel u_n s'appelle le terme général de la suite $(u_n)_{n\in\mathbb{N}}$.

Remarque 1. L'ensemble des suites réelles se note $\mathbb{R}^{\mathbb{N}}$, car c'est l'ensemble des applications définies sur \mathbb{N} à valeurs dans \mathbb{R} .

Exemple 1. • Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie pour tout $n\in\mathbb{N}$ par $u_n=n$.

On a $u_0 = 0, u_1 = 1, u_2 = 2...$

• Soit $(v_n)_{n\in\mathbb{N}}$ la suite définie pour tout $n\in\mathbb{N}$ par $v_n=n+1$.

On a $v_0 = 1, v_1 = 2, v_2 = 3...$

• Soit $(w_n)_{n\in\mathbb{N}}$ la suite définie pour tout $n\in\mathbb{N}$ par $w_n=2n$.

On a $w_0 = 0, w_1 = 2, w_2 = 4...$

• Soit $(t_n)_{n\in\mathbb{N}}$ la suite définie par $t_0=16$ et pour tout $n\in\mathbb{N}, t_{n+1}=\sqrt{t_n}$.

On a $t_1 = 4$, $t_2 = 2$, $t_3 = \sqrt{2}$...

• Soit $(F_n)_{n\in\mathbb{N}}$ la suite de Fibonacci définie par $F_0=0, F_1=1$ et pour tout $n\in\mathbb{N}, F_{n+2}=F_{n+1}+F_n$.

On a $F_2 = 1$, $F_3 = 2$, $F_4 = 3$, $F_5 = 5$, $F_6 = 8$, $F_7 = 13$, $F_8 = 21$...

Définition 2

Soit $n_0 \in \mathbb{N}$. Soient $(u_n)_{n > n_0}$ et $(v_n)_{n > n_0}$ deux suites réelles.

- 1. Pour tout $\lambda \in \mathbb{R}$, on définit la suite $(\lambda u_n)_{n \geq n_0}$ de terme général $\lambda \times u_n$.
- 2. On appelle somme des suites $(u_n)_{n\geq n_0}$ et $(v_n)_{n\in\mathbb{N}}$ la suite $(u_n+v_n)_{n\geq n_0}$ de terme général u_n+v_n .
- 3. On appelle produit des suites $(u_n)_{n\geq n_0}$ et $(v_n)_{n\in\mathbb{N}}$ la suite $(u_nv_n)_{n\geq n_0}$ de terme général u_nv_n .
- 4. On suppose que pour tout $n \geq n_0, v_n \neq 0$. On appelle quotient des suites $(u_n)_{n \geq n_0}$ et $(v_n)_{n \in \mathbb{N}}$ la suite $\left(\frac{u_n}{v_n}\right)_{n \geq n_0}$ de terme général $\frac{u_n}{v_n}$.

Exemple 2. Soit $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites définies respectivement par, pour tout $n\in\mathbb{N}$, $u_n=6n$ et $v_n=\cos(n)$. Alors $(u_nv_n)_{n\geq n_0}$ a pour terme général $6n\cos(n)$.

11.2 Suites usuelles

11.2.1 Suites arithmétiques

Définition 3: Suites arithmétiques

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle. Soit $r\in\mathbb{R}$.

On dit que la suite $(u_n)_{n\in\mathbb{N}}$ est arithmétique de raison r si

$$\forall n \in \mathbb{N}, u_{n+1} = u_n + r.$$

Exemple 3. Soit $r \in \mathbb{R}$. Soit $(u_n)_{n \in \mathbb{N}}$ la suite définie pour tout $n \in \mathbb{N}$ par $u_n = nr$.

Pour tout $n \in \mathbb{N}$, on a $u_{n+1} - u_n = (n+1)r - nr = r$ donc la suite $(u_n)_{n \in \mathbb{N}}$ est arithmétique de raison r.

Remarque 2. Une suite arithmétique est de raison nulle si et seulement si elle est constante.

Proposition 1

Soit $(u_n)_{n\in\mathbb{N}}$ une suite arithmétique de raison r.

Alors

$$\forall n \in \mathbb{N}, u_n = u_0 + nr.$$

Démonstration. Montrons la propriété par récurrence sur $n \in \mathbb{N}$.

Pour n = 0, on a $u_0 + 0 \times r = u_0$ donc la propriété est vraie au rang n = 0.

Soit $n \in \mathbb{N}$. On suppose que $u_n = u_0 + nr$. Montrons la propriété au rang n + 1.

Puisque la suite $(u_n)_{n\in\mathbb{N}}$ est arithmétique de raison r, on a

$$u_{n+1} = u_n + r = u_0 + nr + r = u_0 + (n+1)r,$$

ce qui prouve la propriété au rang n+1 et achève la récurrence.

Remarque 3. Ceci signifie qu'une suite arithmétique est entièrement définie par son premier terme et sa raison.

Exemple 4. Soit $(u_n)_{n\in\mathbb{N}}$ une suite arithmétique de premier terme $u_0=3$ et raison r=-5. Alors pour tout $n\in\mathbb{N}$, $u_n=3-5n$.

Proposition 2: Somme de termes consécutifs d'une suite arithmétique

Soit $(u_n)_{n\in\mathbb{N}}$ une suite arithmétique de raison r.

Soient $(p, n) \in \mathbb{N}^2$ avec $p \leq n$.

$$\sum_{k=p}^{n} u_k = \underbrace{(n-p+1)}_{\text{nombre de termes}} \times \underbrace{\frac{u_p + u_n}{2}}_{\text{moyenne des termes}}.$$

En particulier, on a

$$\sum_{k=0}^{n} u_k = (n+1) \times \frac{u_0 + u_n}{2}.$$

Démonstration. Soient $(p, n) \in \mathbb{N}^2$ avec $p \leq n$. On a

$$\sum_{k=p}^{n} u_{k} = \sum_{k=p}^{n} (u_{0} + kr)$$

$$= \sum_{k=p}^{n} u_{0} + r \sum_{k=p}^{n} k$$

$$= (n - p + 1)u_{0} + r(n - p + 1) \times \frac{p + n}{2}$$

$$= (n - p + 1) \times \frac{2u_{0} + pr + nr}{2}$$

$$= (n - p + 1) \times \frac{u_{0} + pr + u_{0} + nr}{2}$$

$$= (n - p + 1) \times \frac{u_{p} + u_{n}}{2}.$$

Pour p = 0, on retrouve la formule

$$\sum_{k=0}^{n} u_k = (n+1) \times \frac{u_0 + u_n}{2}.$$

Exemple 5. Soit $(u_n)_{n\in\mathbb{N}}$ une suite arithmétique de premier terme $u_0=-3$ et de raison r=2. Alors

$$\sum_{k=13}^{37} u_k = (37 - 13 + 1) \frac{u_{13} + u_{37}}{2} = 25 \frac{-3 + 2 \times 13 - 3 + 2 \times 37}{2} = 47 \times 25 = 1175.$$

11.2.2Suites géométriques

Définition 4: Suites géométriques

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle. Soit $q\in\mathbb{R}$.

On dit que la suite $(u_n)_{n\in\mathbb{N}}$ est géométrique de raison q si

$$\forall n \in \mathbb{N}, u_{n+1} = q \times u_n.$$

Exemple 6. Soit $q \in \mathbb{R}$. Soit $(u_n)_{n \in \mathbb{N}}$ la suite définie pour tout $n \in \mathbb{N}$ par $u_n = q^n$. Pour tout $n \in \mathbb{N}$, on a $u_{n+1} = q^{n+1} = q \times q^n = q \times u_n$ donc la suite $(u_n)_{n \in \mathbb{N}}$ est géométrique de raison q.

Année 2025-2026 3 / 11Panetta / Wassfi

Remarque 4. Une suite géométrique est de raison q=1 si et seulement si elle est constante.

Proposition 3

Soit $(u_n)_{n\in\mathbb{N}}$ une suite géométrique de raison q.

$$\forall n \in \mathbb{N}, u_n = u_0 \times q^n.$$

Démonstration. Montrons la propriété par récurrence sur $n \in \mathbb{N}$.

Pour n = 0, on a $u_0 \times q^0 = u_0$ donc la propriété est vraie au rang n = 0.

Soit $n \in \mathbb{N}$. On suppose que $u_n = u_0 \times q^n$. Montrons la propriété au rang n+1.

Puisque la suite $(u_n)_{n\in\mathbb{N}}$ est géométrique de raison q, on a

$$u_{n+1} = q \times u_n = q \times u_0 \times q^n = u_0 \times q^{n+1},$$

ce qui prouve la formule au rang n+1 et achève la récurrence.

Remarque 5. • Ceci signifie qu'une suite géométrique est entièrement définie par son premier terme et sa raison.

- Une suite géométrique de premier terme $u_0 = 0$ est identiquement nulle.
- Si q = 0, alors pour tout $n \ge 1, u_n = 0$. Ainsi, tous les termes d'une suite géométrique de raison nulle sont nuls, saufs éventuellement le premier terme u_0 .

Exemple 7. Soit $(u_n)_{n\in\mathbb{N}}$ une suite géométrique de premier terme $\sqrt{2}$ et de raison π . Alors pour tout $n\in\mathbb{N}, u_n=\sqrt{2}\times\pi^n$.

Proposition 4: Somme de termes consécutifs d'une suite géométrique

Soit $(u_n)_{n\in\mathbb{N}}$ une suite géométrique de raison q. Soient $(p,n)\in\mathbb{N}^2$ avec $p\leq n$. Alors

$$\sum_{k=p}^{n} u_k = \begin{cases} u_p \frac{1 - q^{n-p+1}}{1 - q} & \text{si } q \neq 1\\ (n - p + 1)u_0 & \text{si } q = 1. \end{cases}$$

En particulier, on a

$$\sum_{k=0}^{n} u_k = \begin{cases} u_0 \frac{1 - q^{n+1}}{1 - q} & \text{si } q \neq 1\\ (n+1)u_0 & \text{si } q = 1. \end{cases}$$

Démonstration. Soient $(p, n) \in \mathbb{N}^2$ avec $p \leq n$.

- Si q = 1, alors $\sum_{k=p}^{n} u_k = \sum_{k=p}^{n} u_0 = (n-p+1)u_0$.
- Si $q \neq 1$, on a

$$\sum_{k=p}^{n} u_k = \sum_{k=p}^{n} u_0 \times q^k = u_0 \sum_{k=p}^{n} q^k = u_0 \times q^p \frac{1 - q^{n-p+1}}{1 - q} = u_p \frac{1 - q^{n-p+1}}{1 - q}.$$

Remarque 6. Si $q \neq 1$, on retient cette formule sous la forme

$$\sum_{k=n}^{n} u_k = (\text{premier terme}) \times \frac{1 - q^{(\text{nombre de termes})}}{1 - q}.$$

Exemple 8. Soit $(u_n)_{n\in\mathbb{N}}$ une suite géométrique de premier terme $u_0=3$ et de raison q=-2. Alors

$$\sum_{k=7}^{21} u_k = u_7 \frac{1 - (-2)^{21 - 7 + 1}}{1 - (-2)} = 3 \times (-2)^7 \frac{1 - (-2)^{15}}{3} = -128(2^{15} + 1).$$

Année 2025–2026 4 / $\frac{11}{1}$ Panetta / Wassfi

11.2.3 Suites arithmético-géométriques

Définition 5: Suites arithmético-géométriques

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle.

La suite $(u_n)_{n\in\mathbb{N}}$ est dite arithmético-géométrique s'il existe $(a,b)\in\mathbb{R}^2$ tels que

$$\forall n \in \mathbb{N}, u_{n+1} = au_n + b.$$

Remarque 7. • Si a = 0, la suite $(u_n)_{n \in \mathbb{N}}$ est stationnaire et pour tout $n \ge 1$, $u_n = b$.

- Si a = 1, la suite $(u_n)_{n \in \mathbb{N}}$ est arithmétique de raison b.
- Si b = 0, la suite $(u_n)_{n \in \mathbb{N}}$ est géométrique de raison a.
- Supposons que $a \neq 1$. Si la suite $(u_n)_{n \in \mathbb{N}}$ converge vers $l \in \mathbb{R}$, alors on a également $\lim_{n \to +\infty} u_{n+1} = l$ donc en passant à la limite dans la relation $u_{n+1} = au_n + b$, on obtient l = al + b d'où $l = \frac{b}{1-a}$. Ceci légitime la proposition suivante, qui va servir de méthode pour étudier les suites arithmético-géométriques en pratique.

Proposition 5

Soit $(a,b) \in \mathbb{R}^2$ avec $a \neq 1$. Soit $(u_n)_{n \in \mathbb{N}}$ une suite arithmético-géométrique qui vérifie pour tout $n \in \mathbb{N}$, $u_{n+1} = au_n + b$. Posons $l = \frac{b}{1-a}$.

Alors la suite $(v_n)_{n\in\mathbb{N}}$ définie pour tout $n\in\mathbb{N}$ par $v_n=u_n-l$ est géométrique de raison a. Ainsi, pour tout $n\in\mathbb{N}$, $u_n=a^n(u_0-l)+l$.

Démonstration. Montrons que la suite $(v_n)_{n\in\mathbb{N}}$ est géométrique de raison a. Soit $n\in\mathbb{N}$. On a

$$v_{n+1} = u_{n+1} - l = au_n + b - \frac{b}{1-a} = au_n - \frac{ab}{1-a} = a\left(u_n - \frac{b}{1-a}\right) = a(u_n - l) = av_n,$$

ce qui prouve que la suite $(v_n)_{n\in\mathbb{N}}$ est géométrique de raison a.

Ainsi, pour tout $n \in \mathbb{N}$, $v_n = v_0 \times a^n = (u_0 - l) \times a^n$.

Il s'ensuit que pour tout $n \in \mathbb{N}$, $u_n = v_n + l = a^n(u_0 - l) + l$.

Exemple 9. Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle de premier terme $u_0=2$ qui vérifie pour tout $n\in\mathbb{N}, u_{n+1}=\frac{1}{2}u_n-3$.

Commençons par chercher l tel que $l = \frac{1}{2}l - 3 \Leftrightarrow \frac{l}{2} = -3 \Leftrightarrow l = -6$.

Posons pour tout $n \in \mathbb{N}$, $v_n = u_n - l = u_n + 6$. On a alors pour tout $n \in \mathbb{N}$,

$$v_{n+1} = u_{n+1} + 6 = \frac{1}{2}u_n - 3 + 6 = \frac{1}{2}u_n + 3 = \frac{1}{2}(u_n + 6) = \frac{1}{2}v_n$$

donc la suite $(v_n)_{n\in\mathbb{N}}$ est géométrique de raison $\frac{1}{2}$, ce qui implique que

$$\forall n \in \mathbb{N}, v_n = v_0 \times \left(\frac{1}{2}\right)^n = \frac{u_0 + 6}{2^n} = \frac{8}{2^n} = \frac{1}{2^{n-3}},$$

donc pour tout $n \in \mathbb{N}$, on a $u_n = v_n - 6 = \frac{1}{2^{n-3}} - 6$.

Année 2025–2026 5 / 11 Panetta / Wassfi

11.2.4 Suites récurrentes linéaires d'ordre 2

Définition 6: Suites récurrentes linéaires d'ordre 2

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle. On dit que la suite $(u_n)_{n\in\mathbb{N}}$ vérifie une récurrence linéaire d'ordre 2 s'il existe $(a,b)\in\mathbb{R}^2$ tels que

$$\forall n \in \mathbb{N}, u_{n+2} = au_{n+1} + bu_n.$$

Remarque 8. • Une suite récurrente linéaire d'ordre 2 est entièrement définie par ses deux premiers termes u_0 et u_1 et la relation de récurrence. En effet, la relation $u_{n+2} = au_{n+1} + bu_n$ ne permet de calculer u_2 pour n = 0 qu'à la condition que l'on connaisse u_0 et u_1 .

- Si b = 0, la suite $(u_n)_{n \ge 1}$ est une suite géométrique de raison a.
- Si (a, b) = (0, 0), alors pour tout $n \ge 2, u_n = 0$.

Exemple 10. La suite de Fibonacci $(F_n)_{n\in\mathbb{N}}$ est définie par $F_0=0, F_1=1$ et pour tout $n\in\mathbb{N}, F_{n+2}=F_{n+1}+F_n$.

Théorème 1

Soit $(a,b) \in \mathbb{R}^2 \setminus \{(0,0)\}$. Soit $(u_n)_{n \in \mathbb{N}}$ une suite réelle telle que

$$\forall n \in \mathbb{N}, u_{n+2} = au_{n+1} + bu_n.$$

On appelle équation caractéristique de cette suite récurrente l'équation

$$(E): r^2 - ar - b = 0$$

de discriminant $\Delta = a^2 + 4b$.

1. Si $\Delta > 0$, notons r_1 et r_2 les deux solutions réelles distinctes de (E). Alors il existe un unique couple $(\lambda, \mu) \in \mathbb{R}^2$ tel que

$$\forall n \in \mathbb{N}, u_n = \lambda r_1^n + \mu r_2^n.$$

2. Si $\Delta = 0$, notons r l'unique solution de (E). Alors il existe un unique couple $(\lambda, \mu) \in \mathbb{R}^2$ tel que

$$\forall n \in \mathbb{N}, u_n = (\lambda + \mu n)r^n.$$

3. Si $\Delta < 0$, alors il existe $(\rho, \theta) \in \mathbb{R}_+^* \times \mathbb{R}$ telles que les deux solutions complexes conjuguées de (E) soient $r_1 = \rho e^{i\theta}$ et $r_2 = \rho e^{-i\theta}$ (on a $\rho = |r_1|$ et $\theta \equiv \arg(r_1)[2\pi]$). Alors il existe un unique couple $(\lambda, \mu) \in \mathbb{R}^2$ tel que

$$\forall n \in \mathbb{N}, u_n = \rho^n(\lambda \cos(n\theta) + \mu \sin(n\theta)).$$

Remarque 9. Il est logique qu'une suite récurrente linéaire d'ordre deux dépende de deux paramètres λ et μ puisqu'elle est entièrement déterminée par ses deux premières valeurs u_0 et u_1 .

Démonstration.

- 1. Supposons que $\Delta > 0$. L'équation (E) admet alors deux racines réelles distinctes r_1 et r_2 . Ainsi, $r_1^2 = ar_1 + b$ et $r_2^2 = ar_2 + b$.
 - Montrons que pour tout $(\lambda, \mu) \in \mathbb{R}^2$, la suite $(v_n)_{n \in \mathbb{N}}$ définie pour tout $n \in \mathbb{N}$ par $v_n = \lambda r_1^n + \mu r_2^n$ vérifie la relation de récurrence $v_{n+2} = av_{n+1} + bv_n$ pour tout $n \in \mathbb{N}$.

Année 2025–2026 6 / 11 Panetta / Wassfi

Soit $n \in \mathbb{N}$. On a

$$v_{n+2} = \lambda r_1^{n+2} + \mu r_2^{n+2}$$

$$= \lambda r_1^n \times r_1^2 + \mu r_2^n \times r_2^2$$

$$= \lambda r_1^n (ar_1 + b) + \mu r_2^n (ar_2 + b)$$

$$= a(\lambda r_1^{n+1} + \mu r_2^{n+1}) + b(\lambda r_1^n + \mu r_2^n)$$

$$= av_{n+1} + bv_n.$$

Ainsi, toutes les suites $(v_n)_{n\in\mathbb{N}}$ de la forme $v_n=\lambda r_1^n+\mu r_2^n$ où $(\lambda,\mu)\in\mathbb{R}^2$ vérifient la relation de récurrence $v_{n+2}=av_{n+1}+bv_n$ pour tout $n\in\mathbb{N}$.

 \bullet Montrons maintenant que la suite $(u_n)_{n\in\mathbb{N}}$ s'écrit nécessairement de cette forme.

Cherchons $(\lambda, \mu) \in \mathbb{R}^2$ tels que pour tout $n \in \mathbb{N}$, $u_n = \lambda r_1^n + \mu r_2^n$. Pour n = 0 et n = 1, ceci implique que

$$\begin{cases} u_0 = \lambda + \mu \\ u_1 = \lambda r_1 + \mu r_2 \end{cases} \Leftrightarrow \begin{cases} \lambda = \frac{r_2 u_0 - u_1}{r_2 - r_1} \\ \mu = \frac{r_1 u_0 - u_1}{r_1 - r_2}, \end{cases}$$

ce qui est possible car $r_1 \neq r_2$. Il y a donc un unique couple (λ, μ) qui convient. Pour ce λ et ce μ , les suites $(u_n)_{n\in\mathbb{N}}$ et $(\lambda r_1^n + \mu r_2^n)_{n\in\mathbb{N}}$ ont les mêmes deux premiers termes et vérifient la même relation de récurrence d'ordre 2 : elles sont donc égales.

On a donc bien $u_n = \lambda r_1^n + \mu r_2^n$ pour tout $n \in \mathbb{N}$ où (λ, μ) est le couple trouvé précédemment.

- 2. Supposons que $\Delta = 0$. L'équation (E) admet donc une racine double $r = \frac{a}{2}$, d'où a = 2r.
 - Montrons que pour tout $(\lambda, \mu) \in \mathbb{R}^2$, la suite $(v_n)_{n \in \mathbb{N}}$ définie pour tout $n \in \mathbb{N}$ par $v_n = (\lambda + \mu n)r^n$ vérifie la relation de récurrence $v_{n+2} = av_{n+1} + bv_n$ pour tout $n \in \mathbb{N}$. Soit $n \in \mathbb{N}$. On a

$$av_{n+1} + bv_n = a(\lambda + \mu(n+1))r^{n+1} + b(\lambda + \mu n)r^n$$

$$= \lambda r^n (ar+b) + \mu r^n (anr+ar+bn)$$

$$= \lambda r^n \times r^2 + \mu r^n (n(ar+b) + 2r^2)$$

$$= \lambda r^{n+2} + \mu r^n (nr^2 + 2r^2)$$

$$= (\lambda + \mu(n+2))r^{n+2}$$

$$= v_{n+2}.$$

Ainsi, toutes les suites $(v_n)_{n\in\mathbb{N}}$ de la forme $v_n=(\lambda+\mu n)r^n$ où $(\lambda,\mu)\in\mathbb{R}^2$ vérifient la relation de récurrence $v_{n+2}=av_{n+1}+bv_n$ pour tout $n\in\mathbb{N}$.

• Montrons maintenant que la suite $(u_n)_{n\in\mathbb{N}}$ s'écrit nécessairement de cette forme. Cherchons $(\lambda,\mu)\in\mathbb{R}^2$ tels que pour tout $n\in\mathbb{N}, u_n=(\lambda+\mu n)r^n$. Pour n=0 et n=1, ceci implique que

$$\begin{cases} u_0 = \lambda \\ u_1 = (\lambda + \mu)r \end{cases} \Leftrightarrow \begin{cases} \lambda = u_0 \\ \mu = \frac{u_1 - u_0 r}{r}, \end{cases}$$

si $r \neq 0$.

Si $r = \frac{a}{2} = 0$, on a a = 0. Or $\Delta = a^2 + 4b = 0$ donc b = 0, d'où (a, b) = (0, 0) ce qui est contraire à notre hypothèse de départ. Donc on a toujours $r \neq 0$ d'où l'unicité du couple (λ, μ) .

On conclut comme dans le premier cas que pour tout $n \in \mathbb{N}$, $u_n = (\lambda + \mu n)r^n$.

- 3. Supposons que $\Delta < 0$. Alors l'équation (E) admet deux solutions complexes conjuguées $r_1 = \rho e^{i\theta}$ et $r_2 = \rho e^{-i\theta}$ avec $\rho = |r_1| \in \mathbb{R}_+^*$ et $\theta \in \mathbb{R}$.
 - On vérifie comme dans le premier cas que pour tout $(\lambda, \mu) \in \mathbb{C}^2$, la suite $(v_n)_{n \in \mathbb{N}}$ définie pour tout $n \in \mathbb{N}$ par $v_n = \lambda r_1^n + \mu r_2^n$ vérifie la relation de récurrence $v_{n+2} = av_{n+1} + bv_n$.

Année 2025–2026 7 / 11 Panetta / Wassfi

Mais c'est une suite à valeurs complexes. Or, on cherche l'expression de la suite $(u_n)_{n\in\mathbb{N}}$ qui est une suite réelle.

En prenant $(\lambda, \mu) = (\frac{1}{2}, \frac{1}{2})$, on trouve que pour tout $n \in \mathbb{N}$,

$$v_n = \frac{1}{2}\rho^n e^{in\theta} + \frac{1}{2}\rho^n e^{-in\theta} = \rho^n \left(\frac{e^{in\theta} + e^{-in\theta}}{2}\right) = \rho^n \cos(n\theta).$$

De même, en prenant $(\lambda, \mu) = (\frac{1}{2i}, -\frac{1}{2i})$, on trouve que pour tout $n \in \mathbb{N}$,

$$w_n = \frac{1}{2i}\rho^n e^{in\theta} - \frac{1}{2i}\rho^n e^{-in\theta} = \rho^n \left(\frac{e^{in\theta} - e^{-in\theta}}{2i}\right) = \rho^n \sin(n\theta).$$

On vient donc de trouver deux suites réelles $(v_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$ qui vérifient la même relation de récurrence d'ordre 2.

Ainsi, pour tout $(\lambda, \mu) \in \mathbb{R}^2$, on a

$$\lambda v_{n+2} + \mu w_{n+2} = \lambda (av_{n+1} + bv_n) + \mu (aw_{n+1} + bw_n) = a(\lambda v_{n+1} + \mu w_{n+1}) + b(\lambda v_n + \mu w_n)$$

donc la suite $(t_n)_{n\in\mathbb{N}}$ définie pour tout $n\in\mathbb{N}$ par

$$t_n = \lambda v_n + \mu w_n = \rho^n (\lambda \cos(n\theta) + \mu \sin(n\theta))$$

vérifie la même relation de récurrence.

• Réciproquement, montrons qu'il existe un unique couple $(\lambda, \mu) \in \mathbb{R}^2$ tels que

$$\forall n \in \mathbb{N}, u_n = \rho^n(\lambda \cos(n\theta) + \mu \sin(n\theta)).$$

Pour n = 0 et n = 1, cette relation implique

$$\begin{cases} u_0 = \lambda \\ u_1 = \rho(\lambda\cos(\theta) + \mu\sin(\theta)) \end{cases}$$

Puisque les solutions ne sont pas réelles, nécessairement $\theta \not\equiv 0[\pi]$ donc $\sin(\theta) \not\equiv 0$ et on trouve $\mu = \frac{u_1 - \rho u_0 \cos(\theta)}{\rho \sin(\theta)}.$

Encore une fois, on a unicité du couple $(\lambda, \mu) \in \mathbb{R}^2$ et on conclut comme dans les cas précédents.

Exemple 11. • Calculons l'expression du terme général de la suite de Fibonacci $(F_n)_{n\in\mathbb{N}}$ pour tout $n\in\mathbb{N}$ définie par $F_0=0, F_1=1$ et par la relation de récurrence :

$$\forall n \in \mathbb{N}, F_{n+2} = F_{n+1} + F_n.$$

L'équation caractéristique associée est $(E): r^2 - r - 1 = 0$.

Son discriminant est $\Delta = (-1)^2 - 4 \times 1 \times (-1) = 5 > 0$ et ses racines sont

$$r_1 = \frac{1+\sqrt{5}}{2}$$
 et $r_2 = \frac{1-\sqrt{5}}{2}$.

 $(r_1 \text{ est le nombre connu sous le nom de } \ll \text{ nombre d'or } \gg)$

Il existe donc $(\lambda, \mu) \in \mathbb{R}^2$ tel que pour tout $n \in \mathbb{N}$,

$$F_n = \lambda r_1^n + \mu r_2^n = \lambda \left(\frac{1+\sqrt{5}}{2}\right)^n + \mu \left(\frac{1-\sqrt{5}}{2}\right)^n.$$

Année 2025–2026 8 / 11 Panetta / Wassfi

Pour n = 0 et n = 1, on obtient le système suivant

$$\begin{cases} 0 = \lambda + \mu \\ 1 = \lambda \frac{1 + \sqrt{5}}{2} + \mu \frac{1 - \sqrt{5}}{2} \end{cases} \Leftrightarrow \begin{cases} \mu = -\lambda \\ 1 = \lambda \sqrt{5} \end{cases} \Leftrightarrow \begin{cases} \lambda = \frac{1}{\sqrt{5}} \\ \mu = -\frac{1}{\sqrt{5}}. \end{cases}$$

Ainsi, on a

$$\forall n \in \mathbb{N}, F_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^n.$$

 \bullet Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle telle que $u_0=-1,u_1=2$ et

$$\forall n \in \mathbb{N}, u_{n+2} = -2u_{n+1} - u_n.$$

L'équation caractéristique associée est (E) : $r^2 + 2r + 1 = 0 \Leftrightarrow (r+1)^2 = 0$ qui admet -1 comme racine double.

Il existe donc un couple $(\lambda, \mu) \in \mathbb{R}^2$ tel que

$$\forall n \in \mathbb{N}, u_n = (\lambda + \mu n)(-1)^n.$$

Pour n = 0 et n = 1, on obtient le système

$$\begin{cases} -1 &= \lambda \\ 2 &= -(\lambda + \mu) \end{cases}$$

d'où $(\lambda, \mu) = (-1, -1)$. Ainsi, on a

$$\forall n \in \mathbb{N}, u_n = (-1)^n (-1 - n) = (-1)^{n+1} (n+1).$$

• Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle telle que $u_0=0, u_1=1$ et pour tout $n\in\mathbb{N}, u_{n+2}=-u_n$.

L'équation caractéristique associée est $r^2+1=0$. Les deux solutions complexes conjuguées sont $i=e^{i\frac{\pi}{2}}$ et $-i=e^{-i\frac{\pi}{2}}$ donc il existe $(\lambda,\mu)\in\mathbb{R}^2$ tel que

$$\forall n \in \mathbb{N}, u_n = \lambda \cos\left(n\frac{\pi}{2}\right) + \mu \sin\left(n\frac{\pi}{2}\right).$$

Pour n=0 et n=1, on obtient le système

$$\begin{cases} \lambda = 0 \\ \mu = 1 \end{cases}$$

donc pour tout $n \in \mathbb{N}, u_n = \sin\left(n\frac{\pi}{2}\right)$.

Année 2025–2026 9 / 11 Panetta / Wassfi

11.3 Algorithmes et suites

11.3.1 Obtenir le terme d'une suite de rang donné

La suite (u_n) définie par

$$u_n = \frac{3n+2}{2^n+1}$$

peut être implémenté par l'algorithme ci-dessous permettant de calculer u_n où n est un entier donné.

```
def suite(n):
    return (3*n+2)/(2**n+1)
```

Si on veut retourner la liste de tous les termes de 0 à n, on peut écrire :

```
def liste_suite(n):
    return [(3*k+2)/(2**k+1) for n in range(n+1)]
```

Pour une suite définie par une relation de récurrence, on utilise une boucle.

Par exemple, la suite (u_n) définie par

$$\begin{cases} u_0 = 2 \\ u_{n+1} = \frac{1}{2} \times u_n^2 + n - 1 \text{ pour } n \ge 0 \end{cases}$$

peut être implémenté par l'algorithme ci-dessous permettant de calculer u_N où N est un entier donné :

```
def suite(n):
    u = 2
    for k in range(n):
        u = u*u/2+k-1
    return u
```

11.3.2 Déterminer un seuil

Il est parfois utile de déterminer un seuil, c'est-à-dire un rang à partir duquel une propriété séquentielle est vérifiée. Pour illustrer ce problème, considérons la situation suivante.

On considère une population de bactéries dont l'effectif à la génération n est u_n . La croissance dépend de la capacité maximale du milieu (ressources, espace, etc.).

On considère la suite logistique (u_n) définie par

$$\begin{cases} u_0 = 5 \\ u_{n+1} = 2u_n \left(1 - \frac{u_n}{100}\right) \text{ pour } n \ge 0 \end{cases}$$

On souhaite déterminer à partir de quelle génération la population dépasse un certain seuil A fixé à l'avance.

On peut utiliser le code suivant pour répondre au problème :

```
def suite(n):
    u = 5
    for k in range(n):
        u = 2*u*(1-u/100)
    return u

def seuil(A):
    u = suite(0)
    k = 0
    while u < A:
        u = suite(k)
        k = k + 1
    return k</pre>
```