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BCPST1 Lycée Fénelon

15.1 Géométrie du plan

Dans toute cette section, on se place dans le plan R? donc les points M sont repérés par
leurs coordonnées (xp, yar), ol xps est appelé I'abscisse de M et yys Pordonnée de M.

15.1.1 Vecteurs du plan

Définition 1 : Vecteurs du plan

On appelle vecteur du plan tout déplacement d’un point A du plan vers un point B du
plan.

Si A(xa,ya) et B(xp,yp) sont des points du plan, le vecteur ﬁ a pour coordonnées

B (1),

YB

YB — YA

Yya

TR — XA

Si A = B, alors zﬁ = 0 est le vecteur nul.

o = ; e
Plus généralement, un vecteur @ de R? est la donnée de coordonnées ( “) La norme
u

du vecteur 4 est alors définie par

= o , 0
Remarque 1. ¢ Le vecteur nul 0 est défini par ses coordonnées <0> .

« Un vecteur AB est entiérement caractérisé par sa direction (la droite (AB)), son sens (de
A vers B) et sa norme H@H =/(zp —24)%+ (yg — ya)2.
Par définition, la longueur du segment [AB] est AB = ||EH

Proposition 1

Etant donné un vecteur @ et un point O du plan R?, il existe un et un seul point M du
plan tel que

-
OM = .

, . . L, . L (g
Démonstration. On note les coordonnées de @ et M de la fagon suivante : o < u) et

O(z0,y0).

Année 2025-2026 2/32 WASSFI



BCPST1 Lycée Fénelon

Soit M € R2. On a alors les équivalences suivantes :
O—]>w:ﬁ<:><$M$O>:<$ﬁ><:>{$M$O = g <:>{33M = zotwg
YM — Yo Ya Ym — Yo = VYa Yym = Yot VYa
ce qui détermine le point M de fagon unique. |

Remarque 2. Autrement dit, le déplacement # peut étre représenté par des couples de points
différents, mais des lors que le point de départ est fixé, le point d’arrivée 1’est aussi.
Par exemple, si on considere les points A(2, —3), B(—1,1),C(2,0) et D(—1,4) alors

AB = CD

, -3
et ces vecteurs ont pour coordonnées < 4]

Définition 2 : Opérations sur les vecteurs

Soient 4 <xﬁ) et U <$1j> deux vecteurs de R2.

Yu Yo
1. (Addition) On définit la somme @ + ¥ par

o o = Tg+ Ty
U-+v= .
(yi+y17>

2. (Multiplication par un réel) Soit A € R. On définit le vecteur A - @ par

.

. 2 . 5 L 7 L,
Exemple 1. Siu = <3> et U = (6> , alors 44+ U = <3) et —2.-u= (—4 6).

Remarque 3. On remarque que pour tout @ € R2,0- @ = 0.

Proposition 2 : Propriétés des opérations sur les vecteurs

(Commutativité de I’addition) Pour tout (i, ) € (R?)2, 4 + ¥ = ¥ + 4.
(Existence d’un élément neutre) Pour tout @ € R?, %+ 0 =0+
(Associativité de I’addition) Pour tout (i, o, %) € (R?)3, 4 + (¥
(Existence de 'opposé) Pour tout @ € R?, @ + (—1) - @ = 0.

Pour tout @ € R?,1 -4 = 4.

@ &> =

(Distributivité de la multiplication par un réel par rapport a ’addition)
Pour tout (@, 7) € (R?)2, pour tout A € R,

7. Pour tout @ € R?, pour tout (\, i) € R?,

A+p)-d=Xtd+p-a e (Ap)-d=X(p-0).

. . [ Tg [ Ty I s
Démonstration. Dans toute la preuve, on note o (y“) U (y”) et w <yw> . On consideére
7 v {0}
également des réels \ et p.
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o (52 () 58 - (1150 ) ()-oos
i Yy Ya + Yy Yy + Ya i i
2. Onai+0= <xﬁ> + (0) = (§ﬂ> = 1 et lautre égalité découle de la commutativité
u

0
montrée dans I’alinéa précédent.

3. On a

i T Ty + Ty Tg+ Ty + Tg T
U+ (v4+w) = + = =
( ) (ya> <?/17 + yw> <yﬁ + Yy + yw) (yﬁ

1Xyﬁ
6. On a ( )
Meg +x AT ATi
A (U+17) = v v = “ )=XUd+NT
( ) <A(ya+y)> (Mm) <Aya>
7. On a

>~
+
=
N—
<
|
VR
>
+
SRS
~— —
< 8
IS
N——
|
>
VRS
< 8
S
N———
+
VRS
S
S
N——
I
>
£y
+
=
Sl

Par ailleurs, on a
L (Auzg lm?ﬁ) -
) - @ = =\ =X (u-d).
() (Auya) (uya (- 0)
|

Remarque 4. « Toutes ces propriétés font de R? un espace vectoriel.
e En pratique, on note A¢ plutoét que A - @. Ainsi, on note —u au lieu de —1 -4 et 4 — 4
plutdt que @ + (—).

—
Exemple 2. Pour tout couple (A, B) de points du plan R?, on remarque que BA = —E.

En effet, AB <xB - xA) ot BA — <xA - xB) _ (333 - 33A> '

YB — YA YA —YB YB — YA
Proposition 3 : Relation de Chasles

Soient A, B et C trois points du plan R?.

Alors
AB + BC = AC.

C

2 o

~x

A AL

Démonstration. Notons A(z4,y4), B(xp,ys) et C(zc, yc) les coordonnées des points A, B
et C.

Les vecteurs zﬁ et l@ ont alors pour coordonnées E <xB B xA) et ﬁ (mc ~TB > .
Y —Ya Yo —YB

Par somme, on trouve que
AL+ BC = (W‘M”C‘W) _ (”CC—“) _ac
YB —YAtYc —yYB Yo —ya
|
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Remarque 5. E + B—fl = /?4 =0.

Définition 3 : Vecteurs colinéaires

Soient @ et ¥ deux vecteurs du plan R2.
On dit que u et U sont colinéaires s’il existe un réel X tel que

U= ou U=\

Remarque 6. « Le vecteur nul est colinéaire & tous les vecteurs de R? puisque pour tout
@ €R%0-7=0.
e Si 70, alors @ et ¥ sont colinéaires si et seulement si il existe un réel \ tel que @ = 7.
En effet, si @ et ¢ sont colinéaires tels qu’il existe un réel u tel que ¥ = pi, puisque v # 0,
nécessairement p # 0 donc
U?

U= —pi=

=1
=~

1
d’oti le résultat en posant A = —.
1

1 —2
Exemple 3. ¢ Les vecteurs o = <_ 2) et U= < 4 ) sont colinéaires car ¥ = —24.

Proposition 4 : Condition de colinéarité
Soit @ = (Z) et U= <§) .

Les vecteurs 4 et ¥ sont colinéaires si et seulement si ad — bc = 0, i.e. = 0.

c
d

S Q

Démonstration. « Supposons que les vecteurs 4 et ¥ sont colinéaires. Sans perte de géné-
s oo . . A
ralité, on peut supposer qu’il existe A € R tel que v = \u = )\Z> .
On alors ¢ = Aa et d = Ab d’ou ad — bc = Aab — Aab = 0.
e Supposons que ad — bc = 0 et montrons que les vecteurs @ et ¢ sont colinéaires.
Si @ = 0, alors ¥ est nécessairement colinéaire & .
On peut donc supposer que 4 # 0, i.e. (a,b) # (0,0).

- Si a = 0, nécessairement b £ 0 et on peut poser A = 7 d’ou d = Ab.
Puisque ad — bc = 0, on a alors bc = ad d’ou ¢ = (%d = Aa.

oo (e (a) _ -
A1n51v—<d>—)\(b>—)\u.

b
-SiayéO,onpose)\—Zetontrouvedemémed—ac—/\bd’oﬁﬁ'—)\<a>—)\ﬁ.

Dans tous les cas, si ad — bc = 0, alors les vecteurs @ et ¥ sont colinéaires. |

1
Exemple 4. Les vecteurs 4 = (g) et U= ( 1) ne sont pas colinéaires car 5 x 1 —3 x 1 # 0.

Définition 4 : Points alignés

Soient A, B et C trois points du plan R?.
On dit que les points A, B et C sont alignés si les vecteurs E et ﬁ sont colinéaires.
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Exemple 5. Les points A(1,—3), B(2,1) et C(3,5) sont alignés car AB = <411> et B = <§>

donc E = QE.

15.1.2 Produit scalaire

Définition 5 : Produit scalaire sur R?

/
Soient © = <§> et U= <:;,> deux vecteurs du plan R?.
On définit le produit scalaire - ¢ par

—

@-7=xx' +yy.

Remarque 7. Le produit scalaire sur R? est donc une application définie sur R? x R? & valeurs
dans R.

Exemple 6. Soient 4 = _21> et v = <§>
Alorsi-7=2x3—-1x5=1.

Définition 6 : Vecteurs orthogonaux

Soient @ et ¥ deux vecteurs du plan R2.
On dit que u et U sont orthogonaux si @ - ¥ = 0.

Remarque 8. Le vecteur nul est orthogonal a tous les vecteurs du plan.

Exemple 7. Les vecteurs 4 = (i) et U= <_2

Proposition 5 : Propriétés du produit scalaire

—

1. (Symétrie) Pour tout couple de vecteurs (i, ) € (R?)2, 4 - v = v - .
2. (Bilinéarité) Pour (@, 7, @) € (R?)3, pour tout A € R,

1
sont orthogonaux.

—

W et W-(AM+V)=A0-d+T-v.

<y

(A + ) - @ = AT - % +

3. (Positivité) Pour tout @ € R? % - @ > 0.
4. (Définition) @ - @ =0 < @ = 0.

Remarque 9. On déduit du caractere défini positif du produit scalaire que si 4 # 0, alors
-4 > 0.

Démonstration.

- X -
Dans toute la preuve, on fixe des vecteurs @ = (y> , U

Il
TN
Qd\ %Q.,\
~~_

@

-+

g

Il
TN
QQ\ g\
N

1.Onatd-t=ax'+yy =2’z +yy=10-4.
/
2. Soit A\eR. OnaAi+7=("* %) donc
Ay +y

i +7) -0 = Az + 2" + My +9)y" = MNax" +yy”) + (@2 +y/y") = \i - @+ v 0.
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3.0Onai-i=2>+y>>0.
4. Onat-i=0e22+y’=022=y=0=a=0.

Définition 7 : Norme euclidienne

Soit U4 = <;§> € R2. On définit la norme euclidienne du vecteur % par

@] = Vi - @ = /22 +y2.

Remarque 10. Par positivité du produit scalaire, on a bien « - 4 > 0, ce qui légitime la
définition de [|i||. En outre, ||| > 0.

Définition 8 : Vecteurs orthonormés

Soient @ et ¥ deux vecteurs du plan R2.
On dit que les vecteurs 4 et ¥ sont orthonormés s’ils sont orthogonaux et si ||| = ||v]| = 1.

1 1 1 1
Exemple 8. « Les vecteurs & = — et U= — sont orthonormés.
i NG <—1> V2 (1)

Proposition 6 : Identités remarquables

Pour tout couple de vecteurs (i, ) dans R?, on a :
L |7+ 9> = [|a]f* + 2@ - o + || 9]
2. |la— ) = ||alf* — 2@ 7+ ||7]|*;

3. (@+9) (7—) = ||a* — [|7]*.

Démonstration. Soient (i, ¥) un couple de vecteurs dans R?.
1. On a par bilinéarité du produit scalaire :

Q- U400+ d+7-0=|a)*+2a-7+|7)>

1@ + T)|* = (@ + ©) - (@ + D)
2. On a par bilinéarité du produit scalaire :
i -7 =(@—0)-(G—?)=d-d—0-T—0-d+0-7=|d||> =27+ |7
3. On a par bilinéarité du produit scalaire :
(G+0)- (- =d-0—U0-T+T-d—0-0=|d||> —a-v4+a 70— |7*=|a* - ||7]>

Proposition 7 : Identités de polarisation

Soit (i, ¥) un couple de vecteurs dans R2.
Alors

I L .. . = =
U4-U= Z(Hu—i—”\P —||@ - 7% = é(Hu—i—sz — [l@l”* = 19)*).

Démonstration. La preuve découle directement des identités remarquables. |
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Remarque 11. Ces identités permettent de retrouver le produit scalaire de deux vecteurs
moyennant la connaissance de certaines normes.

Proposition 8 : Identité du parallélogramme

Soit (i, ¥) un couple de vecteurs dans R2.
Alors
12+ 311 + |1 — 7 = 2(|1* + | 3]).

Démonstration. La preuve découle directement des identités remarquables. |

Remarque 12. Géométriquement, cette égalité signifie que la somme des carrés des longueurs
des diagonales d’un parallélogramme est égale a la somme des carrés des quatre cotés de ce
parallélogramme.

Proposition 9 : Inégalité de Cauchy-Schwarz

Soit (i, #) un couple de vecteurs dans R2.

Alors
|- o] <[] || 7]

avec égalité si et seulement si les vecteurs 4 et U sont colinéaires.

Démonstration. Si ¥ est nul, les deux membres de I'inégalité sont nuls donc 'inégalité (qui
est méme une égalité) est vérifiée.
Supposons donc que ¥ # 0 et notons pour tout A € R,

P(\) = (i + M) - (i + \0).

Par positivité du produit scalaire, P(A) > 0 pour tout réel A.
Par ailleurs, par bilinéarité du produit scalaire, on a

P\) = \2G - G420 - T+ @ - @ = N2||0)|2 + 2 & - 7 + || d||>.

C’est un trindme du second degré en A (puisque ||¥/]| # 0) de signe constant donc son discriminant
est négatif, ce qui s’écrit
A(@-9)* — 4]l@|*|17)* <o,

d'on
(@~ 9)* < ||

En prenant la racine des deux c6tés, on obtient :
i - o] < ||| 7]

Montrons maintenant le cas d’égalité.

Supposons qu’il y ait égalité. Alors le discriminant du trindme est nul, c’est a dire qu’il
admet une racine double A tel que (@ + A7) - (4@ + A¥) = 0. Par définition du produit scalaire,
ceci implique que 4 + A\ = 0, i.e. & = — AU donc les vecteurs u et ¥ sont colinéaires.

Réciproquement, supposons que les vecteurs 4 et ¥/ sont colinéaires, i.e. il existe un réel A
tel que @ = AV (ceci est loisible car ¢ # 0).

Alors

-5 = (A7) - 7] = \|(5 - 9)

et

Iz = AN 17 = V(AF) - MOVG - T= /2T - V5 - T=|A(7-7)
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On a donc bien égalité si les vecteurs « et ¥/ sont colinéaires. ]

Proposition 10 : Propriétés de la norme

1. (Séparation) ||@|| =0 < @ = 0.
2. (Homogénéité) Pour tout vecteur @ € R?, pour tout A € R,

[Aa]] = [Allal]
3. (Inégalité triangulaire) Pour tout couple de vecteurs (i, 7) € R?,
@+ 7| < flall + [|9]]

avec égalité si et seulement si @ et ¥ sont colinéaires et de méme sens.

Démonstration.

1. On a les équivalences
li|| =0 < Vu leid-i=0ed=0,

ou la derniére équivalence découle du caracteére défini du produit scalaire.

2. Soit 7 € R2. Soit A € R. Par bilinéarité du produit scalaire, on a
2@l = /(A = V(@ - @) = [A\Va - i = [A]||].

3. Soit (i, ) un couple de vecteurs de R2.
On a

l@+al* = fa|®+2a-7+ |7

|a||? + 2||@]|||17]| + ||7]|> (inégalité de Cauchy-Schwarz)

<
< (llall + 111>,

Ainsi, par croissance de la fonction racine carrée sur R, , on obtient

1@+ 3| = Vlld+ 311 < V([ + 1912 = [lall + ||,

ce qui prouve 'inégalité triangulaire.

Montrons le cas d’égalité. Si @ = 0, I'inégalité triangulaire est une égalité et il existe bien
A € Ry, en 'occurrence A = 0, tel que ¥ = .

On suppose donc dorénavant que U # 0.

o Supposons que ||@ + | = ||d]| + ||7]|.

En reprenant la démonstration de I'inégalité triangulaire, on voit que ceci équivaut a
@ - U = ||u]|||7]|. En particulier, il y a donc égalité dans I'inégalité de Cauchy-Schwarz, ce
qui implique qu’il existe un réel A tel que @ = A7 (puisque 7 # 0).

On a ainsi ||@]|||7]] = @ - T = (A\0) - T = A||v||?. Puisque & # 0, alors ||7]|> > 0 donc
lafli@l _ il

A= = == = 0.
1wz el

Ainsi, @ = A\, avec A > 0, ce qui prouve que u et ¥ sont colinéaires et de méme sens.

e Réciproquement, supposons que @ et ¥ sont colinéaires et de méme sens, c’est a dire
qu’il existe A > 0 tel que @ = AU (toujours parce que ¥ # 0). On a alors

-7 = (A) - 7= A|F)* = 1] = a9 = llalllall,

d’ou I’égalité dans I'inégalité triangulaire.
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Proposition 11 : Angle géométrique

Soient @ et ¥ deux vecteurs non nuls du plan R2.
Il existe un unique angle 6 € [0, 7] tel que

]
S

(%) = 1@

Le réel 0 est appelé angle géométrique entre les vecteurs u et .

=
<l

Y

St

g
v

Démonstration. Puisque @ et ¥ sont non nuls, les normes ||| et ||| sont strictement
positives.

D’apres l'inégalité de Cauchy-Scwharz, on a —||d||||v]| < @
||@]|T|| > 0, on obtient

—»

< ||a||v]| d’ott en divisant par

el

u-v
S Tl S

Puisque la fonction cosinus réalise une bijection de [0, 7] dans [—1, 1], il existe un unique

réel 6 € [0, 7] tel que cos(f) = S [ |

Corollaire 1

Soient # et U deux vecteurs non nuls du plan. Soit # 'angle géométrique entre les vecteurs
i et v.

Alors

i - 0 = ||| 7]] cos(8).

S

Remarque 13. « Sideux vecteurs # et ¥ non nuls sont orthogonaux, on a 0 = @-v = ||| cos(6).
, . ™ - . .
Nécessairement, cos(#) = 0 donc 0 = 5 Ainsi, deux vecteurs orthogonaux sont de directions
perpendiculaires.

e Si deux vecteurs 4 et ¥’ non nuls sont colinéaires, il existe un réel non nul A tel que ¥ = Au.
On a alors

i-v=i- (M) = Aal* et [|@][[7] cos(9) = ||| x| cos(6) = [Al[[al|* cos(6)

A
donc cos(f) = W = #£1. Ainsi, 8 = 0 ou § = 7, ce qui prouve que deux vecteurs colinéaires sont
de directions paralléles.
En particulier, si trois points A, B et C sont alignés, c’est a dire si les vecteurs ﬁ et ﬁ

sont colinéaires, les droites (AB) et (AC) sont confondues.
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Proposition 12 : Théoréme de Pythagore

Soient @ et ¥ deux vecteurs du plan R2.

Alors les vecteurs i et ¥ sont orthogonaux si et seulement si ||@ + o/]|? = ||i@/|? + ||7]|.

Démonstration. On a l'identité remarquable ||@ + 9| = ||@||? + 24 - ¥ + ||7]|*.

On a donc 'équivalence :

+3* = |l + |19

£y

F=0<|

£

Remarque 14. Si 4= BA et ¥ = m, onau+v= B? d’apres la relation de Chasles. Ainsi,
on a l’équivalence

BA-AC =0« BC? = AB® + AC2.

Autrement dit, le triangle ABC est rectangle en A si et seulement si BC? = AB? + AC?.

15.1.3 Bases et repéres du plan

Définition 9 : Bases du plan

Une base du plan R? est la donnée d’un couple de vecteurs (¢7, €3) de R? non colinéaires.
Une telle base est dite orthonormée si les vecteurs €7 et €3 sont orthonormés.

Remarque 15. « Le vecteur nul étant colinéaire & tous les vecteurs de R?, une base de R? est
nécessairement constituée de deux vecteurs non nuls.

« Deux vecteurs non nuls et orthogonaux forment toujours une base de R?. En effet, si
e1#0,e3 #0, et €1 - €5 = 0, alors les vecteurs €1 et €3 ne sont pas colinéaires.

S’ils étaient colinéaires, il existerait un réel A\ non nul tel que €3 = Aéq d’ou
0=¢i-e3=¢1- (A1) = Aéf-€1) = N|éi]]? # 0,

ce qui est absurde.

Ainsi, deux vecteurs orthogonaux non nuls ne sont pas colinéaires et forment une base de
R2.

- =2 , g 1 =
Exemple 9. ¢ Notons i et j les vecteurs de coordonnées ¢ <0> et j <(1)> .

Ces vecteurs ne sont pas colinéaires car 1 x 1 — 0 x 0 = 1 # 0 donc ils forment une base du
plan R?, appelée base canonique de R2. De plus, c’est une base orthonormée.

Lo - . 5 . 1
o Le couple de vecteurs (i, ¥) vus dans I’exemple précédent, i.e. 4 = <3) et U = <1> forme

donc une base de R2.
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Théoréme 1 : Coordonnées d’un vecteur dans une base

Soit (€7, €3) une base du plan R2.
Soit # un vecteur de R2.
Alors il existe un unique couple de réels (A1, A2) tels que

U = A€l + Aaea.

On dit que les réels (A1, A2) sont les coordonnées du vecteur @ dans la base (€7, €3).

b

de ces vecteurs dans la base canonique de R?).
Cherchons un couple (A1, A2) de réels tel que

Sy - R Aa+ X = « a ¢ A1) (o
U—)\161+)\2€2<:>{)\1b+)\2d — 3 <:>(b d) ()\2)_<6>

Puisque les vecteurs (€7, €3) forment une base de R, ils ne sont pas colinéaires donc ad — be # 0,

Démonstration. Notons € = <a>7 €5 = <C> et U = <g> (qui sont en fait les coordonnées

. . a c , . . .
i.e. la matrice ) est de déterminant non nul, donc elle est inversible.

b d

On en déquit que I'unique solution du systéme est le couple (A1, Ay) donné par

MY [a c 1 ra
Ao \b d B)’
ce qui assure l'existence et I'unicité des coordonnées du vecteur @ dans la base (€1, €3). |

Exemple 10. « Reprenons la base canonique de R2(7, j) définie par ;<é> et j <(1)> :

Ty

Pour tout vecteur u < ) de R?, ona @ = zgi + ygj.

Yu

Ainsi, les coordonnées de @ dans la base (Z, j) sont (zz,yg)-

o Soit (€1, €3) la base définie par €1 = (g) et €3 = <1>

Soit @ = (21) . On cherche les coordonnées (A1, A2) de 4 dans la base (€i,€3). On a les

équivalences suivantes :

L N N 2 = bAM+ A Lieli—Ls 3 = 21 A = 3

u-)\161—|—>\262<:>{_1 — 3A A — {_1 3t A & Ny = _%71_
3 11

Ainsi @ = S¢éi — =63,

Ims1 u 261 262

Définition 10 : Repére du plan

On appelle repére du plan R? la donnée d'un triplet (O, €7,¢€3) ott O est un point de R?
et (€1, €3) une base de R
On dit que le repére est orthonormé si (€1, €3) est une base orthonormée de R2.
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Exemple 11. Si on note O l'origine du plan, i.e. le point (0, 0), Z<(1)> et j <(1)> les vecteurs de

la base canonique, (O, i, j) est un repére du plan R2.

Définition 11 : Coordonnées d’un point dans un repeére

Soit (O, €1, €5) un repere du plan R2. Soit M un point du plan R2.
On appelle coordonnées de M dans le repere (O, €7, €3) les coordonnées (A1, Ay) de OM

dans la base (€1, €3), i.e. 'unique couple de réels (A1, A2) tel que

(T)W = A\€1 + Aoés.

Remarque 16. Lorsqu’on note les coordonnées d’un point M sous la forme (x,y) ou x désigne
labscisse du point M et y son ordonnée, les coordonnées (z,y) sont en fait les coordonnées du
point M dans le repeére (O, 1,7) ott O désigne l'origine du plan R?, i.e. le point (0,0), et (i,7) la
base canonique de R?.
— - -
En effet, on a OM = xi + yj.

)
3
Soit O = (2,5). Le triplet (O, @, #) forme donc un repére de R2.
Soit M le point du plan R? de coordonnées (4, 4).

— 2 3., 11
Alors OM = <_1> = 561 — ?eg.

1
Exemple 12. Reprenons les vecteurs i = < ) et U= < 1) qui forment une base (i, ¥) de R2.

3 11
Les coordonnées de M dans le repere (O, @, ¥) sont donc <2, —2> .

Définition 12 : Déterminant dans une base

Soit (€7, €3) une base de R?. Soient @ et @ deux vecteurs de R? de coordonnées respectives
(a,b) et (c,d) dans la base (€1, €3).
On appelle déterminant du couple (@, ¥) dans la base (€7, €3) le déterminant

a c
b d

Proposition 13 : Condition de colinéarité

On garde les notations de la définition précédente.

Alors les vecteurs u et ¥ sont colinéaires si et seulement si =0.

a ¢
b d

Remarque 17. Ceci signifie que la condition de colinéarité vue précédemment dans la base
canonique est en fait vraie dans toutes les bases.

Démonstration. ¢ Supposons que les vecteurs # et ¢ sont colinéaires. Sans perte de géné-
ralité, on peut supposer qu’il existe A € R tel que ¥ = Al = Aaél + \bés.
Par unicité des coordonnées dans la base (€1,€3), on a ¢ = Aa et d = A\b d’ou

ad — bc = Aab — \ab = 0.

e Supposons que ad — bc = 0 et montrons que les vecteurs i et ¥ sont colinéaires.
Si @ = 0, alors ¥ est nécessairement colinéaire & .
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On peut donc supposer que @ # 0, i.e. (a,b) # (0,0).
- Si a = 0, nécessairement b % 0 et on peut poser A = 7 d’ou d = Ab.

d
Puisque ad — bc = 0, on a alors bc = ad d’ou ¢ = @ _ Aa.

b
Ainsi ¥ = cé] + des = Aaéq + Abés = M.
c c
- Sia #0, on pose A = — et on trouve de méme d = — = Ab d’ou
a a
U = cel + dés = haél + A\bes = A\

Dans tous les cas, si ad — bc = 0, alors les vecteurs @ et ¥ sont colinéaires. |

Proposition 14 : Coordonnées dans une base orthonormée

Soit (€7, €3) une base orthonormée de R2.
Pour tout vecteur % de R?, on a

Démonstration. Notons (z,y) les coordonnées de @ dans la base (€1, €3) de telle sorte que
iU = xéi + yés.
On a par bilinéarité du produit scalaire :

- = —

@& = (véi +yés) -6 = x(é - €1) +ylez - 1) = z||éi||* + y(é - é1).

—

Puisque la base (€], €3) est orthonormée, on a ||éi|| =1 et é3- €1 =0 donc @ - €] = z.
On montre de méme que @ - €3 = ¥, ce qui prouve que

—

U= (u-ée1)e] + (U-éz)és.

Proposition 15 : Produit scalaire dans une base orthonormée

Soit (€7, €2) une base orthonormée de R2. Soient i et ¥ deux vecteurs de R? de coordonnées
respectives (a,b) et (¢, d) dans la base (€7, €3).
Alors @ - ¥ = ac + bd.

Démonstration. Par hypothese, on a @ = aél + bés et ¥ = cé] + dés.
Puisque la base (€1, €3) est orthonormée, on a

—

Ge=0 et e-éi=¢es c =]l = el =1.
Ainsi,

-7 = (aéi + bé3) - (céi + dé3) = ac||éi||* + ad(éi - &) + be(és - €1) + bd||é3]|* = ac + bd.

L 1 /1 o 1 1
Exemple 13. Soit €1 = ﬁ <1> et e = ﬁ <_1>.
Le couple (€7, €3) forme une base orthonormée de R2.
Soit @ = V267 + 2v/265 et T = V/26€1 — 2/265.
D’aprés la proposition précédente, @ -7 = v/2 x v/2 +2v2 x (=2v/2) =2 — 8 = —6.

s er ()31 - (e ()2(2)- ()

On retrouve bien @ -7 =3 x (—=1)+ (—1) x 3=-3 -3 = —6.

Année 2025-2026 14 / 32 WASSFI



BCPST1 Lycée Fénelon

Remarque 18. Soit % un vecteur non nul du plan, soit «/ un vecteur non nul orthogonal a
— = o o
tel que (u,u') = . Le couple H, ﬂ forme une base orthonormée du plan R2.
u u’

Soit ¥ un vecteur non nul du plan. Soit 6 'angle géométrique entre « et .

— —
e / 7 /!

Alors @ = ||]] cos(8) = + || 5] sin(6) —=— et @ = |||~ = + 0 x —=—.
] el

|| /||

D’apres la proposition précédente, on obtient

- 0= |[al][|v] cos(8).-

On retrouve la formule du produit scalaire avec le cosinus.

15.1.4 Droites dans le plan

Définition 13 : Droites du plan

Soit A un point du plan R?, soit @ un vecteur non nul de R2.
La droite de vecteur directeur @ et passant par A est ’ensemble des points M tels que
les vecteurs AM et @ sont colinéaires.

£

Remarque 19. Si une droite (D) admet un vecteur directeur i, alors tout vecteur non nul o/
colinéaire a 4 est également un vecteur directeur de la droite (D).

— —

En effet, si AM est colinéaire & i, alors il existe un réel X tel que AM = A et si U et 4 sont
S g L, R ey R
colinéaires, il existe u € R tel que @ = uv donc AM = Auv.

Ainsi, AM est colinéaire & 4 si et seulement si AM est colinéaire & ¥, donc la droite passant

par A et de vecteur directeur « est la droite passant par A et de vecteur directeur .

En particulier, si B est un autre point de (D), alors le vecteur ﬁ est un vecteur directeur
de (D).

Définition 14 : Droites paralléles

Soient (D) et (D) deux droites de vecteurs directeurs respectifs @ et /.
On dit que les droites (D) et (D') sont paralleles si les vecteurs @ et u’ sont colinéaires.
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Proposition 16 : Théoréme de Thales

Soit ABC' un triangle. Soit M un point situé sur la droite (AB) et N un point situé sur
la droite (AC).
On suppose que la droite (BC') est parallele a la droite (M N).
Alors
AM AN _MN
AB  AC  BC’
A N M
A
M N B c
B C

Démonstration. Tout d’abord, notons que puisque les points A, B et C' forment un triangle,
les vecteurs E et fﬁ ne sont pas colinéaires (sinon, les points A, B et C seraient alignés).
Ainsi, le couple (z@ , @) forme une base de R2.

Puisque les points A, M et B sont alignés, les vecteurs m et E sont colinéaires donc il
existe un réel « tel que AM = aAB.

De méme, puisque les points A, N et C sont alignés, les vecteurs ﬁ et ﬁ sont colinéaires
donc il existe un réel 5 tel que ﬁ = ﬁﬁ .

Enfin, puisque les droites (BC) et (M N) sont paralleles, les vecteurs B? et W sont

colinéaires, donc il existe un réel v tel que MN = ~vBC.
D’apres la relation de Chasles, on en déduit que

MN = ~(BA + AC) = —AB +~AC.
D’autre part, toujours d’apres la relation de Chasles, m = m—i—ﬁ = —m —hﬁ donc

m:—aﬁﬁ-ﬁ/ﬁ.

Par unicité des coordonnées d’un vecteur dans une base, on en déduit que —a = —y et =1,
d'ou a =0 =1.

AM
Or, AM = aAB donc AM = |AM|| = [aAB| = ||| AB| = |o|AB d'ot |o] = =.
AN MN
On a de méme |3 =c et |7]:B—C. oy
Puisque |a| = |5] = ||, on en conclut que = = ) |

AB  AC  BC

Corollaire 2 : Réciproque du théoréme de Thales

Soient A, B,C, M, N cinq points du plan distincts.
On suppose que les points A, M et B d’une part, et A, N et C d’autre part sont alignés

et dans cet ordre.
o AM AN
D SUppose que —m = — 5.
Alors les droites (M N) et (BC') sont paralléles.
AM AN' _MN

AB AC  BC’

En outre,
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Démonstration. Considérons la droite (D) de vecteur directeur B? et passant par M.
Notons N’ son point d’intersection avec la droite (AC') (ce point existe puisque les droites (BC')
et (AC) ne sont pas paralléles). De plus, les points A, N" et C' sont alignés dans le méme ordre
que Aﬂ) et B car d’apres la preuve du théoreme de Thales, si A est le réel tel que Zﬁ = )\A—C>',
alors AM = )\1@.

Ainsi, la droite (M N') est paralléle & la droite (BC'). D’apres le théoréeme de Thaleés, on en
AM AN’ MN’

déduit que

AB  AC _A]\B/IC .AC
Il s’ensuit que AN’ = % = AN. 1l y a alors deux possibilités : N' = N ou A est le

milieu de [NN’]. Mais ce deuxiéme cas est impossible car N et N’ sont tous deux situés entre
A et C. Nécessairement, N’ = N.

Ainsi, la droite (MN) est parallele a la droite (BC) et d’apres le théoreme de Thales,
AM AN _MN .
AB  AC  BC’

Remarque 20. On en déduit le théoreme de la droite des milieux : si on note I le milieu de

Al A 1
[AB] et J le milieu de [AC], alors 1B % =3 donc les droites (I.J) et (BC') sont paralléles.

Proposition 17 : Représentation paramétrique d’une droite dans le plan

Soit A(x4,y4) un point du plan R?, soit @ = <Z

Soit (D) la droite passant par A de vecteur directeur .
Soit M un point de R? de coordonnées (z,y).

> un vecteur non nul de R2.

= da+zxy

Alors M € (D) si et seulement si il existe un réel A tel que { z 26

Démonstration. On a les équivalences suivantes :

Me (D)< AM et @sont colinéaires < 3\ € R,m = \i & <:c B xA) = <)\a> & { T = Aatag
Y—Ya Ab y = Ab+ya.
|

Z) , soit A le point du plan de coordonnées (2, 3). Soit (D) la droite

passant par A de vecteur directeur 1.

Alors un point M du plan de coordoonnées (x,y) appartient a la droite (D) si et seulement
r = bA+2

= 3A+3
Par exemple, pour A = 1, on trouve que le point de coordonnées (7,6) appartient a (D).
Pour A = —2, le point de coordonnées (—8, —3) appartient a (D).

Exemple 14. Soit 4 = (

si il existe un réel A tel que {

Définition 15 : Vecteur normal a une droite

Soit (D) une droite du plan R? de vecteur directeur .
On appelle vecteur normal & la droite (D) tout vecteur non nul 7 tel que 7 et 4 sont
orthogonaux.

Exemple 15. Si on reprend la droite (D) de '’exemple précédent, le vecteur 7 = <_53> est un

vecteur normal a la droite (D).
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Remarque 21. Les vecteurs normaux a une droite du plan sont tous colinéaires. En effet, soit
a

(D) une droite de vecteur directeur 4 = < b

> # 0. Déterminons les vecteurs normaux non nuls

a la droite (D). Soit 77 = <§> un tel vecteur.

On a 7 - @ = ax + by = 0. Puisque @ # 0, nécessairement, (a, b) # (0,0).
e Sia =0, on trouve que by = 0 et puisque dans ce cas b # 0, ceci implique que y = 0.

1
Dans ce cas, 7 est de la forme (g) =z <0> donc les vecteurs normaux a la droite (D) sont

s 1 —b —b
colinéaires au vecteur 0 , donc au vecteur A

b b b
e Sia# 0, on obtient x = ——y et 7 est de la forme ( 52/) =y < 1“) donc les vecteurs
a

b

. . o —b
normaux a la droite (D) sont colinéaires au vecteur ( 1a> , donc au vecteur ( u > .

Z) sont tous

Dans tous les cas, les vecteurs normaux a une droite de vecteur directeur @ = <
o —b
colinéaires au vecteur .
a

Z) , et si @ est un

Réciproquement, si une droite (D) admet pour vecteur normal 7 = (

. . S ..o (b
vecteur directeur de la droite (D), alors 4 est colinéaire & ( a > .

Proposition 18 : Equation cartésienne d’une droite du plan

Soit (D) une droite du plan R2. Soit 7 = (Z

Alors il existe un réel c tel que pour tout point M de R? de coordoonées (z,y),

) un vecteur non nul normal a la droite (D).

Me (D)< ar+by+c=0.

On dit que I'équation az + by + ¢ = 0 est une équation cartésienne de la droite (D).

Démonstration. Soit @ # 0 un vecteur directeur de (D), soit A un point de (D) de
coordonnées (x4,yA).

—
Par définition, le point M appartient & (D) si et seulement si AM est colinéaire & , i.e. il

—
existe A € R tel que AM = A\i. Dans ce cas, on a AM -7t = (A\d) -7 = \N(@ - 7)) = 0.
—
Réciproquement, d’apres la remarque précédente, si AM - 77 = 0, alors AM est colinéaire a

—b
( u > , qui est un vecteur directeur de (D).

On a donc les équivalences
e
Me (D) AM -i=0< (x —za)a+ (y —ya)b=0,
ce qui équivaut en posant ¢ = —ax4 — bya a ax + by + c = 0. |

Remarque 22. « Une équation cartésienne de droite dans le plan R? est donc une équation
de la forme ax + by + ¢ = 0 avec (a,b) # (0,0).

o Puisque tous les vecteurs normaux a (D) sont colinéaires, la droite (D) admet une infinité
d’équations cartésiennes, toutes égales a multiplication par un scalaire non nuls pres.
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e Une droite verticale a une équation de la forme x = —c, i.e. x+c¢ = 0 ou encore ax+by+c =
Oaveca=1et b=0.

e Une droite horizontale a une équation de la forme y = —g, i.e. by + ¢ = 0 ou encore
ar+by+c=0aveca=0et b#0.

e Si b+ 0, 'équation ax + by = ¢ peut s’écrire y = —%l‘ — g On retrouve ’équation d’une
fonction affine de coefficient directeur —% et d’ordonnée a 'origine —g.

Exemple 16. On reprend le méme exemple de la droite (D) de vecteur normal 77 = <_53) .

Elle admet une équation cartésienne de la forme —3x + 5y + ¢ = 0.
Or, elle passe par le point A de coordonnées (2,3) donc —3 x2+5x3+c¢=0douc=—9.
Une équation cartésienne de la droite (D) passant par A(2,3) et de vecteur directeur @ =

<g> est =3z + 5y —9=0.

Remarque 23. Soient (D) et (D’) deux droites du plan d’équations respectives ax +by+c =0
et d’x+by+c = 0. Les points d’intersection des deux droites (D) et (D) ont pour coordonnées
les couples (x,y) solutions du systéme

ar+by = —c
dr+by = —c

On a vu dans le chapitre « Systémes linéaires » qu’un tel systéme admet zéro, une seule, ou une
infinité de solutions. Ainsi, deux droites du plan sont soit paralléles, soit sécantes en un point,
soit confondues.

Proposition 19

Soit (D) une droite de R? d’équation cartésienne ax + by + ¢ = 0 avec (a,b) # (0,0).

Alors le vecteur 4 = < u > est un vecteur directeur de la droite (D).

Démonstration. Soit A(xg,yp) un point de (D). Les coordoonnées de A vérifient 1’équation
de (D) donc axg + byg + ¢ = 0.
Soit M(x,y) un point du plan. On a les équivalences suivantes :

MeD)sar+by+c=0ar+by+c=axg+by+c<alx —x9)+b(y —yo) =0.

—
Y—1Y
seulement si a(z — z9) — (=b)(y — yo) = a(z — x9) + b(y — yo) = 0.

N ) -— . o .
Or, le vecteur AM a pour coordonnées > donc AM et u sont colinéaires si et

—
On a donc prouvé que M appartient a la droite (D) si et seulement si AM et @ sont
colinéaires, ce qui implique que @ est un vecteur directeur de la droite (D). |

Remarque 24. Si on se donne une droite (D) de vecteur directeur @ = < a ) , le vecteur

. a N . . . . -
=\, est un vecteur normal a la droite (D) donc celle-ci admet une équation cartésienne de

la forme ax + by + ¢ = 0.
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Définition 16 : Cceefficient directeur d’une droite

Soit (D) une droite de R? d’équation cartésienne ax + by + ¢ = 0 et de vecteur directeur
U= <_ab) avec (a,b) # (0,0).

Si b # 0, on définit le coefficient directeur (ou pente) de la droite (D) par le réel —%.

Remarque 25. « Sia =0, la droite (D) est horizontale et son ccefficient directeur est nul.
e Sib =0, ladroite (D) est verticale et dans ce cas, le coefficient directeur de la droite (D)
n’est pas défini (on peut dire qu’il est infini).

Exemple 17. Soit (D) une droite de R? d’équation cartésienne 2z + 3y — 1 = 0. Un vecteur

— 2
directeur de cette droite est 4 = ( 23> donc le ceefficient directeur de cette droite est —3

15.1.5 Projection orthogonale sur une droite

Proposition 20 : Projection orthogonale sur une droite

Soit (D) une droite de vecteur directeur 4.

Soit M un point du plan R2.

Alors il existe un unique point H appartenant a la droite (D) tel que les vecteurs Iﬁ/f
et @ sont orthogonaux.

Le point H est appelé le projeté orthogonal du point M sur la droite (D).

Démonstration. Soient (a,b) € R? tels que @ = <_a > avec (a,b) # (0,0).

Une équation cartésienne de (D) est ax + by + ¢ = 0.

Soit M un point du plan R? de coordonnées (zp7,yas). On cherche un point H € (D) tel
que HM - i = 0.

Soit H un point de coordonnées (z,y). On a les équivalences suivantes :

- axr +by+c = 0 N ar +by = —c
HM -i=0 bz —x) +alyy —y) = 0 br —ay = brm —aym

Ce systéme s’écrit matriciellement @ b ) = —c .
b —a Y bxyr — aynr

b . . . , .
Z a est inversible puisque son déterminant vaut —a? — b*> < 0 car
(a,b) # (0,0). Le systéme obtenu est donc un systéme de Cramer, ce qui signifie qu’il possede
une unique solution.

e
Il y a donc un unique point H qui vérifie les deux conditions H € (D) et HM -@=0. ®N

Or, la matrice

Année 2025-2026 20 / 32 WASSFI



BCPST1 Lycée Fénelon

Exemple 18. Soit (D) une droite d’équation cartésienne 2z — y + 3 = 0. Soit M le point de
coordonnés (1,1). On vérifie que M ¢ (D). Déterminons le projeté orthogonal H(x,y) de M
sur la droite (D).

Puisque H € (D), on a 2z —y = —3. D’autre part, un vecteur directeur de la droite (D) est

i=(3).

—
Puisque HM i =0,ona (1 —z)+2(1—y) =0, dou z+ 2y = 3.
Ainsi, le couple (z,y) est solution du systéme

3
20—y = -3 Yy = 2x+3 = "5
{x—}-?y: 3 <:>{$+4x+6= 3 7Y, 2 9
5

Le projeté orthogonal du point M sur la droite (D) est doncle point H de coordonnées
(_ 7%)

Remarque 26. Soient A, B et M trois points du plan. Soit H le projeté orthogonal du point
M sur la droite (AB). On a alors

AB-AM = AB - (AH + HM) = AB - AH + AB - HM = AB - AH

S
donc /ﬁm = ABXx AH siles vecteurs zﬁ et ﬁ sont de méme sens et E-AM =—-ABxAH
si les vecteurs E et ﬁ sont de sens opposé.

[S3{[N}

Définition 17 : Distance d’un point a une droite du plan

Soit (D) une droite du plan. Soit M un point de R? et H le projeté orthogonal du point
M sur la droite (D).

On appelle distance du point M a la droite (D) la longueur H M.

On note d(M, (D)) = HM.

Exemple 19. Reprenons I'exemple précédent. La distance du point M & la droite (D) est alors

4/5
HM = \/(zp —zp)%+ (Y —yu)? = %JF%:V%:T; .

15.1.6 Cercles dans le plan

Définition 18 : Cercles

Soit O un point du plan. Soit r € RY .
On appelle cercle de centre O et de rayon r I’ensemble des points M du plan tels que

OM =r.
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Exemple 20. Le cercle trigonométrique est le cercle de centre O(0,0) et de rayon 1.

Proposition 21 : Equation cartésienne d’un cercle dans le plan

Soit O(x0,yo) un point du plan. Soit € R .

On note C le cercle de centre O et de rayon 7.

Soit M un point du plan de coordonnées (z,y).

Alors M € C & (x —20)* + (y — yo)? = r%.

On dit que cette équation est une équation cartésienne du cercle C.

Démonstration. On a les équivalences :

M €C & OM =r& OM? =r* & (v —x0)* + (y —yo)* = r*.

Exemple 21. Le cercle de centre O(—2,1) et de rayon 3 a pour équation
(z+2)°+(y—1)° =09

Le point de coordonnées (1, 1) appartient en particulier & ce cercle.

15.2 Géométrie de I’espace

Dans cette section, on reprend les concepts vus dans le plan R? et on les étend & l’espace
R3.

15.2.1 Vecteur de ’espace

Définition 19 : Vecteurs de 1’espace

On appelle vecteur de 'espace tout déplacement d’un point A de I’espace vers un point
B de I'espace.
Si A(xa,ya,z24) et B(xp,yp, zp) sont des points de I’espace, le vecteur z@ a pour coor-

données
IR — XA
AL YB — YA
ZB — %A

Si A = B, alors zﬁ = 0 est le vecteur nul.
L

Plus généralement, un vecteur @ de R? est la donnée de coordonnées @ | vz | . La norme
&2

du vecteur u est alors définie par

2
U

2
U u’

Les propriétés vues sur les vecteurs du plan restent valables pour les vecteurs de ’espace : les
opérations sur les vecteurs, les propriétés des opérations sur les vecteurs, la relation de Chasles,
la colinéarité.
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15.2.2 Produit scalaire

Définition 20 : Produit scalaire sur R3

/

55 55
Soient @ = |y | et ¥ = [ 4 | deux vecteurs de ’espace R3.
/
z z

On définit le produit scalaire @ - ' par

-0 =zx +yy + 22

On définit comme dans R? les vecteurs orthogonaux et on montre de méme les propriétés
du produit scalaire (symétrie, bilinéarité, positivité, définition).

Définition 21 : Norme euclidienne

H |

Soit @ = | y | € R3. On définit la norme euclidienne du vecteur @ par
z

||| = Vi - @ = /a2 + y2 + 22

On définit comme sur R? les vecteurs orthonormés, la norme euclidienne de R3? vérifie
les mémes identités remarquables, de polarisation, du parallélogramme, I'inégalité de Cauchy-
Schwarz ainsi que les mémes propriétés de séparation, homogénéité et 'inégalité triangulaire.

Enfin, le théoreme de Pythagore sur R? s’énonce et se démontre de la méme maniére.

15.2.3 Bases et repéres de ’espace

Définition 22 : Vecteurs coplanaires

Soient @, ¥, W trois vecteurs de Pespace R3.
On dit que les vecteurs i, ¥ et W sont coplanaires s’il existe trois réels (a, 8,7) # (0,0,0)
tels que

il + BT + @ = 0.
Concretement, cela signifie que 'un des trois vecteurs s’écrit comme combinaison linéaire
des deux autres.

Remarque 27. Par exemple, si a« # 0, on a @ = —éff— lu‘;’.
e !
2 -1 3
Exemple 22. Soient = |1]|,0=| 2 |etwW= (4
0 1 1

Les vecteurs i, U, W sont coplanaires car w = 24 + 7.

(e

Pour trouver une telle relation, on trouve les triplets (o, 3,v) € R3 tels que aii + BT+~ =
en résolvant le systeme

2 —pF+3y = 0
a+28+4y = 0
B+ = 0.
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Définition 23 : Bases de I’espace

Une base de l'espace R? est la donnée d’un triplet de vecteurs (€1,€3,€3) de R? non
coplanaires, c’est a dire tels que

ae}+ﬁe§+'ye§:6:>a:6:fy:0.

Une telle base est dite orthonormée si les trois vecteurs (€1, €3, €3) sont orthonormés, i.e.
orthogonaux deux a deux et de norme 1.

.

Remarque 28. Un triplet de vecteurs contenant le vecteur nul ne forme jamais une base de
I’'espace car ces trois vecteurs sont coplanaires. En effet, si i et ¥ sont des vecteurs quelconques
de Pespace, il existe un triplet de réels (o, 8,7) # (0,0,0), par exemple («, 3,7) = (0,0, 1) tel
que

ot + BT +~0 = 0.

1 0 0
Exemple 23. « Notons 7, j, k les vecteurs de cooronnées i | 0 g1 et k|0].On vérifie
0 0 1
aisément que ces vecteurs forment une base orthonormée de R3, appelée base canonique de R3.
1 2 0
e Solentu= (1], =10 |etw=| 1
1 -1 -1
Montrons que les vecteurs @, 7, w forment une base de I'espace R3, i.e. ne sont pas coplanaires.
a+28 =0 15} = —%a
Soient (v, ,7) € R3 tels que ad+pi+yiw = 0 < o+ = 0 & y = —«
a—pf—7 =0 a—i—%a—l—a = 0,

ce qui équivaut & a = B = v = 0 donc les vecteurs , ¥, @ forment bien une base de R3.

Théoréme 2 : Coordonnées d’un vecteur dans une base

Soient (€7, €3, €3) une base de I’espace R3.
Soit @ un vecteur de R2.
Alors il existe un unique triplet de réels (A1, A2, A3) tels que

U= )\16_i 2 )\263 ol )\36_;3,.

On dit que les réels (A1, A2, A3) sont les coordonnées du vecteur @ dans la base (€1, €3, €3).

Démonstration. Notons €] = (x1,y1,21), €2 = (x2, Y2, 22), €3 = (x3,y3, 23) et ¥ = (z,y, 2).
On a alors les équivalences suivantes

AMZ1+ Aoxo +A3x3 = r1 X9 I3 A X
U=MAel+Xe+tAe3e ¢ MyitAypt+tAys = ¥y S|y v w3l | ] =]y
A121+ Aozg + X323 = =z 21 22 23 A3 z

Or, puisque les vecteurs (€7, €2, €3) ne sont pas coplanaires, on sait que
ME 4+ X3+ 365 =0 A =X = A3 =0

i.e. le systéme qui s’écrit matriciellement

r1 T2 I3 )\1 O
Yr o Y2 Y3 | =10
21 22 23 A3 0
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r1 T2 X3
admet pour unique solution (A1, A2, A3) = 0, ce qui prouve que la matrice | y1 y2 y3 | est
21 k2 Z3
inversible.
On obtient donc
-1
)\1 r1 T2 X3 T
u=Mei+eat+Me3e [ A=y v2 ys vl
)\3 Z1 R2 Z3 z
ce qui assure 'existence et 1'unicité du triplet (A1, A2, A3). |
1 0
Exemple 24. « Reprenons la base canonique de R3(7, 7, k) définiepard [ 0], 5 [ 1] etk |0
0 0 1
Tg
Pour tout vecteur @ | yz | de R3, on a @ = i + yaj + zik.
2
Ainsi, les coordonnées de 4 dans la base (;, 7, E) sont (g, Yz, 2@)-
3
o Reprenons la base (@, v, w) de l'exemple précédent. Soit ¥ = 3 | . Cherchons les
-2
coordonnées du vecteur ¥ dans la base (@, ¥, ).
a+28 = 3 3 = 3_2¢
Onaz=au+pfr+~y0 < at+y = 3 & ~y = 3—-a &
a—F—vy = =2 a—%+%—3+a = =2

= 1
= 1
2.

= ™R

Ainsi, T =4 + U+ 2.

Définition 24 : Repeére de ’espace

On appelle repére de I'espace R? la donnée d'un triplet (O, €7, €3, €3) ot O est un point
de R3 et (€1, €3, €3) une base de R3.
On dit que le repére est orthonormé si (€1, €3, €3) est une base orthonormée de R3.

1 0
Exemple 25. Si on note O 'origine de Iespace, i.e. le point (0,0, 0), ifo],7(1]et klo
0 1

- -

les vecteurs de la base canonique, (O, 1,7, IZ) est un repeére du plan R3.
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Définition 25 : Coordonnées d’un point dans un repeére

Soit (O, €1, €5, €3) un repére de I'espace R3. Soit M un point du plan R3.
On appelle coordonnées de M dans le repere (O, €7, €3, €3) les coordonnées (A1, A2, \3) de

—
OM dans la base (€1, €3, €3), i.e. 'unique triplet de réels (A1, A2, \3) tel que

—
OM = M\éq + Aaés + Azeés.

Remarque 29. Lorsqu’on note les coordonnées d’un point M sous la forme (z,y,z) ou x
désigne l’abscisse du point M, y son ordonnée et z sa cote, les coordonnées (x,y, z) sont en fait
les coordonnées du point M dans le repére (O,f,j, E) ou O désigne 'origine de I'espace R?, i.e.
le point (0,0,0), et (Z, 7 E) la base canonique de R3.

En effet, on a O—]\>4 = zi+ yj—k k.

Exemple 26. Soit M le point de ’espace de coordonnées (3, 3, —2). Soit O(0, 0, 0). On considere
le repére de 'espace (O, i, ¥, ) ot (i, ¥, 1) est la base de I'espace R? utilisée dans les exemples
précédents.

Les coordonnées de M dans le repere (O, @, v, w) sont (1,1,2).

Proposition 22 : Produit scalaire dans une base orthonormée

Soit (€7, €3, €3) une base orthonormée de R3. Soient @ et ¥ deux vecteurs de R? de coor-
données respectives (x,y, z) et (2/,y,2’) dans la base (€1, €3, €3).
Alors @ - U = zx’ +yy' + 22

Démonstration. Par hypotheése, on a @ = xe] + yes + ze3 et v = 2'eq + y/'e3 + 2'€3.
Puisque la base (€7, €3, €3) est orthonormée, on a

—

g

U = (we] +yes+z263) - (/e + e + 2 €é3)
= a:a:’HeEH2 +ay/ (61 - 63) + a2 (61 - e3) +ya'(és- 1) + yy/|]e_§\|2 +y2 (6 - €3) + za'(e3 - €1
2y (€5 - 63) + 22'||e3))?

= za’ + yy’ + 27

Corollaire 3 : Coordonnées dans une base orthonormée

Soit (€7, €3, €3) une base orthonormée de R3.
Pour tout vecteur @ de R?, on a

U= (u-é1)e1 + (- eéz)éa + (U - €3)és.

Démonstration. Notons (z,y, z) les coordonnées de @ dans la base (€1, €3, €3) de telle sorte
que U = T€] + yes + zé€3.
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Les coordonnées de €j dans la base (éi,é€3,€3) sont (1,0,0) donc d’apres la proposition
précédente, on en déduit que u - €1 = .

- =

De méme, les coordonnées de €3 dans la base (€1, €3, €3) sont (0,1,0) donc 4 - €5 = y.

- =

Enfin, les coordonnées de €3 dans la base (€1, €3, €3) sont (0,0,1) donc 4 - €3 = z.
Ainsi, @ = (4 - €1)é1 + (U - €3)éz + (U - €3)é€3. [ |

15.2.4 Droites et plans dans ’espace

Définition 26 : Plans de ’espace

—

Soit A un point de I'espace R?, soient (i,%) un couple de vecteurs non colinéaires de
I’espace.

On appelle plan passant par A et de base (i, ¥) 'ensemble des points M tels qu’il existe
deux réels (A, 1) € R? pour lesquels

s
AM = A + po.

—

On dit que le triplet (A, w,¥) forme un repére du plan et le couple (#,¥) une base du
plan.

Remarque 30. Trois points non alignés A, B et C' défininissent un unique plan (P). En effet,
si A, B et C ne sont pas alignés, alors les vecteurs /ﬁ et /ﬁ ne sont pas colinéaires donc le
plan (P) est le plan passant par le point A et de base (ﬁ, 1@)

Lemme 1 : Existence de bases orthonormées dans un plan de I’espace

Soit (P) un plan de I’espace.
Alors (P) admet une base orthonormée.

—

Démonstration. Soit (u,¥) une base du plan (P). Posons €] = . Le vecteur €] est de

norme 1.

Cherchons un réel A tel que le vecteur ¥ + Aéj soit orthogonal a €1. On a

T+ A1) €1 =006+ A\c]>’ =0 = —7-6.

7
7 , S o - .o €
Posons €, = U — (¥'- €1)€7, puis €3 = 2

e/

Les vecteurs €7 et €5 sont bien orth0r|1‘0r21|111és, a fortiori, ils ne sont pas colinéaires.
Montrons que (€7, €32) est bien une base du plan (P). Soit A un point du plan (P).
Considérons le plan (P’) passant par le point A et de base (€1, €3).

Soit M un point de 'espace de coordonnées (z,y, z). On a les équivalences suivantes :

M e (P) & 3(a, 8) € REAM = aéi + 6 < 3\ p) € REAM =A@ + uf

puisque €71 et €5 sont des combinaisons linéaires de u et ¥ et réciproquement.
Ainsi le couple (€1, €3) forme bien une base orthonormée de (P). [ |
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Proposition 23 : Représentation paramétrique d’un plan dans 1’espace

!/

a a

Soit A(xa,ya4,24) un point de I'espace R?, soient @ = | b | et ¥ = [ b’ | deux vecteurs
/
c

non colinéaires de R3.

Soit (P) le plan passant par A et de base (i, V).

Soit M un point de R? de coordonnées (z,v, 2).

Alors M € (P) si et seulement si il existe deux réels (A, u) € R? tels que

x = Xa+pd +z4
y = Mo+pt +ya
2z = A+ pd + za.

Démonstration. On a les équivalences suivantes :

Me(P) & 3\ pu) €R%AM =\ + uf

/

T—TA a a
A H(A’M)€R2v y—ya | =0 + p v
Z— 24 c c
xr = Xa+pa +z4
e INpeRES y = Ao+ pub +ya
z = A+ pb + z4.
|
2 3
Exemple 27. Soit A(1,2,3). Soient u= [ —1 ] et ¥= | 1 | . Soit (P) le plan passant par A
0 —2

et de base (u, V).
Alors un point M de I’espace de coordonnées (z,y, z) appartient au plan (P) si et seulement
r = 22 +3u+1

si il existe deux réels A et ptelsque ¢ vy = —A4+p+2
z = —2u+3.
Pour A\ = 1 et 4 = —1, on trouve par exemple que le point M de coordonnées (0,0, 5)

appartient au plan (P).

Définition 27 : Vecteur normal a un plan

Soit (P) un plan de base (@, @). Soit 7 un vecteur non nul de I’espace R3.
On dit que 7 est un vecteur normal au plan (P) si7i- 4 =7 - ¢ = 0.

Définition 28 : Plans paralleles

On dit que deux plans de I'espace sont paralléles s’ils admettent des vecteurs normaux
colinéaires.

Proposition 24

Soit (P) un plan de base (i, V) et de vecteur normal 7.
Alors les vecteurs (i, ¥, i) forment une base de R3.

Démonstration. Soient («, 3,7) € R? tels que ad@ + 47 + 47 = 0.
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En prenant le produit scalaire avec 7, on obtient

0=0-7=(ai+ BO+~A) -7 =atd i+ BT 7 +~7 -7 = ~||7|>
Or, ||7i||? > 0 car @ # 0 donc nécessairement y = 0.
Il en résulte que ai + v = 0. Or, les vecteurs @ et ¥ forment une base de (P), a fortiori ils
ne sont pas colinéaires donc o = 8 = 0.

Finalement, « = 8 = v = 0, ce qui prouve que les vecteurs (i, 7, 7) forment une base de
R3. |

Proposition 25 : Equation cartésienne d’un plan de 1’espace

a
Soit (P) un plan de I'espace R? passant par un point A. Soit 7@ = | b | un vecteur normal
c
au plan (P).
Alors il existe un réel d tel que pour tout point M de R? de coordonnées (z,y, 2),

o
Me(P)e AM -i=0<ax+by+cz+d=0.

On dit que l'équation az + by + cz + d = 0 est une équation cartésienne du plan (P).

Démonstration. Soient (i,7) deux vecteurs de R3 qui forment une base du plan (P).
Puisque 7 est un vecteur normal au plan (P),on a @ -7 = ¢-7 = 0.

o Montrons I'équivalence M € (P) < AM -7 = 0.

Supposons que M € (P).

Par définition, il existe des réels (), p) € R? tels que AM =A@ + ud.

Ainsi,

AM -7 = Nii - i + i - i = 0.

Réciproquement, supposons que m -1 = 0. D’apres la proposition précédente, les vecteurs

(@, v, 1) forment une base de I'espace donc il existe trois réels (a, 8,7) € R? tels que

—
AM = au + pv + yn.

Ainsi,
e
AM -7t =0= ai -7 + B0 - i +~|7||* = y||7)*> = 0
donc = 0 puisque ||7||> > 0 (car 7 # 0).
-—
Ainsi AM = at + 7 € (P).

e
o Montrons maintenant que AM -7 =0« 3dd € R,ax + by + cz+d = 0.

On a les équivalences :

AM -i=0 & a(z—24)+bly—ya)+c(z—24)=0
& ar+by+cz+d=0

en posant d = —axrys — bya — cz4.
|

2

Exemple 28. Soit (P) un plan de R? admettant pour vecteur normal 7 = | 0 | et passant
-1

par le point A de coordonnées (1,2, —5).
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Le plan (P) admet une équation cartésienne de la forme
2x —2+d=0.

Puisque les coordonnées de A doivent vérifier cette équation, on obtient 2+ 5+ d = 0 d’ou
d=—T.
Finalement, une équation cartésienne du plan (P) est 2x — z — 7 = 0.

Définition 29 : Droites de ’espace

Soit A un point de R3, soit # un vecteur non nul de R3.
La droite de vecteur directeur 4 et passant par A est I’ensemble des points M tels que
les vecteurs AM et @ sont colinéaires.

Proposition 26 : Représentation paramétrique d’une droite dans I’espace

a
Soit A(wa,ya,24) un point de I'espace R3, soit @ = | b | un vecteur non nul de R3.

©
Soit (D) la droite passant par A de vecteur directeur 4
Soit M un point de R? de coordonnées (z,v, 2).

T = Aa-+zxy
Alors M € (D) si et seulement si il existe un réel A tel que ¢ vy = Ab+ya
z = Ae+za
Démonstration. On a les équivalences suivantes :
. N T —TA Aa r =
M € (D) < AM etiisont colinéaires < INE R, AM = X< [y—ya | = | M| < vy =
Z—zA e z =
|
a
Remarque 31. Soit (D) une droite de I'espace de vecteur directeur 7 = | b | et passant par
c

le point A de coordonnées (z4,ya,24).

Soit (P) le plan de R3 d’équation cartésienne ax + by + cz = 0. On sait que le vecteur 7 est
un vecteur normal au plan (P).

Soient (@, ¥) une base orthonormée du plan (P). On a montré que les vecteurs (i, v, )
formaient une base de R3.

Soit M un point de l'espace de coordonnées (z,vy, 2).
AM i@ = 0
AM -5 = 0.

o En effet, si M € (D), alors AM est colinéaire a 7, donc il existe A € R tel que AM = Afi.

Ainsi AN it = i@ =0 et AM 7=\t 7 =0,

e Réciproquement, supposons que AM - i = AM - v = 0.

Puisque les vecteurs (, ¥, i) forment une base de R3, il existe des réels uniques (a, 3,7) € R3
tels que AM = ot + BU+ .

Puisque AM - i@ = 0, on a oli]|®> + B -V = «
BlTI?+ aii- =B = 0.

Donc AM = v7, i.e. m et 7 sont colinéaires, ce qui implique que M € (D).

On a 'équivalence M € (D) <

—
0. De méme, puisque AM - v = 0, on a
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/ "

a a
Si on note les vecteurs 4= [ ' | et @ = | b” | , on a montré I’équivalence suivante :
C/ C//
a(x—xa)+0(y—ya) +(z—24) = 0
M(x,y,z) € (D) <
(,9,2) € (D) {a”(x—xA)—i—b”(y—yA)—i-c”(z—zA) = 0.
En posant d = —a'za — V'ya — 24 et d' = —a"v4 — b"ys — ’z4, on a obtenu le résultat

suivant.

Proposition 27 : Systeme d’équations cartésiennes d’une droite de I’espace

Soit (D) une droite de ’espace. Soit M (z,y, z) un point de l'espace.
Alors il existe des réels (a,b, c,d,a’,b,c,d’) € R tels que

axr+by+cz+d = 0
Me(D)@{ dr+by+dztd = 0,
a a
ot les vecteurs 4 = [ b | et ¥ = [ ' | ne sont pas colinéaires.
/
c

Exemple 29. Considérons la droite (D) de l'espace dont un systéme d’équations cartésiennes
est

20—z = 1 - z = 2x—1

T =y = 715 y = + 1v

Ainsi, un point de coordonnées (z,y, z) appartient a la droite (D) si et seulement si ses coor-
données sont de la forme

(z,y,2) = (z,x+1,2¢ — 1) = 2(1,1,2) + (0,1, —1),

ou x est un réel quelconque.
Ceci signifie que la droite (D) est la droite passant par le point (0,1,—1) et de vecteur

1
directeur 4 = | 1 | puisqu’elle admet une représentation paramétrique de la forme
2
r = A
y = A+1 deR
z = 22 —1,

Remarque 32. Concretement, une droite de ’espace est obtenue comme intersection de deux
plans non paralléles.

Enfin donnons la définition suivante :

Définition 30 : Droite paralléle a4 un plan

Soit (D) une droite de ’espace et (P) un plan de I'espace.
On dit que (D) est parallele a (P) si un vecteur directeur de (D) est orthogonal & un
vecteur normal au plan (P).

1

Exemple 30. La droite de vecteur directeur @ = | —1 | et passant par le point (1,1,1) est
2

parallele au plan (P) d’équation = + y = 1 (mais n’est pas contenue dans le plan (P)).
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15.2.5 Projection orthogonale sur un plan

Définition 31 : Projection orthogonale sur un plan
Soit (P) un plan de ’espace muni d’une base orthonormée (u, ¥).
Soit M un point de I’espace.
Alors il existe un unique point H appartenant au plan (P) tel que le vecteur HM soit
orthogonal aux vecteurs 4 et v.

Le point H est appelé le projeté orthogonal du point M sur le plan (P).

Démonstration. Soit A un point du plan (P).
- 71— G )+ (AT - 297 com
Montrons que le point H tel que AH = (AM - @)id + (AM - ¥)U convient.
Tout d’abord, le point H ainsi défini appartient clairement a (P) puisque le vecteur fTITI)
s’exprime comme combinaison linéaire de 4 et .
Ensuite, on a

2|
IS
I

G—AH i = AM - it —

.|

HM 7= (AM — AH) - @
De méme,
HM 5= (AM — AH)-5=AM -5 — AH -5=AM -5~ AM -5 = 0.

Ainsi, le point H convient. Montrons que c¢’est 'unique point qui convient.

Soit H' un autre point du plan (P) tel que le vecteur H'M soit orthogonal aux vecteurs @
et v.

e
Soient (A, 1) € R? les coordonnées du point H' dans le repere (A, i, ), i.e. AH' = \i + .
On a alors I’équivalence :
—— s — — e
H’M-ﬁzO(:)(AM—AH’)-ﬂ’:O(:)AM-ﬂ’—ﬁ’-z_[:O(:)AM-z—[—)\:O,
e
dou A =AM - 4. .
En utilisant le fait que H'M - ¥ = 0, on montre de méme que p = AM - v.
R Jp— —

0
Ainsi, AH' = (AM - @)i + (AM - 0)0 = ﬁ, ce qui implique que H = H' d’oti 'unicité de
H. [ |

Définition 32 : Distance d’un point a un plan de I’espace

Soit (P) un plan de 'espace. Soit M un point de R? et H le projeté orthogonal du point
M sur le plan (P).

On appelle distance du point M au plan (P) la longueur H M.

On note d(M, (P)) = HM.
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