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BCPST1 Lycée Fénelon

15.1 Géométrie du plan

Dans toute cette section, on se place dans le plan R2 donc les points M sont repérés par
leurs coordonnées (xM , yM ), où xM est appelé l’abscisse de M et yM l’ordonnée de M.

15.1.1 Vecteurs du plan

Définition 1 : Vecteurs du plan

On appelle vecteur du plan tout déplacement d’un point A du plan vers un point B du
plan.
Si A(xA, yA) et B(xB, yB) sont des points du plan, le vecteur −−→

AB a pour coordonnées

−−→
AB

(
xB − xA
yB − yA

)
.

x

y

xA

yA

xB

yB

A(xA, yA)

B(xB, yB)

A⃗B

xB − xA

yB − yA

Si A = B, alors −−→
AB = 0⃗ est le vecteur nul.

Plus généralement, un vecteur u⃗ de R2 est la donnée de coordonnées u⃗

(
xu⃗
yu⃗

)
. La norme

du vecteur u⃗ est alors définie par

∥u⃗∥ =
√
x2u⃗ + y2u⃗.

Remarque 1. • Le vecteur nul 0⃗ est défini par ses coordonnées
(
0
0

)
.

• Un vecteur −−→AB est entièrement caractérisé par sa direction (la droite (AB)), son sens (de
A vers B) et sa norme ∥

−−→
AB∥ =

√
(xB − xA)2 + (yB − yA)2.

Par définition, la longueur du segment [AB] est AB = ∥
−−→
AB∥.

Proposition 1

Etant donné un vecteur u⃗ et un point O du plan R2, il existe un et un seul point M du
plan tel que −−→

OM = u⃗.

Démonstration. On note les coordonnées de u⃗ et M de la façon suivante : u⃗

(
xu⃗
yu⃗

)
et

O(xO, yO).
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Soit M ∈ R2. On a alors les équivalences suivantes :

−−→
OM = u⃗ ⇔

(
xM − xO
yM − y0

)
=

(
xu⃗
yu⃗

)
⇔
{

xM − xO = xu⃗
yM − yO = yu⃗

⇔
{

xM = xO + xu⃗
yM = yO + yu⃗

,

ce qui détermine le point M de façon unique. ■

Remarque 2. Autrement dit, le déplacement u⃗ peut être représenté par des couples de points
différents, mais dès lors que le point de départ est fixé, le point d’arrivée l’est aussi.

Par exemple, si on considère les points A(2,−3), B(−1, 1), C(2, 0) et D(−1, 4) alors
−−→
AB =

−−→
CD

et ces vecteurs ont pour coordonnées
(
−3
4

)
.

Définition 2 : Opérations sur les vecteurs

Soient u⃗

(
xu⃗
yu⃗

)
et v⃗

(
xv⃗
yv⃗

)
deux vecteurs de R2.

1. (Addition) On définit la somme u⃗+ v⃗ par

u⃗+ v⃗ =

(
xu⃗ + xv⃗
yu⃗ + yv⃗

)
.

2. (Multiplication par un réel) Soit λ ∈ R. On définit le vecteur λ · u⃗ par

λ · u⃗ =

(
λxu⃗
λyu⃗

)
.

Exemple 1. Si u⃗ =

(
2
−3

)
et v⃗ =

(
5
6

)
, alors u⃗+ v⃗ =

(
7
3

)
et −2 · u⃗ =

(
−4 6

)
.

Remarque 3. On remarque que pour tout u⃗ ∈ R2, 0 · u⃗ = 0⃗.

Proposition 2 : Propriétés des opérations sur les vecteurs

1. (Commutativité de l’addition) Pour tout (u⃗, v⃗) ∈ (R2)2, u⃗+ v⃗ = v⃗ + u⃗.

2. (Existence d’un élément neutre) Pour tout u⃗ ∈ R2, u⃗+ 0⃗ = 0⃗ + u⃗ = u⃗.

3. (Associativité de l’addition) Pour tout (u⃗, v⃗, w⃗) ∈ (R2)3, u⃗+ (v⃗+ w⃗) = (u⃗+ v⃗) + w⃗.

4. (Existence de l’opposé) Pour tout u⃗ ∈ R2, u⃗+ (−1) · u⃗ = 0⃗.

5. Pour tout u⃗ ∈ R2, 1 · u⃗ = u⃗.

6. (Distributivité de la multiplication par un réel par rapport à l’addition)
Pour tout (u⃗, v⃗) ∈ (R2)2, pour tout λ ∈ R,

λ · (u⃗+ v⃗) = λ · u⃗+ λ · v⃗.

7. Pour tout u⃗ ∈ R2, pour tout (λ, µ) ∈ R2,

(λ+ µ) · u⃗ = λ · u⃗+ µ · u⃗ et (λµ) · u⃗ = λ · (µ · u⃗).

Démonstration. Dans toute la preuve, on note u⃗

(
xu⃗
yu⃗

)
, v⃗

(
xv⃗
yv⃗

)
et w⃗

(
xw⃗
yw⃗

)
. On considère

également des réels λ et µ.
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1. On a u⃗+ v⃗ =

(
xu⃗
yu⃗

)
+

(
xv⃗
yv⃗

)
=

(
xu⃗ + xv⃗
yu⃗ + yv⃗

)
=

(
xv⃗ + xu⃗
yv⃗ + yu⃗

)
=

(
xv⃗
yv⃗

)
+

(
xu⃗
yu⃗

)
= v⃗ + u⃗.

2. On a u⃗ + 0⃗ =

(
xu⃗
yu⃗

)
+

(
0
0

)
=

(
xu⃗
yu⃗

)
= u⃗ et l’autre égalité découle de la commutativité

montrée dans l’alinéa précédent.
3. On a

u⃗+(v⃗+w⃗) =

(
xu⃗
yu⃗

)
+

(
xv⃗ + xw⃗
yv⃗ + yw⃗

)
=

(
xu⃗ + xv⃗ + xw⃗
yu⃗ + yv⃗ + yw⃗

)
=

(
xu⃗ + xv⃗
yu⃗ + yv⃗

)
+

(
xw⃗
yw⃗

)
= (u⃗+ v⃗)+ w⃗.

4. On a −1 · u⃗ =

(
−xu⃗
−yu⃗

)
donc u⃗+ (−1) · u⃗ =

(
xu⃗ − xu⃗
yu⃗ − yu⃗

)
=

(
0
0

)
= 0⃗.

5. On a 1 · u⃗ =

(
1× xu⃗
1× yu⃗

)
=

(
xu⃗
yu⃗

)
= u⃗.

6. On a
λ · (u⃗+ v⃗) =

(
λ(xu⃗ + xv⃗)
λ(yu⃗ + yv⃗)

)
=

(
λxu⃗
λyu⃗

)
+

(
λxv⃗
λyv⃗

)
= λ · u⃗+ λ · v⃗.

7. On a
(λ+ µ) · u⃗ =

(
(λ+ µ)xu⃗
(λ+ µ)yu⃗

)
= λ

(
xu⃗
yu⃗

)
+ µ

(
xu⃗
yu⃗

)
= λ · u⃗+ µ · u⃗.

Par ailleurs, on a

(λµ) · u⃗ =

(
λµxu⃗
λµyu⃗

)
= λ

(
µxu⃗
µyu⃗

)
= λ · (µ · u⃗).

■
Remarque 4. • Toutes ces propriétés font de R2 un espace vectoriel.

• En pratique, on note λu⃗ plutôt que λ · u⃗. Ainsi, on note −u⃗ au lieu de −1 · u⃗ et u⃗ − u⃗
plutôt que u⃗+ (−u⃗).

Exemple 2. Pour tout couple (A,B) de points du plan R2, on remarque que −−→
BA = −

−−→
AB.

En effet, −−→AB
(
xB − xA
yB − yA

)
et −−→

BA =

(
xA − xB
yA − yB

)
= −

(
xB − xA
yB − yA

)
.

Proposition 3 : Relation de Chasles

Soient A,B et C trois points du plan R2.
Alors −−→

AB +
−−→
BC =

−→
AC.

−−→
AB

−−→
BC

−→
AC

A B

C

Démonstration. Notons A(xA, yA), B(xB, yB) et C(xC , yC) les coordonnées des points A,B
et C.

Les vecteurs −−→
AB et −−→

BC ont alors pour coordonnées −−→
AB

(
xB − xA
yB − yA

)
et −−→

BC

(
xC − xB
yC − yB

)
.

Par somme, on trouve que
−−→
AB +

−−→
BC =

(
xB − xA + xC − xB
yB − yA + yC − yB

)
=

(
xC − xA
yC − yA

)
=

−→
AC.

■
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Remarque 5. −−→
AB +

−−→
BA =

−→
AA = 0⃗.

Définition 3 : Vecteurs colinéaires

Soient u⃗ et v⃗ deux vecteurs du plan R2.
On dit que u⃗ et v⃗ sont colinéaires s’il existe un réel λ tel que

u⃗ = λv⃗ ou v⃗ = λu⃗.

Remarque 6. • Le vecteur nul est colinéaire à tous les vecteurs de R2 puisque pour tout
u⃗ ∈ R2, 0 · u⃗ = 0⃗.

• Si v⃗ ̸= 0⃗, alors u⃗ et v⃗ sont colinéaires si et seulement si il existe un réel λ tel que u⃗ = λv⃗.

En effet, si u⃗ et v⃗ sont colinéaires tels qu’il existe un réel µ tel que v⃗ = µu⃗, puisque v⃗ ̸= 0⃗,
nécessairement µ ̸= 0 donc

u⃗ =
1

µ
µu⃗ =

1

µ
v⃗,

d’où le résultat en posant λ =
1

µ
.

Exemple 3. • Les vecteurs u⃗ =

(
1
−2

)
et v⃗ =

(
−2
4

)
sont colinéaires car v⃗ = −2u⃗.

Proposition 4 : Condition de colinéarité

Soit u⃗ =

(
a
b

)
et v⃗ =

(
c
d

)
.

Les vecteurs u⃗ et v⃗ sont colinéaires si et seulement si ad− bc = 0, i.e.
∣∣∣∣ a c
b d

∣∣∣∣ = 0.

Démonstration. • Supposons que les vecteurs u⃗ et v⃗ sont colinéaires. Sans perte de géné-

ralité, on peut supposer qu’il existe λ ∈ R tel que v⃗ = λu⃗ =

(
λa
λb

)
.

On alors c = λa et d = λb d’où ad− bc = λab− λab = 0.

• Supposons que ad− bc = 0 et montrons que les vecteurs u⃗ et v⃗ sont colinéaires.
Si u⃗ = 0⃗, alors v⃗ est nécessairement colinéaire à u⃗.

On peut donc supposer que u⃗ ̸= 0⃗, i.e. (a, b) ̸= (0, 0).

- Si a = 0, nécessairement b ̸= 0 et on peut poser λ =
d

b
, d’où d = λb.

Puisque ad− bc = 0, on a alors bc = ad d’où c =
ad

b
= λa.

Ainsi v⃗ =

(
c
d

)
= λ

(
a
b

)
= λu⃗.

- Si a ̸= 0, on pose λ =
c

a
et on trouve de même d =

bc

a
= λb d’où v⃗ = λ

(
a
b

)
= λu⃗.

Dans tous les cas, si ad− bc = 0, alors les vecteurs u⃗ et v⃗ sont colinéaires. ■

Exemple 4. Les vecteurs u⃗ =

(
5
3

)
et v⃗ =

(
1
1

)
ne sont pas colinéaires car 5× 1− 3× 1 ̸= 0.

Définition 4 : Points alignés

Soient A,B et C trois points du plan R2.

On dit que les points A,B et C sont alignés si les vecteurs −−→
AB et −→

AC sont colinéaires.
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Exemple 5. Les points A(1,−3), B(2, 1) et C(3, 5) sont alignés car −−→
AB =

(
1
4

)
et −→

AC =

(
2
8

)
donc −→

AC = 2
−−→
AB.

15.1.2 Produit scalaire

Définition 5 : Produit scalaire sur R2

Soient u⃗ =

(
x
y

)
et v⃗ =

(
x′

y′

)
deux vecteurs du plan R2.

On définit le produit scalaire u⃗ · v⃗ par

u⃗ · v⃗ = xx′ + yy′.

Remarque 7. Le produit scalaire sur R2 est donc une application définie sur R2×R2 à valeurs
dans R.

Exemple 6. Soient u⃗ =

(
2
−1

)
et v⃗ =

(
3
5

)
.

Alors u⃗ · v⃗ = 2× 3− 1× 5 = 1.

Définition 6 : Vecteurs orthogonaux

Soient u⃗ et v⃗ deux vecteurs du plan R2.
On dit que u⃗ et v⃗ sont orthogonaux si u⃗ · v⃗ = 0.

Remarque 8. Le vecteur nul est orthogonal à tous les vecteurs du plan.

Exemple 7. Les vecteurs u⃗ =

(
2
1

)
et v⃗ =

(
−1
2

)
sont orthogonaux.

Proposition 5 : Propriétés du produit scalaire

1. (Symétrie) Pour tout couple de vecteurs (u⃗, v⃗) ∈ (R2)2, u⃗ · v⃗ = v⃗ · u⃗.
2. (Bilinéarité) Pour (u⃗, v⃗, w⃗) ∈ (R2)3, pour tout λ ∈ R,

(λu⃗+ v⃗) · w⃗ = λu⃗ · w⃗ + v⃗ · w⃗ et w⃗ · (λu⃗+ v⃗) = λw⃗ · u⃗+ w⃗ · v.

3. (Positivité) Pour tout u⃗ ∈ R2, u⃗ · u⃗ ⩾ 0.

4. (Définition) u⃗ · u⃗ = 0 ⇔ u⃗ = 0⃗.

Remarque 9. On déduit du caractère défini positif du produit scalaire que si u⃗ ̸= 0⃗, alors
u⃗ · u⃗ > 0.

Démonstration.
Dans toute la preuve, on fixe des vecteurs u⃗ =

(
x
y

)
, v⃗ =

(
x′

y′

)
et w⃗ =

(
x′′

y′′

)
.

1. On a u⃗ · v⃗ = xx′ + yy′ = x′x+ y′y = v⃗ · u⃗.

2. Soit λ ∈ R. On a λu⃗+ v⃗ =

(
λx+ x′

λy + y′

)
donc

(λu⃗+ v⃗) · w⃗ = (λx+ x′)x′′ + (λy + y′)y′′ = λ(xx′′ + yy′′) + (x′x′′ + y′y′′) = λu⃗ · w⃗ + v⃗ · w⃗.

Par symétrie, on a w⃗ · (λu⃗+ v⃗) = (λu⃗+ v⃗) · w⃗ = λu⃗ · w⃗ + v⃗ · w⃗ = λw⃗ · u⃗+ w⃗ · v⃗.
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3. On a u⃗ · u⃗ = x2 + y2 ⩾ 0.

4. On a u⃗ · u⃗ = 0 ⇔ x2 + y2 = 0 ⇔ x = y = 0 ⇔ u⃗ = 0.

■

Définition 7 : Norme euclidienne

Soit u⃗ =

(
x
y

)
∈ R2. On définit la norme euclidienne du vecteur u⃗ par

∥u⃗∥ =
√
u⃗ · u⃗ =

√
x2 + y2.

Remarque 10. Par positivité du produit scalaire, on a bien u⃗ · u⃗ ⩾ 0, ce qui légitime la
définition de ∥u⃗∥. En outre, ∥u⃗∥ ⩾ 0.

Définition 8 : Vecteurs orthonormés

Soient u⃗ et v⃗ deux vecteurs du plan R2.
On dit que les vecteurs u⃗ et v⃗ sont orthonormés s’ils sont orthogonaux et si ∥u⃗∥ = ∥v⃗∥ = 1.

Exemple 8. • Les vecteurs u⃗ =
1√
2

(
1
−1

)
et v⃗ =

1√
2

(
1
1

)
sont orthonormés.

Proposition 6 : Identités remarquables

Pour tout couple de vecteurs (u⃗, v⃗) dans R2, on a :
1. ∥u⃗+ v⃗∥2 = ∥u⃗∥2 + 2u⃗ · v⃗ + ∥v⃗∥2;
2. ∥u⃗− v⃗∥2 = ∥u⃗∥2 − 2u⃗ · v⃗ + ∥v⃗∥2;
3. (u⃗+ v⃗) · (u⃗− v⃗) = ∥u⃗∥2 − ∥v⃗∥2.

Démonstration. Soient (u⃗, v⃗) un couple de vecteurs dans R2.

1. On a par bilinéarité du produit scalaire :

∥u⃗+ v⃗∥2 = (u⃗+ v⃗) · (u⃗+ v⃗) = u⃗ · u⃗+ u⃗ · v⃗ + v⃗ · u⃗+ v⃗ · v⃗ = ∥u⃗∥2 + 2u⃗ · v⃗ + ∥v⃗∥2.

2. On a par bilinéarité du produit scalaire :

∥u⃗− v⃗∥2 = (u⃗− v⃗) · (u⃗− v⃗) = u⃗ · u⃗− u⃗ · v⃗ − v⃗ · u⃗+ v⃗ · v⃗ = ∥u⃗∥2 − 2u⃗ · v⃗ + ∥v⃗∥2.

3. On a par bilinéarité du produit scalaire :

(u⃗+ v⃗) · (u⃗− v⃗) = u⃗ · u⃗− u⃗ · v⃗ + v⃗ · u⃗− v⃗ · v⃗ = ∥u⃗∥2 − u⃗ · v⃗ + u⃗ · v⃗ − ∥v⃗∥2 = ∥u⃗∥2 − ∥v⃗∥2.

■

Proposition 7 : Identités de polarisation

Soit (u⃗, v⃗) un couple de vecteurs dans R2.
Alors

u⃗ · v⃗ =
1

4
(∥u⃗+ v⃗∥2 − ∥u⃗− v⃗∥2) = 1

2
(∥u⃗+ v⃗∥2 − ∥u⃗∥2 − ∥v⃗∥2).

Démonstration. La preuve découle directement des identités remarquables. ■
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Remarque 11. Ces identités permettent de retrouver le produit scalaire de deux vecteurs
moyennant la connaissance de certaines normes.

Proposition 8 : Identité du parallélogramme

Soit (u⃗, v⃗) un couple de vecteurs dans R2.
Alors

∥u⃗+ v⃗∥2 + ∥u⃗− v⃗∥2 = 2(∥u⃗∥2 + ∥v⃗∥2).

Démonstration. La preuve découle directement des identités remarquables. ■

Remarque 12. Géométriquement, cette égalité signifie que la somme des carrés des longueurs
des diagonales d’un parallélogramme est égale à la somme des carrés des quatre côtés de ce
parallélogramme.

Proposition 9 : Inégalité de Cauchy-Schwarz

Soit (u⃗, v⃗) un couple de vecteurs dans R2.
Alors

|u⃗ · v⃗| ⩽ ∥u⃗∥∥v⃗∥

avec égalité si et seulement si les vecteurs u⃗ et v⃗ sont colinéaires.

Démonstration. Si v⃗ est nul, les deux membres de l’inégalité sont nuls donc l’inégalité (qui
est même une égalité) est vérifiée.

Supposons donc que v⃗ ̸= 0⃗ et notons pour tout λ ∈ R,

P (λ) = (u⃗+ λv⃗) · (u⃗+ λv⃗).

Par positivité du produit scalaire, P (λ) ⩾ 0 pour tout réel λ.
Par ailleurs, par bilinéarité du produit scalaire, on a

P (λ) = λ2v⃗ · v⃗ + 2λu⃗ · v⃗ + u⃗ · u⃗ = λ2∥v⃗∥2 + 2λu⃗ · v⃗ + ∥u⃗∥2.

C’est un trinôme du second degré en λ (puisque ∥v⃗∥ ̸= 0) de signe constant donc son discriminant
est négatif, ce qui s’écrit

4(u⃗ · v⃗)2 − 4∥u⃗∥2∥v⃗∥2 ⩽ 0,

d’où
(u⃗ · v⃗)2 ⩽ ∥u⃗∥2∥v⃗∥2.

En prenant la racine des deux côtés, on obtient :

|u⃗ · v⃗| ⩽ ∥u⃗∥∥v⃗∥.

Montrons maintenant le cas d’égalité.
Supposons qu’il y ait égalité. Alors le discriminant du trinôme est nul, c’est à dire qu’il

admet une racine double λ tel que (u⃗ + λv⃗) · (u⃗ + λv⃗) = 0. Par définition du produit scalaire,
ceci implique que u⃗+ λv⃗ = 0, i.e. u⃗ = −λv⃗ donc les vecteurs u⃗ et v⃗ sont colinéaires.

Réciproquement, supposons que les vecteurs u⃗ et v⃗ sont colinéaires, i.e. il existe un réel λ
tel que u⃗ = λv⃗ (ceci est loisible car v⃗ ̸= 0).

Alors
|u⃗ · v⃗| = |(λv⃗) · v⃗| = |λ|(v⃗ · v⃗)

et
∥u⃗∥∥v⃗∥ = ∥λv⃗∥∥v⃗∥ =

√
(λv⃗) · (λv⃗)

√
v⃗ · v⃗ =

√
λ2(v⃗ · v⃗)

√
v⃗ · v⃗ = |λ|(v⃗ · v⃗)
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On a donc bien égalité si les vecteurs u⃗ et v⃗ sont colinéaires. ■

Proposition 10 : Propriétés de la norme

1. (Séparation) ∥u⃗∥ = 0 ⇔ u⃗ = 0⃗.

2. (Homogénéité) Pour tout vecteur u⃗ ∈ R2, pour tout λ ∈ R,

∥λu⃗∥ = |λ|∥u⃗∥.

3. (Inégalité triangulaire) Pour tout couple de vecteurs (u⃗, v⃗) ∈ R2,

∥u⃗+ v⃗∥ ⩽ ∥u⃗∥+ ∥v⃗∥

avec égalité si et seulement si u⃗ et v⃗ sont colinéaires et de même sens.

Démonstration.
1. On a les équivalences

∥u⃗∥ = 0 ⇔
√
u⃗ · u⃗ = 0 ⇔ u⃗ · u⃗ = 0 ⇔ u⃗ = 0⃗,

où la dernière équivalence découle du caractère défini du produit scalaire.
2. Soit u⃗ ∈ R2. Soit λ ∈ R. Par bilinéarité du produit scalaire, on a

∥λu⃗∥ =
√

(λu⃗) · (λu⃗) =
√

λ2(u⃗ · u⃗) = |λ|
√
u⃗ · u⃗ = |λ|∥u⃗∥.

3. Soit (u⃗, v⃗) un couple de vecteurs de R2.

On a

∥u⃗+ v⃗∥2 = ∥u⃗∥2 + 2u⃗ · v⃗ + ∥v⃗∥2

⩽ ∥u⃗∥2 + 2∥u⃗∥∥v⃗∥+ ∥v⃗∥2 (inégalité de Cauchy-Schwarz)
⩽ (∥u⃗∥+ ∥v⃗∥)2.

Ainsi, par croissance de la fonction racine carrée sur R+, on obtient

∥u⃗+ v⃗∥ =
√

∥u⃗+ v⃗∥2 ⩽
√
(∥u⃗∥+ ∥v⃗∥)2 = ∥u⃗∥+ ∥v⃗∥,

ce qui prouve l’inégalité triangulaire.
Montrons le cas d’égalité. Si v⃗ = 0⃗, l’inégalité triangulaire est une égalité et il existe bien
λ ∈ R+, en l’occurrence λ = 0, tel que v⃗ = λu⃗.

On suppose donc dorénavant que v⃗ ̸= 0⃗.

• Supposons que ∥u⃗+ v⃗∥ = ∥u⃗∥+ ∥v⃗∥.
En reprenant la démonstration de l’inégalité triangulaire, on voit que ceci équivaut à
u⃗ · v⃗ = ∥u⃗∥∥v⃗∥. En particulier, il y a donc égalité dans l’inégalité de Cauchy-Schwarz, ce
qui implique qu’il existe un réel λ tel que u⃗ = λv⃗ (puisque v⃗ ̸= 0⃗).

On a ainsi ∥u⃗∥∥v⃗∥ = u⃗ · v⃗ = (λv⃗) · v⃗ = λ∥v∥2. Puisque v⃗ ̸= 0⃗, alors ∥v⃗∥2 > 0 donc
λ =

∥u⃗∥∥v⃗∥
∥v⃗∥2

=
∥u⃗∥
∥v⃗∥

⩾ 0.

Ainsi, u⃗ = λv⃗, avec λ ⩾ 0, ce qui prouve que u⃗ et v⃗ sont colinéaires et de même sens.
• Réciproquement, supposons que u⃗ et v⃗ sont colinéaires et de même sens, c’est à dire
qu’il existe λ ⩾ 0 tel que u⃗ = λv⃗ (toujours parce que v⃗ ̸= 0⃗). On a alors

u⃗ · v⃗ = (λv⃗) · v⃗ = λ∥v⃗∥2 = |λ|∥v⃗∥∥v⃗∥ = ∥λv⃗∥∥v⃗∥ = ∥u⃗∥∥v⃗∥,

d’où l’égalité dans l’inégalité triangulaire.
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■

Proposition 11 : Angle géométrique

Soient u⃗ et v⃗ deux vecteurs non nuls du plan R2.
Il existe un unique angle θ ∈ [0, π] tel que

cos(θ) =
u⃗ · v⃗

∥u⃗∥∥v⃗∥
.

Le réel θ est appelé angle géométrique entre les vecteurs u⃗ et v⃗.

x

y

u⃗

v⃗
θ

Démonstration. Puisque u⃗ et v⃗ sont non nuls, les normes ∥u⃗∥ et ∥v⃗∥ sont strictement
positives.

D’après l’inégalité de Cauchy-Scwharz, on a −∥u⃗∥∥v⃗∥ ⩽ u⃗ · v⃗ ⩽ ∥u⃗∥v⃗∥ d’où en divisant par
∥u⃗∥v⃗∥ > 0, on obtient

−1 ⩽ u⃗ · v⃗
∥u⃗∥∥v⃗∥

⩽ 1.

Puisque la fonction cosinus réalise une bijection de [0, π] dans [−1, 1], il existe un unique
réel θ ∈ [0, π] tel que cos(θ) =

u⃗ · v⃗
∥u⃗∥∥v⃗∥

. ■

Corollaire 1

Soient u⃗ et v⃗ deux vecteurs non nuls du plan. Soit θ l’angle géométrique entre les vecteurs
u⃗ et v⃗.
Alors

u⃗ · v⃗ = ∥u⃗∥∥v⃗∥ cos(θ).

Remarque 13. • Si deux vecteurs u⃗ et v⃗ non nuls sont orthogonaux, on a 0 = u⃗·v⃗ = ∥u⃗∥ cos(θ).
Nécessairement, cos(θ) = 0 donc θ =

π

2
. Ainsi, deux vecteurs orthogonaux sont de directions

perpendiculaires.
• Si deux vecteurs u⃗ et v⃗ non nuls sont colinéaires, il existe un réel non nul λ tel que v⃗ = λu⃗.

On a alors

u⃗ · v⃗ = u⃗ · (λu⃗) = λ∥u⃗∥2 et ∥u⃗∥∥v⃗∥ cos(θ) = ∥u⃗∥∥λu⃗∥ cos(θ) = |λ|∥u⃗∥2 cos(θ)

donc cos(θ) =
λ

|λ|
= ±1. Ainsi, θ = 0 ou θ = π, ce qui prouve que deux vecteurs colinéaires sont

de directions parallèles.
En particulier, si trois points A,B et C sont alignés, c’est à dire si les vecteurs −−→

AB et −→
AC

sont colinéaires, les droites (AB) et (AC) sont confondues.
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Proposition 12 : Théorème de Pythagore

Soient u⃗ et v⃗ deux vecteurs du plan R2.
Alors les vecteurs u⃗ et v⃗ sont orthogonaux si et seulement si ∥u⃗+ v⃗∥2 = ∥u⃗∥2 + ∥v⃗∥2.

Démonstration. On a l’identité remarquable ∥u⃗+ v⃗∥2 = ∥u⃗∥2 + 2u⃗ · v⃗ + ∥v⃗∥2.
On a donc l’équivalence :

u⃗ · v⃗ = 0 ⇔ ∥u⃗+ v⃗∥2 = ∥u⃗∥2 + ∥v⃗∥2.

■

Remarque 14. Si u⃗ =
−−→
BA et v⃗ =

−→
AC, on a u⃗+ v⃗ =

−−→
BC d’après la relation de Chasles. Ainsi,

on a l’équivalence
−−→
BA ·

−→
AC = 0 ⇔ BC2 = AB2 +AC2.

Autrement dit, le triangle ABC est rectangle en A si et seulement si BC2 = AB2 +AC2.

15.1.3 Bases et repères du plan

Définition 9 : Bases du plan

Une base du plan R2 est la donnée d’un couple de vecteurs (e⃗1, e⃗2) de R2 non colinéaires.
Une telle base est dite orthonormée si les vecteurs e⃗1 et e⃗2 sont orthonormés.

Remarque 15. • Le vecteur nul étant colinéaire à tous les vecteurs de R2, une base de R2 est
nécessairement constituée de deux vecteurs non nuls.

• Deux vecteurs non nuls et orthogonaux forment toujours une base de R2. En effet, si
e⃗1 ̸= 0⃗, e⃗2 ̸= 0⃗, et e⃗1 · e⃗2 = 0, alors les vecteurs e⃗1 et e⃗2 ne sont pas colinéaires.

S’ils étaient colinéaires, il existerait un réel λ non nul tel que e⃗2 = λe⃗1 d’où

0 = e⃗1 · e⃗2 = e⃗1 · (λe⃗1) = λ(e⃗1 · e⃗1) = λ∥e⃗1∥2 ̸= 0,

ce qui est absurde.
Ainsi, deux vecteurs orthogonaux non nuls ne sont pas colinéaires et forment une base de

R2.

Exemple 9. • Notons i⃗ et j⃗ les vecteurs de coordonnées i⃗

(
1
0

)
et j⃗

(
0
1

)
.

Ces vecteurs ne sont pas colinéaires car 1× 1− 0× 0 = 1 ̸= 0 donc ils forment une base du
plan R2, appelée base canonique de R2. De plus, c’est une base orthonormée.

• Le couple de vecteurs (u⃗, v⃗) vus dans l’exemple précédent, i.e. u⃗ =

(
5
3

)
et v⃗ =

(
1
1

)
forme

donc une base de R2.
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Théorème 1 : Coordonnées d’un vecteur dans une base

Soit (e⃗1, e⃗2) une base du plan R2.
Soit u⃗ un vecteur de R2.
Alors il existe un unique couple de réels (λ1, λ2) tels que

u⃗ = λ1e⃗1 + λ2e⃗2.

On dit que les réels (λ1, λ2) sont les coordonnées du vecteur u⃗ dans la base (e⃗1, e⃗2).

e⃗1

e⃗2

λ1e⃗1

λ2e⃗2

u⃗

Démonstration. Notons e⃗1 =
(
a
b

)
, e⃗2 =

(
c
d

)
et u⃗ =

(
α
β

)
(qui sont en fait les coordonnées

de ces vecteurs dans la base canonique de R2).
Cherchons un couple (λ1, λ2) de réels tel que

u⃗ = λ1e⃗1 + λ2e⃗2 ⇔
{

λ1a+ λ2c = α
λ1b+ λ2d = β

⇔
(
a c
b d

)(
λ1

λ2

)
=

(
α
β

)
.

Puisque les vecteurs (e⃗1, e⃗2) forment une base de R2, ils ne sont pas colinéaires donc ad−bc ̸= 0,

i.e. la matrice
(
a c
b d

)
est de déterminant non nul, donc elle est inversible.

On en déquit que l’unique solution du système est le couple (λ1, λ2) donné par(
λ1

λ2

)
=

(
a c
b d

)−1(
α
β

)
,

ce qui assure l’existence et l’unicité des coordonnées du vecteur u⃗ dans la base (e⃗1, e⃗2). ■

Exemple 10. • Reprenons la base canonique de R2(⃗i, j⃗) définie par i⃗

(
1
0

)
et j⃗

(
0
1

)
.

Pour tout vecteur u⃗

(
xu⃗
yu⃗

)
de R2, on a u⃗ = xu⃗⃗i+ yu⃗j⃗.

Ainsi, les coordonnées de u⃗ dans la base (⃗i, j⃗) sont (xu⃗, yu⃗).

• Soit (e⃗1, e⃗2) la base définie par e⃗1 =

(
5
3

)
et e⃗2 =

(
1
1

)
.

Soit u⃗ =

(
2
−1

)
. On cherche les coordonnées (λ1, λ2) de u⃗ dans la base (e⃗1, e⃗2). On a les

équivalences suivantes :

u⃗ = λ1e⃗1 + λ2e⃗2 ⇔
{

2 = 5λ1 + λ2

−1 = 3λ1 + λ2

L1←L1−L2⇐⇒
{

3 = 2λ1

−1 = 3λ1 + λ2
⇔
{

λ1 = 3
2

λ2 = −11
2 .

Ainsi u⃗ =
3

2
e⃗1 −

11

2
e⃗2.

Définition 10 : Repère du plan

On appelle repère du plan R2 la donnée d’un triplet (O, e⃗1, e⃗2) où O est un point de R2

et (e⃗1, e⃗2) une base de R2.
On dit que le repère est orthonormé si (e⃗1, e⃗2) est une base orthonormée de R2.
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Exemple 11. Si on note O l’origine du plan, i.e. le point (0, 0), i⃗
(
1
0

)
et j⃗

(
0
1

)
les vecteurs de

la base canonique, (O, i⃗, j⃗) est un repère du plan R2.

Définition 11 : Coordonnées d’un point dans un repère

Soit (O, e⃗1, e⃗2) un repère du plan R2. Soit M un point du plan R2.

On appelle coordonnées de M dans le repère (O, e⃗1, e⃗2) les coordonnées (λ1, λ2) de −−→
OM

dans la base (e⃗1, e⃗2), i.e. l’unique couple de réels (λ1, λ2) tel que
−−→
OM = λ1e⃗1 + λ2e⃗2.

Remarque 16. Lorsqu’on note les coordonnées d’un point M sous la forme (x, y) où x désigne
l’abscisse du point M et y son ordonnée, les coordonnées (x, y) sont en fait les coordonnées du
point M dans le repère (O, i⃗, j⃗) où O désigne l’origine du plan R2, i.e. le point (0, 0), et (⃗i, j⃗) la
base canonique de R2.

En effet, on a −−→
OM = x⃗i+ yj⃗.

Exemple 12. Reprenons les vecteurs u⃗ =

(
5
3

)
et v⃗ =

(
1
1

)
qui forment une base (u⃗, v⃗) de R2.

Soit O = (2, 5). Le triplet (O, u⃗, v⃗) forme donc un repère de R2.

Soit M le point du plan R2 de coordonnées (4, 4).

Alors −−→
OM =

(
2
−1

)
=

3

2
e⃗1 −

11

2
e⃗2.

Les coordonnées de M dans le repère (O, u⃗, v⃗) sont donc
(
3

2
,−11

2

)
.

Définition 12 : Déterminant dans une base

Soit (e⃗1, e⃗2) une base de R2. Soient u⃗ et v⃗ deux vecteurs de R2 de coordonnées respectives
(a, b) et (c, d) dans la base (e⃗1, e⃗2).
On appelle déterminant du couple (u⃗, v⃗) dans la base (e⃗1, e⃗2) le déterminant∣∣∣∣ a c

b d

∣∣∣∣ .
Proposition 13 : Condition de colinéarité

On garde les notations de la définition précédente.

Alors les vecteurs u⃗ et v⃗ sont colinéaires si et seulement si
∣∣∣∣ a c
b d

∣∣∣∣ = 0.

Remarque 17. Ceci signifie que la condition de colinéarité vue précédemment dans la base
canonique est en fait vraie dans toutes les bases.

Démonstration. • Supposons que les vecteurs u⃗ et v⃗ sont colinéaires. Sans perte de géné-
ralité, on peut supposer qu’il existe λ ∈ R tel que v⃗ = λu⃗ = λae⃗1 + λbe⃗2.

Par unicité des coordonnées dans la base (e⃗1, e⃗2), on a c = λa et d = λb d’où

ad− bc = λab− λab = 0.

• Supposons que ad− bc = 0 et montrons que les vecteurs u⃗ et v⃗ sont colinéaires.
Si u⃗ = 0⃗, alors v⃗ est nécessairement colinéaire à u⃗.
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On peut donc supposer que u⃗ ̸= 0⃗, i.e. (a, b) ̸= (0, 0).

- Si a = 0, nécessairement b ̸= 0 et on peut poser λ =
d

b
, d’où d = λb.

Puisque ad− bc = 0, on a alors bc = ad d’où c =
ad

b
= λa.

Ainsi v⃗ = ce⃗1 + de⃗2 = λae⃗1 + λbe⃗2 = λu⃗.

- Si a ̸= 0, on pose λ =
c

a
et on trouve de même d =

bc

a
= λb d’où

v⃗ = ce⃗1 + de⃗2 = λae⃗1 + λbe⃗2 = λu⃗.

Dans tous les cas, si ad− bc = 0, alors les vecteurs u⃗ et v⃗ sont colinéaires. ■

Proposition 14 : Coordonnées dans une base orthonormée

Soit (e⃗1, e⃗2) une base orthonormée de R2.
Pour tout vecteur u⃗ de R2, on a

u⃗ = (u⃗ · e⃗1)e⃗1 + (u⃗ · e⃗2)e⃗2.

Démonstration. Notons (x, y) les coordonnées de u⃗ dans la base (e⃗1, e⃗2) de telle sorte que
u⃗ = xe⃗1 + ye⃗2.

On a par bilinéarité du produit scalaire :

u⃗ · e⃗1 = (xe⃗1 + ye⃗2) · e⃗1 = x(e⃗1 · e⃗1) + y(e⃗2 · e⃗1) = x∥e⃗1∥2 + y(e⃗2 · e⃗1).

Puisque la base (e⃗1, e⃗2) est orthonormée, on a ∥e⃗1∥ = 1 et e⃗2 · e⃗1 = 0 donc u⃗ · e⃗1 = x.
On montre de même que u⃗ · e⃗2 = y, ce qui prouve que

u⃗ = (u⃗ · e⃗1)e⃗1 + (u⃗ · e⃗2)e⃗2.

■

Proposition 15 : Produit scalaire dans une base orthonormée

Soit (e⃗1, e⃗2) une base orthonormée de R2. Soient u⃗ et v⃗ deux vecteurs de R2 de coordonnées
respectives (a, b) et (c, d) dans la base (e⃗1, e⃗2).
Alors u⃗ · v⃗ = ac+ bd.

Démonstration. Par hypothèse, on a u⃗ = ae⃗1 + be⃗2 et v⃗ = ce⃗1 + de⃗2.
Puisque la base (e⃗1, e⃗2) est orthonormée, on a

e⃗1 · e⃗2 = 0 et e⃗1 · e⃗1 = e⃗2 · e⃗2 = ∥e⃗1∥2 = ∥e⃗2∥2 = 1.

Ainsi,

u⃗ · v⃗ = (ae⃗1 + be⃗2) · (ce⃗1 + de⃗2) = ac∥e⃗1∥2 + ad(e⃗1 · e⃗2) + bc(e⃗2 · e⃗1) + bd∥e⃗2∥2 = ac+ bd.

■

Exemple 13. Soit e⃗1 =
1√
2

(
1
1

)
et e⃗2 =

1√
2

(
1
−1

)
.

Le couple (e⃗1, e⃗2) forme une base orthonormée de R2.
Soit u⃗ =

√
2e⃗1 + 2

√
2e⃗2 et v⃗ =

√
2e⃗1 − 2

√
2e⃗2.

D’après la proposition précédente, u⃗ · v⃗ =
√
2×

√
2 + 2

√
2× (−2

√
2) = 2− 8 = −6.

En effet, on a u⃗ =

(
1
1

)
+ 2

(
1
−1

)
=

(
3
−1

)
et v⃗ =

(
1
1

)
− 2

(
1
−1

)
=

(
−1
3

)
.

On retrouve bien u⃗ · v⃗ = 3× (−1) + (−1)× 3 = −3− 3 = −6.
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Remarque 18. Soit u⃗ un vecteur non nul du plan, soit u⃗′ un vecteur non nul orthogonal à u⃗

tel que (̂u⃗, u⃗′) = π
2 . Le couple

(
u⃗

∥u⃗∥
,

u⃗′

∥u⃗′∥

)
forme une base orthonormée du plan R2.

Soit v⃗ un vecteur non nul du plan. Soit θ l’angle géométrique entre u⃗ et v⃗.

Alors v⃗ = ∥v⃗∥ cos(θ) u⃗

∥u⃗∥
+ ∥v⃗∥ sin(θ) u⃗′

∥u⃗′∥
et u⃗ = ∥u⃗∥ u⃗

∥u⃗∥
+ 0× u⃗′

∥u⃗′∥
.

D’après la proposition précédente, on obtient

u⃗ · v⃗ = ∥u⃗∥∥v⃗∥ cos(θ).

On retrouve la formule du produit scalaire avec le cosinus.

15.1.4 Droites dans le plan

Définition 13 : Droites du plan

Soit A un point du plan R2, soit u⃗ un vecteur non nul de R2.
La droite de vecteur directeur u⃗ et passant par A est l’ensemble des points M tels que
les vecteurs −−→

AM et u⃗ sont colinéaires.

A

u⃗

Remarque 19. Si une droite (D) admet un vecteur directeur u⃗, alors tout vecteur non nul v⃗
colinéaire à u⃗ est également un vecteur directeur de la droite (D).

En effet, si −−→AM est colinéaire à u⃗, alors il existe un réel λ tel que −−→
AM = λu⃗ et si v⃗ et u⃗ sont

colinéaires, il existe µ ∈ R tel que u⃗ = µv⃗ donc −−→
AM = λµv⃗.

Ainsi, −−→AM est colinéaire à u⃗ si et seulement si −−→AM est colinéaire à v⃗, donc la droite passant
par A et de vecteur directeur u⃗ est la droite passant par A et de vecteur directeur v⃗.

En particulier, si B est un autre point de (D), alors le vecteur −−→
AB est un vecteur directeur

de (D).

Définition 14 : Droites parallèles

Soient (D) et (D′) deux droites de vecteurs directeurs respectifs u⃗ et u⃗′.
On dit que les droites (D) et (D′) sont parallèles si les vecteurs u⃗ et u⃗′ sont colinéaires.
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Proposition 16 : Théorème de Thalès

Soit ABC un triangle. Soit M un point situé sur la droite (AB) et N un point situé sur
la droite (AC).
On suppose que la droite (BC) est parallèle à la droite (MN).
Alors

AM

AB
=

AN

AC
=

MN

BC
.

B C

A

M N
B C

A

N M

Démonstration. Tout d’abord, notons que puisque les points A,B et C forment un triangle,
les vecteurs −−→

AB et −→
AC ne sont pas colinéaires (sinon, les points A,B et C seraient alignés).

Ainsi, le couple (
−−→
AB,

−→
AC) forme une base de R2.

Puisque les points A,M et B sont alignés, les vecteurs −−→
AM et −−→

AB sont colinéaires donc il
existe un réel α tel que −−→

AM = α
−−→
AB.

De même, puisque les points A,N et C sont alignés, les vecteurs −−→
AN et −→AC sont colinéaires

donc il existe un réel β tel que −−→
AN = β

−→
AC.

Enfin, puisque les droites (BC) et (MN) sont parallèles, les vecteurs −−→
BC et −−→

MN sont
colinéaires, donc il existe un réel γ tel que −−→

MN = γ
−−→
BC.

D’après la relation de Chasles, on en déduit que
−−→
MN = γ(

−−→
BA+

−→
AC) = −γ

−−→
AB + γ

−→
AC.

D’autre part, toujours d’après la relation de Chasles, −−→MN =
−−→
MA+

−−→
AN = −

−−→
AM+

−−→
AN donc

−−→
MN = −α

−−→
AB + β

−→
AC.

Par unicité des coordonnées d’un vecteur dans une base, on en déduit que −α = −γ et β = γ,
d’où α = β = γ.

Or, −−→AM = α
−−→
AB donc AM = ∥

−−→
AM∥ = ∥α

−−→
AB∥ = |α|∥

−−→
AB∥ = |α|AB d’où |α| = AM

AB
.

On a de même |β| = AN

AC
et |γ| = MN

BC
.

Puisque |α| = |β| = |γ|, on en conclut que AM

AB
=

AN

AC
=

MN

BC
. ■

Corollaire 2 : Réciproque du théorème de Thalès

Soient A,B,C,M,N cinq points du plan distincts.
On suppose que les points A,M et B d’une part, et A,N et C d’autre part sont alignés
et dans cet ordre.
On suppose que AM

AB
=

AN

AC
.

Alors les droites (MN) et (BC) sont parallèles.
En outre, AM

AB
=

AN

AC
=

MN

BC
.
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Démonstration. Considérons la droite (D) de vecteur directeur −−→
BC et passant par M.

Notons N ′ son point d’intersection avec la droite (AC) (ce point existe puisque les droites (BC)
et (AC) ne sont pas parallèles). De plus, les points A,N ′ et C sont alignés dans le même ordre
que A,M et B car d’après la preuve du théorème de Thalès, si λ est le réel tel que −−→

AN = λ
−→
AC,

alors −−→
AM = λ

−−→
AB.

Ainsi, la droite (MN ′) est parallèle à la droite (BC). D’après le théorème de Thalès, on en

déduit que AM

AB
=

AN ′

AC
=

MN ′

BC
.

Il s’ensuit que AN ′ =
AM ×AC

AB
= AN. Il y a alors deux possibilités : N ′ = N ou A est le

milieu de [NN ′]. Mais ce deuxième cas est impossible car N et N ′ sont tous deux situés entre
A et C. Nécessairement, N ′ = N.

Ainsi, la droite (MN) est parallèle à la droite (BC) et d’après le théorème de Thalès,
AM

AB
=

AN

AC
=

MN

BC
. ■

Remarque 20. On en déduit le théorème de la droite des milieux : si on note I le milieu de
[AB] et J le milieu de [AC], alors AI

AB
=

AJ

AC
=

1

2
donc les droites (IJ) et (BC) sont parallèles.

Proposition 17 : Représentation paramétrique d’une droite dans le plan

Soit A(xA, yA) un point du plan R2, soit u⃗ =

(
a
b

)
un vecteur non nul de R2.

Soit (D) la droite passant par A de vecteur directeur u⃗.
Soit M un point de R2 de coordonnées (x, y).

Alors M ∈ (D) si et seulement si il existe un réel λ tel que
{

x = λa+ xA
y = λb+ yA.

Démonstration. On a les équivalences suivantes :

M ∈ (D) ⇔
−−→
AM et u⃗ sont colinéaires ⇔ ∃λ ∈ R,

−−→
AM = λu⃗ ⇔

(
x− xA
y − yA

)
=

(
λa
λb

)
⇔
{

x = λa+ xA
y = λb+ yA.

■

Exemple 14. Soit u⃗ =

(
5
3

)
, soit A le point du plan de coordonnées (2, 3). Soit (D) la droite

passant par A de vecteur directeur u⃗.

Alors un point M du plan de coordoonnées (x, y) appartient à la droite (D) si et seulement

si il existe un réel λ tel que
{

x = 5λ+ 2
y = 3λ+ 3

Par exemple, pour λ = 1, on trouve que le point de coordonnées (7, 6) appartient à (D).

Pour λ = −2, le point de coordonnées (−8,−3) appartient à (D).

Définition 15 : Vecteur normal à une droite

Soit (D) une droite du plan R2 de vecteur directeur u⃗.
On appelle vecteur normal à la droite (D) tout vecteur non nul n⃗ tel que n⃗ et u⃗ sont
orthogonaux.

Exemple 15. Si on reprend la droite (D) de l’exemple précédent, le vecteur n⃗ =

(
−3
5

)
est un

vecteur normal à la droite (D).
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Remarque 21. Les vecteurs normaux à une droite du plan sont tous colinéaires. En effet, soit

(D) une droite de vecteur directeur u⃗ =

(
a
b

)
̸= 0⃗. Déterminons les vecteurs normaux non nuls

à la droite (D). Soit n⃗ =

(
x
y

)
un tel vecteur.

On a n⃗ · u⃗ = ax+ by = 0. Puisque u⃗ ̸= 0⃗, nécessairement, (a, b) ̸= (0, 0).

• Si a = 0, on trouve que by = 0 et puisque dans ce cas b ̸= 0, ceci implique que y = 0.

Dans ce cas, n⃗ est de la forme
(
x
0

)
= x

(
1
0

)
donc les vecteurs normaux à la droite (D) sont

colinéaires au vecteur
(
1
0

)
, donc au vecteur

(
−b
0

)
=

(
−b
a

)
.

• Si a ̸= 0, on obtient x = − b

a
y et n⃗ est de la forme

(
− b

ay
y

)
= y

(
− b

a
1

)
donc les vecteurs

normaux à la droite (D) sont colinéaires au vecteur
(
− b

a
1

)
, donc au vecteur

(
−b
a

)
.

Dans tous les cas, les vecteurs normaux à une droite de vecteur directeur u⃗ =

(
a
b

)
sont tous

colinéaires au vecteur
(
−b
a

)
.

Réciproquement, si une droite (D) admet pour vecteur normal n⃗ =

(
a
b

)
, et si u⃗ est un

vecteur directeur de la droite (D), alors u⃗ est colinéaire à
(
−b
a

)
.

Proposition 18 : Equation cartésienne d’une droite du plan

Soit (D) une droite du plan R2. Soit n⃗ =

(
a
b

)
un vecteur non nul normal à la droite (D).

Alors il existe un réel c tel que pour tout point M de R2 de coordoonées (x, y),

M ∈ (D) ⇔ ax+ by + c = 0.

On dit que l’équation ax+ by + c = 0 est une équation cartésienne de la droite (D).

Démonstration. Soit u⃗ ̸= 0⃗ un vecteur directeur de (D), soit A un point de (D) de
coordonnées (xA, yA).

Par définition, le point M appartient à (D) si et seulement si −−→AM est colinéaire à u⃗, i.e. il
existe λ ∈ R tel que −−→

AM = λu⃗. Dans ce cas, on a −−→
AM · n⃗ = (λu⃗) · n⃗ = λ(u⃗ · n⃗) = 0.

Réciproquement, d’après la remarque précédente, si −−→AM · n⃗ = 0, alors −−→
AM est colinéaire à(

−b
a

)
, qui est un vecteur directeur de (D).

On a donc les équivalences

M ∈ (D) ⇔
−−→
AM · n⃗ = 0 ⇔ (x− xA)a+ (y − yA)b = 0,

ce qui équivaut en posant c = −axA − byA à ax+ by + c = 0. ■

Remarque 22. • Une équation cartésienne de droite dans le plan R2 est donc une équation
de la forme ax+ by + c = 0 avec (a, b) ̸= (0, 0).

• Puisque tous les vecteurs normaux à (D) sont colinéaires, la droite (D) admet une infinité
d’équations cartésiennes, toutes égales à multiplication par un scalaire non nuls près.
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• Une droite verticale a une équation de la forme x = −c, i.e. x+c = 0 ou encore ax+by+c =
0 avec a = 1 et b = 0.

• Une droite horizontale a une équation de la forme y = −c

b
, i.e. by + c = 0 ou encore

ax+ by + c = 0 avec a = 0 et b ̸= 0.

• Si b ̸= 0, l’équation ax+ by = c peut s’écrire y = −a

b
x− c

b
. On retrouve l’équation d’une

fonction affine de cœfficient directeur −a

b
et d’ordonnée à l’origine −c

b
.

Exemple 16. On reprend le même exemple de la droite (D) de vecteur normal n⃗ =

(
−3
5

)
.

Elle admet une équation cartésienne de la forme −3x+ 5y + c = 0.

Or, elle passe par le point A de coordonnées (2, 3) donc −3× 2+ 5× 3+ c = 0 d’où c = −9.

Une équation cartésienne de la droite (D) passant par A(2, 3) et de vecteur directeur u⃗ =(
5
3

)
est −3x+ 5y − 9 = 0.

Remarque 23. Soient (D) et (D′) deux droites du plan d’équations respectives ax+by+c = 0
et a′x+b′y+c′ = 0. Les points d’intersection des deux droites (D) et (D′) ont pour coordonnées
les couples (x, y) solutions du système{

ax+ by = −c
a′x+ b′y = −c′

On a vu dans le chapitre « Systèmes linéaires » qu’un tel système admet zéro, une seule, ou une
infinité de solutions. Ainsi, deux droites du plan sont soit parallèles, soit sécantes en un point,
soit confondues.

Proposition 19

Soit (D) une droite de R2 d’équation cartésienne ax+ by + c = 0 avec (a, b) ̸= (0, 0).

Alors le vecteur u⃗ =

(
−b
a

)
est un vecteur directeur de la droite (D).

Démonstration. Soit A(x0, y0) un point de (D). Les coordoonnées de A vérifient l’équation
de (D) donc ax0 + by0 + c = 0.

Soit M(x, y) un point du plan. On a les équivalences suivantes :

M ∈ (D) ⇔ ax+ by + c = 0 ⇔ ax+ by + c = ax0 + by0 + c ⇔ a(x− x0) + b(y − y0) = 0.

Or, le vecteur −−→
AM a pour coordonnées

(
x− x0
y − y0

)
donc −−→

AM et u⃗ sont colinéaires si et

seulement si a(x− x0)− (−b)(y − y0) = a(x− x0) + b(y − y0) = 0.

On a donc prouvé que M appartient à la droite (D) si et seulement si −−→
AM et u⃗ sont

colinéaires, ce qui implique que u⃗ est un vecteur directeur de la droite (D). ■

Remarque 24. Si on se donne une droite (D) de vecteur directeur u⃗ =

(
−b
a

)
, le vecteur

n⃗ =

(
a
b

)
est un vecteur normal à la droite (D) donc celle-ci admet une équation cartésienne de

la forme ax+ by + c = 0.
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Définition 16 : Cœfficient directeur d’une droite

Soit (D) une droite de R2 d’équation cartésienne ax+ by + c = 0 et de vecteur directeur

u⃗ =

(
−b
a

)
avec (a, b) ̸= (0, 0).

Si b ̸= 0, on définit le cœfficient directeur (ou pente) de la droite (D) par le réel −a

b
.

Remarque 25. • Si a = 0, la droite (D) est horizontale et son cœfficient directeur est nul.
• Si b = 0, la droite (D) est verticale et dans ce cas, le cœfficient directeur de la droite (D)

n’est pas défini (on peut dire qu’il est infini).
Exemple 17. Soit (D) une droite de R2 d’équation cartésienne 2x + 3y − 1 = 0. Un vecteur

directeur de cette droite est u⃗ =

(
−3
2

)
donc le cœfficient directeur de cette droite est −2

3
.

15.1.5 Projection orthogonale sur une droite

Proposition 20 : Projection orthogonale sur une droite

Soit (D) une droite de vecteur directeur u⃗.
Soit M un point du plan R2.

Alors il existe un unique point H appartenant à la droite (D) tel que les vecteurs −−→
HM

et u⃗ sont orthogonaux.
Le point H est appelé le projeté orthogonal du point M sur la droite (D).

(D)

M

H

(MH) ⊥ (D)

Démonstration. Soient (a, b) ∈ R2 tels que u⃗ =

(
−b
a

)
avec (a, b) ̸= (0, 0).

Une équation cartésienne de (D) est ax+ by + c = 0.
Soit M un point du plan R2 de coordonnées (xM , yM ). On cherche un point H ∈ (D) tel

que −−→
HM · u⃗ = 0.

Soit H un point de coordonnées (x, y). On a les équivalences suivantes :{
H ∈ (D)

−−→
HM · u⃗ = 0

⇔
{

ax+ by + c = 0
−b(xM − x) + a(yM − y) = 0

⇔
{

ax+ by = −c
bx− ay = bxM − ayM

Ce système s’écrit matriciellement
(
a b
b −a

)(
x
y

)
=

(
−c

bxM − ayM

)
.

Or, la matrice
(
a b
b −a

)
est inversible puisque son déterminant vaut −a2 − b2 < 0 car

(a, b) ̸= (0, 0). Le système obtenu est donc un système de Cramer, ce qui signifie qu’il possède
une unique solution.

Il y a donc un unique point H qui vérifie les deux conditions H ∈ (D) et −−→
HM · u⃗ = 0. ■
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Exemple 18. Soit (D) une droite d’équation cartésienne 2x − y + 3 = 0. Soit M le point de
coordonnés (1, 1). On vérifie que M /∈ (D). Déterminons le projeté orthogonal H(x, y) de M
sur la droite (D).

Puisque H ∈ (D), on a 2x− y = −3. D’autre part, un vecteur directeur de la droite (D) est

u⃗ =

(
1
2

)
.

Puisque −−→
HM · u⃗ = 0, on a (1− x) + 2(1− y) = 0, d’où x+ 2y = 3.

Ainsi, le couple (x, y) est solution du système

{
2x− y = −3
x+ 2y = 3

⇔
{

y = 2x+ 3
x+ 4x+ 6 = 3

⇔


x = −3

5

y =
9

5

.

Le projeté orthogonal du point M sur la droite (D) est doncle point H de coordonnées
(−3

5 ,
9
5).

Remarque 26. Soient A,B et M trois points du plan. Soit H le projeté orthogonal du point
M sur la droite (AB). On a alors

−−→
AB ·

−−→
AM =

−−→
AB · (

−−→
AH +

−−→
HM) =

−−→
AB ·

−−→
AH +

−−→
AB ·

−−→
HM =

−−→
AB ·

−−→
AH

donc −−→AB·
−−→
AM = AB×AH si les vecteurs −−→AB et −−→AH sont de même sens et −−→AB·

−−→
AM = −AB×AH

si les vecteurs −−→
AB et −−→

AH sont de sens opposé.

Définition 17 : Distance d’un point à une droite du plan

Soit (D) une droite du plan. Soit M un point de R2 et H le projeté orthogonal du point
M sur la droite (D).
On appelle distance du point M à la droite (D) la longueur HM.
On note d(M, (D)) = HM.

Exemple 19. Reprenons l’exemple précédent. La distance du point M à la droite (D) est alors

HM =
√

(xM − xH)2 + (yM − yH)2 =
√

64
25 + 16

25 =
√

80
25 =

4
√
5

5
.

15.1.6 Cercles dans le plan

Définition 18 : Cercles

Soit O un point du plan. Soit r ∈ R∗+.
On appelle cercle de centre O et de rayon r l’ensemble des points M du plan tels que

OM = r.

O

r
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Exemple 20. Le cercle trigonométrique est le cercle de centre O(0, 0) et de rayon 1.

Proposition 21 : Equation cartésienne d’un cercle dans le plan

Soit O(xO, yO) un point du plan. Soit r ∈ R∗+.
On note C le cercle de centre O et de rayon r.
Soit M un point du plan de coordonnées (x, y).
Alors M ∈ C ⇔ (x− xO)

2 + (y − yO)
2 = r2.

On dit que cette équation est une équation cartésienne du cercle C.

Démonstration. On a les équivalences :

M ∈ C ⇔ OM = r ⇔ OM2 = r2 ⇔ (x− xO)
2 + (y − yO)

2 = r2.

■

Exemple 21. Le cercle de centre O(−2, 1) et de rayon 3 a pour équation

(x+ 2)2 + (y − 1)2 = 9.

Le point de coordonnées (1, 1) appartient en particulier à ce cercle.

15.2 Géométrie de l’espace

Dans cette section, on reprend les concepts vus dans le plan R2 et on les étend à l’espace
R3.

15.2.1 Vecteur de l’espace

Définition 19 : Vecteurs de l’espace

On appelle vecteur de l’espace tout déplacement d’un point A de l’espace vers un point
B de l’espace.
Si A(xA, yA, zA) et B(xB, yB, zB) sont des points de l’espace, le vecteur −−→

AB a pour coor-
données

−−→
AB

xB − xA
yB − yA
zB − zA

 .

Si A = B, alors −−→
AB = 0⃗ est le vecteur nul.

Plus généralement, un vecteur u⃗ de R3 est la donnée de coordonnées u⃗

xu⃗
yu⃗
zu⃗

. La norme

du vecteur u⃗ est alors définie par

∥u⃗∥ =
√
x2u⃗ + y2u⃗ + z2u⃗.

Les propriétés vues sur les vecteurs du plan restent valables pour les vecteurs de l’espace : les
opérations sur les vecteurs, les propriétés des opérations sur les vecteurs, la relation de Chasles,
la colinéarité.
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15.2.2 Produit scalaire

Définition 20 : Produit scalaire sur R3

Soient u⃗ =

x
y
z

 et v⃗ =

x′

y′

z′

 deux vecteurs de l’espace R3.

On définit le produit scalaire u⃗ · v⃗ par

u⃗ · v⃗ = xx′ + yy′ + zz′.

On définit comme dans R2 les vecteurs orthogonaux et on montre de même les propriétés
du produit scalaire (symétrie, bilinéarité, positivité, définition).

Définition 21 : Norme euclidienne

Soit u⃗ =

x
y
z

 ∈ R3. On définit la norme euclidienne du vecteur u⃗ par

∥u⃗∥ =
√
u⃗ · u⃗ =

√
x2 + y2 + z2.

On définit comme sur R2 les vecteurs orthonormés, la norme euclidienne de R3 vérifie
les mêmes identités remarquables, de polarisation, du parallélogramme, l’inégalité de Cauchy-
Schwarz ainsi que les mêmes propriétés de séparation, homogénéité et l’inégalité triangulaire.

Enfin, le théorème de Pythagore sur R3 s’énonce et se démontre de la même manière.

15.2.3 Bases et repères de l’espace

Définition 22 : Vecteurs coplanaires

Soient u⃗, v⃗, w⃗ trois vecteurs de l’espace R3.
On dit que les vecteurs u⃗, v⃗ et w⃗ sont coplanaires s’il existe trois réels (α, β, γ) ̸= (0, 0, 0)
tels que

αu⃗+ βv⃗ + γw⃗ = 0⃗.

Concrètement, cela signifie que l’un des trois vecteurs s’écrit comme combinaison linéaire
des deux autres.

Remarque 27. Par exemple, si α ̸= 0, on a u⃗ = −β

α
v⃗ − γ

α
w⃗.

Exemple 22. Soient u⃗ =

2
1
0

 , v⃗ =

−1
2
1

 et w⃗ =

3
4
1

 .

Les vecteurs u⃗, v⃗, w⃗ sont coplanaires car w⃗ = 2u⃗+ v⃗.

Pour trouver une telle relation, on trouve les triplets (α, β, γ) ∈ R3 tels que αu⃗+βv⃗+γw⃗ = 0⃗
en résolvant le système 

2α− β + 3γ = 0
α+ 2β + 4γ = 0

β + γ = 0.
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Définition 23 : Bases de l’espace

Une base de l’espace R3 est la donnée d’un triplet de vecteurs (e⃗1, e⃗2, e⃗3) de R3 non
coplanaires, c’est à dire tels que

αe⃗1 + βe⃗2 + γe⃗3 = 0⃗ ⇒ α = β = γ = 0.

Une telle base est dite orthonormée si les trois vecteurs (e⃗1, e⃗2, e⃗3) sont orthonormés, i.e.
orthogonaux deux à deux et de norme 1.

Remarque 28. Un triplet de vecteurs contenant le vecteur nul ne forme jamais une base de
l’espace car ces trois vecteurs sont coplanaires. En effet, si u⃗ et v⃗ sont des vecteurs quelconques
de l’espace, il existe un triplet de réels (α, β, γ) ̸= (0, 0, 0), par exemple (α, β, γ) = (0, 0, 1) tel
que

αu⃗+ βv⃗ + γ0⃗ = 0⃗.

Exemple 23. • Notons i⃗, j⃗, k⃗ les vecteurs de cooronnées i⃗

1
0
0

 , j⃗

0
1
0

 et k⃗

0
0
1

 . On vérifie

aisément que ces vecteurs forment une base orthonormée de R3, appelée base canonique de R3.

• Soient u⃗ =

1
1
1

 , v⃗ =

 2
0
−1

 et w⃗ =

 0
1
−1

 .

Montrons que les vecteurs u⃗, v⃗, w⃗ forment une base de l’espace R3, i.e. ne sont pas coplanaires.

Soient (α, β, γ) ∈ R3 tels que αu⃗+βv⃗+γw⃗ = 0⃗ ⇔


α+ 2β = 0
α+ γ = 0

α− β − γ = 0
⇔


β = −1

2α
γ = −α

α+ 1
2α+ α = 0,

ce qui équivaut à α = β = γ = 0 donc les vecteurs u⃗, v⃗, w⃗ forment bien une base de R3.

Théorème 2 : Coordonnées d’un vecteur dans une base

Soient (e⃗1, e⃗2, e⃗3) une base de l’espace R3.
Soit u⃗ un vecteur de R2.
Alors il existe un unique triplet de réels (λ1, λ2, λ3) tels que

u⃗ = λ1e⃗1 + λ2e⃗2 + λ3e⃗3.

On dit que les réels (λ1, λ2, λ3) sont les coordonnées du vecteur u⃗ dans la base (e⃗1, e⃗2, e⃗3).

Démonstration. Notons e⃗1 = (x1, y1, z1), e⃗2 = (x2, y2, z2), e⃗3 = (x3, y3, z3) et u⃗ = (x, y, z).
On a alors les équivalences suivantes

u⃗ = λ1e⃗1 + λ2e⃗2 + λ3e⃗3 ⇔


λ1x1 + λ2x2 + λ3x3 = x
λ1y1 + λ2y2 + λ3y3 = y
λ1z1 + λ2z2 + λ3z3 = z

⇔

x1 x2 x3
y1 y2 y3
z1 z2 z3

λ1

λ2

λ3

 =

x
y
z

 .

Or, puisque les vecteurs (e⃗1, e⃗2, e⃗3) ne sont pas coplanaires, on sait que

λ1e⃗1 + λ2e⃗2 + λ3e⃗3 = 0⃗ ⇔ λ1 = λ2 = λ3 = 0

i.e. le système qui s’écrit matriciellementx1 x2 x3
y1 y2 y3
z1 z2 z3

λ1

λ2

λ3

 =

0
0
0


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admet pour unique solution (λ1, λ2, λ3) = 0, ce qui prouve que la matrice

x1 x2 x3
y1 y2 y3
z1 z2 z3

 est

inversible.

On obtient donc

u⃗ = λ1e⃗1 + λ2e⃗2 + λ3e⃗3 ⇔

λ1

λ2

λ3

 =

x1 x2 x3
y1 y2 y3
z1 z2 z3

−1x
y
z

 ,

ce qui assure l’existence et l’unicité du triplet (λ1, λ2, λ3). ■

Exemple 24. • Reprenons la base canonique de R3(⃗i, j⃗, k⃗) définie par i⃗

1
0
0

, j⃗

0
1
0

 et k⃗

0
0
1

 .

Pour tout vecteur u⃗

xu⃗
yu⃗
zu⃗

 de R3, on a u⃗ = xu⃗⃗i+ yu⃗j⃗ + zu⃗k⃗.

Ainsi, les coordonnées de u⃗ dans la base (⃗i, j⃗, k⃗) sont (xu⃗, yu⃗, zu⃗).

• Reprenons la base (u⃗, v⃗, w⃗) de l’exemple précédent. Soit x⃗ =

 3
3
−2

 . Cherchons les

coordonnées du vecteur x⃗ dans la base (u⃗, v⃗, w⃗).

On a x⃗ = αu⃗+ βv⃗+ γw⃗ ⇔


α+ 2β = 3
α+ γ = 3

α− β − γ = −2
⇔


β = 3

2 − α
2

γ = 3− α
α− 3

2 + α
2 − 3 + α = −2

⇔
α = 1
β = 1
γ = 2.

Ainsi, x⃗ = u⃗+ v⃗ + 2w⃗.

Définition 24 : Repère de l’espace

On appelle repère de l’espace R3 la donnée d’un triplet (O, e⃗1, e⃗2, e⃗3) où O est un point
de R3 et (e⃗1, e⃗2, e⃗3) une base de R3.
On dit que le repère est orthonormé si (e⃗1, e⃗2, e⃗3) est une base orthonormée de R3.

Exemple 25. Si on note O l’origine de l’espace, i.e. le point (0, 0, 0), i⃗

1
0
0

, j⃗

0
1
0

 et k⃗

0
0
1

,

les vecteurs de la base canonique, (O, i⃗, j⃗, k⃗) est un repère du plan R3.
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Définition 25 : Coordonnées d’un point dans un repère

Soit (O, e⃗1, e⃗2, e⃗3) un repère de l’espace R3. Soit M un point du plan R3.
On appelle coordonnées de M dans le repère (O, e⃗1, e⃗2, e⃗3) les coordonnées (λ1, λ2, λ3) de
−−→
OM dans la base (e⃗1, e⃗2, e⃗3), i.e. l’unique triplet de réels (λ1, λ2, λ3) tel que

−−→
OM = λ1e⃗1 + λ2e⃗2 + λ3e⃗3.

e⃗1
e⃗2

e⃗3

M

λ3

λ1

λ2

Remarque 29. Lorsqu’on note les coordonnées d’un point M sous la forme (x, y, z) où x
désigne l’abscisse du point M , y son ordonnée et z sa cote, les coordonnées (x, y, z) sont en fait
les coordonnées du point M dans le repère (O, i⃗, j⃗, k⃗) où O désigne l’origine de l’espace R3, i.e.
le point (0, 0, 0), et (⃗i, j⃗, k⃗) la base canonique de R3.

En effet, on a −−→
OM = x⃗i+ yj⃗ + zk⃗.

Exemple 26. Soit M le point de l’espace de coordonnées (3, 3,−2). Soit O(0, 0, 0). On considère
le repère de l’espace (O, u⃗, v⃗, w⃗) où (u⃗, v⃗, w⃗) est la base de l’espace R3 utilisée dans les exemples
précédents.

Les coordonnées de M dans le repère (O, u⃗, v⃗, w⃗) sont (1, 1, 2).

Proposition 22 : Produit scalaire dans une base orthonormée

Soit (e⃗1, e⃗2, e⃗3) une base orthonormée de R3. Soient u⃗ et v⃗ deux vecteurs de R3 de coor-
données respectives (x, y, z) et (x′, y′, z′) dans la base (e⃗1, e⃗2, e⃗3).
Alors u⃗ · v⃗ = xx′ + yy′ + zz′.

Démonstration. Par hypothèse, on a u⃗ = xe⃗1 + ye⃗2 + ze⃗3 et v⃗ = x′e⃗1 + y′e⃗2 + z′e⃗3.

Puisque la base (e⃗1, e⃗2, e⃗3) est orthonormée, on a

u⃗ · v⃗ = (xe⃗1 + ye⃗2 + ze⃗3) · (x′e⃗1 + y′e⃗2 + z′e⃗3)

= xx′∥e⃗1∥2 + xy′(e⃗1 · e⃗2) + xz′(e⃗1 · e⃗3) + yx′(e⃗2 · e⃗1) + yy′∥e⃗2∥2 + yz′(e⃗2 · e⃗3) + zx′(e⃗3 · e⃗1)
+zy′(e⃗3 · e⃗2) + zz′∥e⃗3∥2

= xx′ + yy′ + zz′.

■

Corollaire 3 : Coordonnées dans une base orthonormée

Soit (e⃗1, e⃗2, e⃗3) une base orthonormée de R3.
Pour tout vecteur u⃗ de R3, on a

u⃗ = (u⃗ · e⃗1)e⃗1 + (u⃗ · e⃗2)e⃗2 + (u⃗ · e⃗3)e⃗3.

Démonstration. Notons (x, y, z) les coordonnées de u⃗ dans la base (e⃗1, e⃗2, e⃗3) de telle sorte
que u⃗ = xe⃗1 + ye⃗2 + ze⃗3.
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Les coordonnées de e⃗1 dans la base (e⃗1, e⃗2, e⃗3) sont (1, 0, 0) donc d’après la proposition
précédente, on en déduit que u⃗ · e⃗1 = x.

De même, les coordonnées de e⃗2 dans la base (e⃗1, e⃗2, e⃗3) sont (0, 1, 0) donc u⃗ · e⃗2 = y.

Enfin, les coordonnées de e⃗3 dans la base (e⃗1, e⃗2, e⃗3) sont (0, 0, 1) donc u⃗ · e⃗3 = z.

Ainsi, u⃗ = (u⃗ · e⃗1)e⃗1 + (u⃗ · e⃗2)e⃗2 + (u⃗ · e⃗3)e⃗3. ■

15.2.4 Droites et plans dans l’espace

Définition 26 : Plans de l’espace

Soit A un point de l’espace R3, soient (u⃗, v⃗) un couple de vecteurs non colinéaires de
l’espace.
On appelle plan passant par A et de base (u⃗, v⃗) l’ensemble des points M tels qu’il existe
deux réels (λ, µ) ∈ R2 pour lesquels

−−→
AM = λu⃗+ µv⃗.

On dit que le triplet (A, u⃗, v⃗) forme un repère du plan et le couple (u⃗, v⃗) une base du
plan.

Remarque 30. Trois points non alignés A,B et C défininissent un unique plan (P ). En effet,
si A,B et C ne sont pas alignés, alors les vecteurs −−→

AB et −→
AC ne sont pas colinéaires donc le

plan (P ) est le plan passant par le point A et de base (
−−→
AB,

−→
AC).

Lemme 1 : Existence de bases orthonormées dans un plan de l’espace

Soit (P ) un plan de l’espace.
Alors (P ) admet une base orthonormée.

Démonstration. Soit (u⃗, v⃗) une base du plan (P ). Posons e⃗1 =
u⃗

∥u⃗∥
. Le vecteur e⃗1 est de

norme 1.

Cherchons un réel λ tel que le vecteur v⃗ + λe⃗1 soit orthogonal à e⃗1. On a

(v⃗ + λe⃗1) · e⃗1 = 0 ⇔ v⃗ · e⃗1 + λ∥e⃗1∥2 = 0 ⇔ λ = −v⃗ · e⃗1.

Posons e⃗′2 = v⃗ − (v⃗ · e⃗1)e⃗1, puis e⃗2 =
e⃗′2

∥e⃗′2∥
.

Les vecteurs e⃗1 et e⃗2 sont bien orthonormés, a fortiori, ils ne sont pas colinéaires.
Montrons que (e⃗1, e⃗2) est bien une base du plan (P ). Soit A un point du plan (P ).

Considérons le plan (P ′) passant par le point A et de base (e⃗1, e⃗2).

Soit M un point de l’espace de coordonnées (x, y, z). On a les équivalences suivantes :

M ∈ (P ′) ⇔ ∃(α, β) ∈ R2,
−−→
AM = αe⃗1 + βe⃗2 ⇔ ∃(λ, µ) ∈ R2,

−−→
AM = λu⃗+ µv⃗

puisque e⃗1 et e⃗2 sont des combinaisons linéaires de u⃗ et v⃗ et réciproquement.
Ainsi le couple (e⃗1, e⃗2) forme bien une base orthonormée de (P ). ■
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Proposition 23 : Représentation paramétrique d’un plan dans l’espace

Soit A(xA, yA, zA) un point de l’espace R3, soient u⃗ =

a
b
c

 et v⃗ =

a′

b′

c′

 deux vecteurs

non colinéaires de R3.
Soit (P ) le plan passant par A et de base (u⃗, v⃗).
Soit M un point de R3 de coordonnées (x, y, z).
Alors M ∈ (P ) si et seulement si il existe deux réels (λ, µ) ∈ R2 tels que

x = λa+ µa′ + xA
y = λb+ µb′ + yA
z = λc+ µc′ + zA.

Démonstration. On a les équivalences suivantes :

M ∈ (P ) ⇔ ∃(λ, µ) ∈ R2,
−−→
AM = λu⃗+ µv⃗

⇔ ∃(λ, µ) ∈ R2,

x− xA
y − yA
z − zA

 = λ

a
b
c

+ µ

a′

b′

c′


⇔ ∃(λ, µ) ∈ R2,


x = λa+ µa′ + xA
y = λb+ µb′ + yA
z = λc+ µb′ + zA.

■

Exemple 27. Soit A(1, 2, 3). Soient u⃗ =

 2
−1
0

 et v⃗ =

 3
1
−2

 . Soit (P ) le plan passant par A

et de base (u⃗, v⃗).

Alors un point M de l’espace de coordonnées (x, y, z) appartient au plan (P ) si et seulement

si il existe deux réels λ et µ tels que


x = 2λ+ 3µ+ 1
y = −λ+ µ+ 2
z = −2µ+ 3.

Pour λ = 1 et µ = −1, on trouve par exemple que le point M de coordonnées (0, 0, 5)
appartient au plan (P ).

Définition 27 : Vecteur normal à un plan

Soit (P ) un plan de base (u⃗, v⃗). Soit n⃗ un vecteur non nul de l’espace R3.
On dit que n⃗ est un vecteur normal au plan (P ) si n⃗ · u⃗ = n⃗ · v⃗ = 0.

Définition 28 : Plans parallèles

On dit que deux plans de l’espace sont parallèles s’ils admettent des vecteurs normaux
colinéaires.

Proposition 24

Soit (P ) un plan de base (u⃗, v⃗) et de vecteur normal n⃗.
Alors les vecteurs (u⃗, v⃗, n⃗) forment une base de R3.

Démonstration. Soient (α, β, γ) ∈ R3 tels que αu⃗+ βv⃗ + γn⃗ = 0⃗.
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En prenant le produit scalaire avec n⃗, on obtient

0 = 0⃗ · n⃗ = (αu⃗+ βv⃗ + γn⃗) · n⃗ = αu⃗ · n⃗+ βv⃗ · n⃗+ γn⃗ · n⃗ = γ∥n⃗∥2.

Or, ∥n⃗∥2 > 0 car n⃗ ̸= 0⃗ donc nécessairement γ = 0.

Il en résulte que αu⃗+ βv⃗ = 0⃗. Or, les vecteurs u⃗ et v⃗ forment une base de (P ), a fortiori ils
ne sont pas colinéaires donc α = β = 0.

Finalement, α = β = γ = 0, ce qui prouve que les vecteurs (u⃗, v⃗, n⃗) forment une base de
R3. ■

Proposition 25 : Equation cartésienne d’un plan de l’espace

Soit (P ) un plan de l’espace R3 passant par un point A. Soit n⃗ =

a
b
c

 un vecteur normal

au plan (P ).
Alors il existe un réel d tel que pour tout point M de R3 de coordonnées (x, y, z),

M ∈ (P ) ⇔
−−→
AM · n⃗ = 0 ⇔ ax+ by + cz + d = 0.

On dit que l’équation ax+ by + cz + d = 0 est une équation cartésienne du plan (P ).

Démonstration. Soient (u⃗, v⃗) deux vecteurs de R3 qui forment une base du plan (P ).
Puisque n⃗ est un vecteur normal au plan (P ), on a u⃗ · n⃗ = v⃗ · n⃗ = 0.

• Montrons l’équivalence M ∈ (P ) ⇔
−−→
AM · n⃗ = 0.

Supposons que M ∈ (P ).

Par définition, il existe des réels (λ, µ) ∈ R2 tels que −−→
AM = λu⃗+ µv⃗.

Ainsi,
−−→
AM · n⃗ = λu⃗ · n⃗+ µv⃗ · n⃗ = 0.

Réciproquement, supposons que −−→
AM · n⃗ = 0. D’après la proposition précédente, les vecteurs

(u⃗, v⃗, n⃗) forment une base de l’espace donc il existe trois réels (α, β, γ) ∈ R3 tels que

−−→
AM = αu⃗+ βv⃗ + γn⃗.

Ainsi,
−−→
AM · n⃗ = 0 ⇒ αu⃗ · n⃗+ βv⃗ · n⃗+ γ∥n⃗∥2 = γ∥n⃗∥2 = 0

donc γ = 0 puisque ∥n⃗∥2 > 0 (car n⃗ ̸= 0⃗).
Ainsi −−→AM = αu⃗+ βv⃗ ∈ (P ).

• Montrons maintenant que −−→
AM · n⃗ = 0 ⇔ ∃d ∈ R, ax+ by + cz + d = 0.

On a les équivalences :
−−→
AM · n⃗ = 0 ⇔ a(x− xA) + b(y − yA) + c(z − zA) = 0

⇔ ax+ by + cz + d = 0

en posant d = −axA − byA − czA.

■

Exemple 28. Soit (P ) un plan de R3 admettant pour vecteur normal n⃗ =

 2
0
−1

 et passant

par le point A de coordonnées (1, 2,−5).
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Le plan (P ) admet une équation cartésienne de la forme

2x− z + d = 0.

Puisque les coordonnées de A doivent vérifier cette équation, on obtient 2 + 5 + d = 0 d’où
d = −7.

Finalement, une équation cartésienne du plan (P ) est 2x− z − 7 = 0.

Définition 29 : Droites de l’espace

Soit A un point de R3, soit u⃗ un vecteur non nul de R3.
La droite de vecteur directeur u⃗ et passant par A est l’ensemble des points M tels que
les vecteurs −−→

AM et u⃗ sont colinéaires.

Proposition 26 : Représentation paramétrique d’une droite dans l’espace

Soit A(xA, yA, zA) un point de l’espace R3, soit u⃗ =

a
b
c

 un vecteur non nul de R3.

Soit (D) la droite passant par A de vecteur directeur u⃗.
Soit M un point de R3 de coordonnées (x, y, z).

Alors M ∈ (D) si et seulement si il existe un réel λ tel que


x = λa+ xA
y = λb+ yA
z = λc+ zA

Démonstration. On a les équivalences suivantes :

M ∈ (D) ⇔
−−→
AM et u⃗ sont colinéaires ⇔ ∃λ ∈ R,

−−→
AM = λu⃗ ⇔

x− xA
y − yA
z − zA

 =

λa
λb
λc

⇔


x = λa+ xA
y = λb+ yA
z = λc+ zA

■

Remarque 31. Soit (D) une droite de l’espace de vecteur directeur n⃗ =

a
b
c

 et passant par

le point A de coordonnées (xA, yA, zA).

Soit (P ) le plan de R3 d’équation cartésienne ax+ by+ cz = 0. On sait que le vecteur n⃗ est
un vecteur normal au plan (P ).

Soient (u⃗, v⃗) une base orthonormée du plan (P ). On a montré que les vecteurs (u⃗, v⃗, n⃗)
formaient une base de R3.

Soit M un point de l’espace de coordonnées (x, y, z).

On a l’équivalence M ∈ (D) ⇔

{ −−→
AM · u⃗ = 0
−−→
AM · v⃗ = 0.

• En effet, si M ∈ (D), alors −−→
AM est colinéaire à n⃗, donc il existe λ ∈ R tel que −−→

AM = λn⃗.

Ainsi −−→AM · u⃗ = λn⃗ · u⃗ = 0 et −−→
AM · v⃗ = λn⃗ · v⃗ = 0.

• Réciproquement, supposons que −−→
AM · u⃗ =

−−→
AM · v⃗ = 0.

Puisque les vecteurs (u⃗, v⃗, n⃗) forment une base de R3, il existe des réels uniques (α, β, γ) ∈ R3

tels que −−→
AM = αu⃗+ βv⃗ + γn⃗.

Puisque −−→
AM · u⃗ = 0, on a α∥u⃗∥2 + βu⃗ · v⃗ = α = 0. De même, puisque −−→

AM · v⃗ = 0, on a
β∥v⃗∥2 + αu⃗ · v⃗ = β = 0.

Donc −−→
AM = γn⃗, i.e. −−→AM et n⃗ sont colinéaires, ce qui implique que M ∈ (D).
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Si on note les vecteurs u⃗ =

a′

b′

c′

 et u⃗ =

a′′

b′′

c′′

 , on a montré l’équivalence suivante :

M(x, y, z) ∈ (D) ⇔
{

a′(x− xA) + b′(y − yA) + c′(z − zA) = 0
a′′(x− xA) + b′′(y − yA) + c′′(z − zA) = 0.

En posant d′ = −a′xA − b′yA − c′zA et d′′ = −a′′xA − b′′yA − c′′zA, on a obtenu le résultat
suivant.

Proposition 27 : Système d’équations cartésiennes d’une droite de l’espace

Soit (D) une droite de l’espace. Soit M(x, y, z) un point de l’espace.
Alors il existe des réels (a, b, c, d, a′, b′, c′, d′) ∈ R8 tels que

M ∈ (D) ⇔
{

ax+ by + cz + d = 0
a′x+ b′y + c′z + d′ = 0,

où les vecteurs u⃗ =

a
b
c

 et v⃗ =

a′

b′

c′

 ne sont pas colinéaires.

Exemple 29. Considérons la droite (D) de l’espace dont un système d’équations cartésiennes
est {

2x− z = 1
x− y = −1,

⇔
{

z = 2x− 1
y = x+ 1,

Ainsi, un point de coordonnées (x, y, z) appartient à la droite (D) si et seulement si ses coor-
données sont de la forme

(x, y, z) = (x, x+ 1, 2x− 1) = x(1, 1, 2) + (0, 1,−1),

où x est un réel quelconque.
Ceci signifie que la droite (D) est la droite passant par le point (0, 1,−1) et de vecteur

directeur u⃗ =

1
1
2

 puisqu’elle admet une représentation paramétrique de la forme


x = λ
y = λ+ 1
z = 2λ− 1,

λ ∈ R.

Remarque 32. Concrètement, une droite de l’espace est obtenue comme intersection de deux
plans non parallèles.

Enfin donnons la définition suivante :

Définition 30 : Droite parallèle à un plan

Soit (D) une droite de l’espace et (P ) un plan de l’espace.
On dit que (D) est parallèle à (P ) si un vecteur directeur de (D) est orthogonal à un
vecteur normal au plan (P ).

Exemple 30. La droite de vecteur directeur u⃗ =

 1
−1
2

 et passant par le point (1, 1, 1) est

parallèle au plan (P ) d’équation x+ y = 1 (mais n’est pas contenue dans le plan (P )).
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15.2.5 Projection orthogonale sur un plan

Définition 31 : Projection orthogonale sur un plan

Soit (P ) un plan de l’espace muni d’une base orthonormée (u⃗, v⃗).
Soit M un point de l’espace.
Alors il existe un unique point H appartenant au plan (P ) tel que le vecteur −−→

HM soit
orthogonal aux vecteurs u⃗ et v⃗.
Le point H est appelé le projeté orthogonal du point M sur le plan (P ).

Démonstration. Soit A un point du plan (P ).
Montrons que le point H tel que −−→

AH = (
−−→
AM · u⃗)u⃗+ (

−−→
AM · v⃗)v⃗ convient.

Tout d’abord, le point H ainsi défini appartient clairement à (P ) puisque le vecteur −−→
AH

s’exprime comme combinaison linéaire de u⃗ et v⃗.
Ensuite, on a

−−→
HM · u⃗ = (

−−→
AM −

−−→
AH) · u⃗ =

−−→
AM · u⃗−

−−→
AH · u⃗ =

−−→
AM · u⃗−

−−→
AM · u⃗ = 0.

De même,
−−→
HM · v⃗ = (

−−→
AM −

−−→
AH) · v⃗ =

−−→
AM · v⃗ −

−−→
AH · v⃗ =

−−→
AM · v⃗ −

−−→
AM · v⃗ = 0.

Ainsi, le point H convient. Montrons que c’est l’unique point qui convient.
Soit H ′ un autre point du plan (P ) tel que le vecteur

−−−→
H ′M soit orthogonal aux vecteurs u⃗

et v⃗.
Soient (λ, µ) ∈ R2 les coordonnées du point H ′ dans le repère (A, u⃗, v⃗), i.e.

−−→
AH ′ = λu⃗+ µv⃗.

On a alors l’équivalence :
−−−→
H ′M · u⃗ = 0 ⇔ (

−−→
AM −

−−→
AH ′) · u⃗ = 0 ⇔

−−→
AM · u⃗−

−−→
AH ′ · u⃗ = 0 ⇔

−−→
AM · u⃗− λ = 0,

d’où λ =
−−→
AM · u⃗.

En utilisant le fait que
−−−→
H ′M · v⃗ = 0, on montre de même que µ =

−−→
AM · v⃗.

Ainsi,
−−→
AH ′ = (

−−→
AM · u⃗)u⃗+ (

−−→
AM · v⃗)v⃗ =

−−→
AH, ce qui implique que H = H ′ d’où l’unicité de

H. ■

Définition 32 : Distance d’un point à un plan de l’espace

Soit (P ) un plan de l’espace. Soit M un point de R3 et H le projeté orthogonal du point
M sur le plan (P ).
On appelle distance du point M au plan (P ) la longueur HM.
On note d(M, (P )) = HM.

(P )

H

P

d(M, (P ))
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