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16.1 Généralités

16.1.1 Définition et premieres propriétés

Définition 1: Suites majorées, minorées, bornées

Soit ng € N. Soit (up)n>n, une suite réelle.

1. On dit que la suite (uy)n>pn, est majorée s’il existe un réel M tel que pour tout
n > ng,up < M.

2. On dit que la suite (up)n>n, est minorée s’il existe un réel m tel que pour tout
n > ng, Uy > M.

3. On dit que la suite (up)n>n, €st bornée si elle est a la fois majorée et minorée.

Exemple 1. e La suite (uy)nen définie pour tout n € N par w, = n est minorée par 0 mais
n’est pas majorée.

e La suite (up)nen définie pour tout n € N par u, = —n est majorée par 0 mais n’est pas
minorée.
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e La suite (uy,)pen+ définie pour tout n € N* par u,, = est bornée puisque majorée

par 1 et minorée par —1.
e La suite (u,)nen définie pour tout n € N par u,, = (—1)"n n’est ni majorée ni minorée.

Remarque 1. Il est équivalent de dire que la suite (uy,)p>n, €st majorée (resp. minorée, bornée)
et que l’ensemble {u,,n > ng} est majoré (resp. minoré, borné).

Proposition 1

Soit ng € N. Soit (un)n>n, une suite réelle.
La suite (un)n>n, est bornée si et seulement si il existe un réel positif r tel que pour tout
n > ng, |u,| < 7.

Démonstration. La suite (u,)n>n, est bornée si et seulement si 'ensemble {u,,n > ng}
est borné.

D’apres un résultat du chapitre <« Nombres réels >, ceci équivaut au fait qu’il existe r > 0
tel que pour tout n > ng, |u,| < 7. [ |

Définition 2: Suites monotones

Soit ng € N. Soit (up)n>n, une suite réelle.

1. On dit que la suite (uy)n>n, est croissante (resp. strictement croissante) si pour
tout n > ng, Upt1 > Uy (TESP. Upp1 > Up).

2. On dit que la suite (uy)n>n, est décroissante (resp. strictement décroissante) si pour
tout n > ng, Upt+1 < Uy, (TESP. Upt1 < Up).

3. On dit que la suite (up)n>n, €st monotone si elle est croissante ou décroissante.
4. On dit que la suite (up)n>n, €St constante si pour tout n > ng, Up+1 = Up.

5. On dit que la suite (u,),en est stationnaire si elle est constante a partir d’un certain
rang ng.

Remarque 2. ¢ On montre par une récurrence immédiate que si la suite (uy)n>n, €st croissante
(resp. décroissante, resp. constante), alors pour tout n > ng, u, > U (resp. u, < U, TESP.
Uy, = Upy)-

e Il est possible que ces propriétés ne soient vérifiées qu’a partir d’un certain rang ny > ng
et on dit alors que la suite (uy)n>n, est croissante (ou décroissante, ou constante) a partir du
rang ni.

Proposition 2

Soit ng € N. Soit (up)n>n, une suite réelle.

1. La suite (upn)n>n, €st croissante (resp. strictement croissante) si et seulement si
pour tout n > ng, Up4+1 — Uy, > 0 (resp. up41 — uy > 0).

2. La suite (up)n>n, est décroissante (resp. strictement décroissante) si et seulement
si pour tout n > ng, Up+1 — Uy < 0 (resp. upt1 — up < 0).

3. La suite (uy,)n>n, est constante si et seulement si pour tout n > ng, up+1 — upy = 0.

Démonstration. Immédiate d’apres la définition. |

Exemple 2. e La suite (u,)pen définie pour tout n € N par u, = 3n — 2 est strictement
croissante car pour tout n € N, on a

Upyl —Up =3(n+1)—2—-Bn—-2)=3n+1-3n+2=3>0.
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e La suite (uy)nen définie pour tout n € N par u, = —2n + 1 est strictement décroissante
car pour tout n € N, on a

Upgl —Up = —2n+1)+1—-(-2n+1)=-2n—-14+2n—-1=-2<0.

e La suite (u,)nen définie pour tout n € N par w,, = 7 est constante.

16.1.2 Convergence

Dorénavant, on notera toujours une suite sous la forme (up)nen. Si une suite (up)p>n, n’est
définie qu’a partir de 'entier ng, il suffit de poser une nouvelle suite (v, ),en définie pour tout
n € N par v, = Uptn,-

Définition 3

Soit (up)nen une suite réelle.

1. Soit [ € R.
On dit que la suite (up)nen converge (ou tend) vers [ si

Ve > 0,3ng € N,Vn > ng, |u, — 1] <e.

On écrit alors lim u, =1 (ouu, — 1) etlestappelé lalimite la suite (u,)nen.
n—+oo n—+oo

Dans le cas ou [ = 0, deux cas particuliers sont importants :

(a) On dit que la suite (up)nen converge vers 01 si pour tout e > 0, il existe
ng € N tel que pour tout n > ng,0 < u, < €.

On note alors lim w, = 0% (ouwu, — 0%).
n—-+o0o n—-+o0o

(b) On dit que la suite (up)nen converge vers 0~ si pour tout € > 0, il existe
ng € N tel que pour tout n > ng, —e < u, < 0.

On note alors lim wu, =0~ (ouu, — 07).
n—-+o0o n—-+o0o

Une suite qui converge est dite convergente ; une suite qui ne converge pas est dite

divergente.
2. On dit que la suite (up)nen tend vers 400 et on note lim w, = +oo (ou u,, —
n—+00 n—-+4o0o
+00) si
VA > 0,3dng € N,Vn > ng,u, > A.
3. On dit que la suite (uy,)nen tend vers —oco et on note lim wu, = —oo (ou u,, —>
n——+o0o n—+oo
—00) si

VA < 0,3dng € N,Vn > ng,u, < A.

.

Remarque 3. e Fn particulier, une suite qui tend vers 400 ou —oco n’est pas bornée.

e La convergence d’une suite ne dépend pas de ses premiers termes. En effet, il suffit qu’une
certaine inégalité ait lieu a partir d’un certain rang pour établir qu'une suite est convergente.

e Supposons que la suite (up)nen converge vers [. Soit € > 0. Par définition, on sait qu’a
partir d’un certain rang, tous les termes de la suite seront dans l'intervalle [l — e, + €].

e Pour montrer la convergence d’une suite vers sa limite [, il suffit de prouver que pour tout
e > 0, il existe ng € N tel que pour tout n > ng, |u, — | < ae ot «a est un réel strictement
positif qui ne dépend pas de €. En effet, si € parcourt R* , ae fait de méme.

e Par définition, on a I’équivalence

lim u,=10< lim |u,—1I]=0.
n—-+o0o n—-+o0o
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e Si lim w, =0, on n’a pas forcément lim wu, =0 ou lim wu,=0".

n——+0o00 n—-+00 n—-+o0o
. -1)" . .
En effet, soit u, = (=1) pour tout n € N*. On a lim wu, = 0 mais pour tout n €
n n—-+oo

N* usp, > 0 et ugp41 < 0. On ne peut donc pas avoir lim w, = 0" ni lim w,=0".
n—-+o0o n—+o0o

Proposition 3: Unicité de la limite

Soit (uy)nen une suite réelle. Soient [ et I deux réels.
Si (un)nen converge vers [ et vers I, alors [ =1’

Démonstration. Soit € > 0.
Par définition, puisque (u,)nen converge vers [, il existe ng € N tel que pour tout n > ny,
on a -
lup, — 1| < 3

De méme, puisque (u,)nen converge vers I, il existe n; € N tel que pour tout n > ny, on a

|, — l/‘ <

| ™

Soit N = max{ng,n1}. Alors on a

‘l—l/’ ]l—uN+uN—l’|

< |l —un|+ |luy =]
< £,°€
- 2 2
< e
Ainsi, pour tout € > 0, [l = I'| <e,dou [l =I'| =0, i.e. [ =1, [ |

1
Exemple 3. e La suite (uy)nen+ définie pour tout n € N* par w,, = — tend vers 0.
n
En effet, soit € > 0. On a

1 1
—0’§€®§5®n2
n n

m | =

1 1
Posons ng = {J + 1. Alors pour tout n > ng, on an > — d’ou |u, — 0| <e.
€ €
Ainsi, on a bien montré que pour tout € > 0, il existe ng € N tel que pour tout n >
1

no, |u, —I| < e, ce qui prouve que lim — = 0.
n—-+oo n
e La suite (v, )nen définie pour tout n € N par v, = \/n tend vers +o0.
En effet, soit A >0.Onawv, > A& /n>Aen> A%
On pose ng = |A%] + 1. Alors pour tout n > ng, on a n > A% d’out v,, > A. Ainsi, on a bien
montré que pour tout A > 0, il existe ng € N tel que pour tout n > ng, v, > A, ce qui prouve

que lim v, = 4o0.
n—-+oo

e Toute suite constante est convergente. En effet, soit a € R. Soit (u,)nen la suite constante
égale a a.
Alors pour tout n € N, |u, —a] =0 < e pour tout € > 0.

Proposition 4

Soit (un)nen une suite réelle convergeant vers une limite [ € R.
Alors la suite (uy)nen est bornée.
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Démonstration.
Soit € > 0.
Par définition, puisque (u,)nen converge vers [, il existe ng € N tel que pour tout n > ny,
on a
lup, — 1] <e.

Ainsi, pour tout n > ng, on a
fn] < [t — 1] + 1] < 2 + ]

Soit r = max {|ug|, |u1l, -, |uny—1|,€ + |I|}. Alors on a pour tout n € N, |u,| < r, donc la suite
(un)nen est bornée. [ ]

Proposition 5

Soit (uy)nen une suite réelle.

1. La suite (uy,)pen converge vers un réel [ si et seulement si les deux suites (w2, )nen
et (u2n+1)nen convergent également vers le méme réel [.

2. Lasuite (uy )nen tend vers +oo (resp. —o0) si et seulement si les deux suites (ugp, )nen
et (u2n+1)nen tendent également vers +oo (resp. —00).

Démonstration.

1. e Supposons que lim wu, =1¢€ R.
n—-+00

Par définition de la convergence, on a
Ve > 0,3ng € N,Vn > ng, |u, — 1] <e.

Montrons que les suites (u2, )nen €t (U2n+1)nen convergent vers [.
Soit € > 0. Alors pour tout n > ng, on a 2n > ngy et 2n + 1 > ng d’ou

luon — | <e et |uopt1 — 1| <e.
Ceci assure que lim wg, = lim wopy1 = 1.
n—-+o0o n—-+o0o
e Supposons que lim wug, = lim w41 =1 € R.
n—-+oo n—-+oo
Soit € > 0. Par définition, il existe deux entiers ng et ny tels que

Yn > ng, lugn, — 1| <e et VYn>ng,|ugpe — I <e.

Soit N = max(ng,n1). Alors pour tout n > N, on a n > ng et n > ny donc pour tout
n > N,on a
|ugp, — I <e et |ugpyr —1] <e,

i.e.
Vn > 2N, |u, — | <e,
dou lim u,=10€R.
n—-4o0

2. e Supposons que lim wu, = 4o00. Par définition, on a
n—-+o0o
VA > 0,dng € N,Vn > ng, u, > A.

Montrons que les suites (w2 )nen et (u2n+1)nen tendent vers +oo.
Soit A > 0. Alors pour tout n > ng, on a 2n > ng et 2n + 1 > ng d’ou

Ugp > A et uguyr > A
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Ceci assure que lim wg, = lim wgpq1 = +00.
n——+oo n—+oo
e Supposons que lim wug, = lim wugpy1 = +00.
n—+oo n—+o0o
Soit A > 0. Par définition, il existe deux entiers ng et ny tels que

Vn > ng,uz, > A et Vn > nj,ugug1 > A

Soit N = max(ng,n1). Alors pour tout n > N, on a n > ng et n > nj donc pour tout
n>N,ona
U > A et ugpy1 > A,
i.e.
Vn > 2N, u, > A,

d’ou lim wu, = +oo.

n—-+00
Le cas ou lim wu, = —oo se montre de la méme maniere en inversant les inégalités.
n—+00
|
Exemple 4. La suite (u,)nen définie pour tout n € N par u, = (—1)" n’est pas convergente
puisque pour tout n € Ny on a ug, =1 et ugp41 = —1 donc lim wug, =1et lim wopy = —1.
n——+o0o n—-+00

Ainsi, les deux suites (u2p)nen €t (U2p41)nen sont convergentes de limite différente, ce qui
implique que la suite (u,)nen ne peut pas étre convergente.

En revanche, la suite (uy)nen est bornée puisque pour tout n € N, on a |u,| = 1. Ainsi, une
suite bornée n’est pas nécessairement convergente.

Proposition 6

Soient (un)nen €t (vn)nen deux suites réelles convergeant vers [ € R et I’ € R respective-
ment.

1. Pour tout (A, u) € R?, la suite (Auy, + pvp )nen converge vers Al + ul’.
2. La suite (unvy,)nen converge vers 1.

3. Si la suite (vy,)nen est non nulle & partir d’un certain rang ng et si I’ # 0, alors la

. 1 1 Up,
suite < converge vers — et | — converge vers .
Un / p>ng ! Un /) p>ng l

4. La suite (Jup|)nen converge vers |I| (la réciproque est fausse).

Démonstration.

1.

Soit (A, u) € R2
Soit € > 0.
Par définition, puisque (uy)nen converge vers [, il existe ng € N tel que pour tout n > ny,
on a
lup, — 1] <e.

De méme, puisque (vy,)nen converge vers [, il existe n; € N tel que pour tout n > ny, on
a
|, — '] <e.

Soit N = max{ng,ni}. Alors, pour tout n > N, on a

< Aun = DI+ |p(ve = 1)
< Mun =1 + |pllon =T
< (Al [ul)e,

| Mun + pvp — (AL + pl')]

donc lim Auy, + pv, = A+ pl'.
n—-+o0o
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2. Soit € > 0. Par définition, puisque (u,)nen converge vers [, il existe ng € N tel que pour
tout n > ng, on a

lup, — 1] < e.

De méme, puisque (v,)nen converge vers I’ il existe ny € N tel que pour tout n > nq, on
a

|, —U'| <e.

Enfin, puisque la suite (u,)nen est convergente, alors elle est bornée. Il existe donc un réel
positif r tel que pour tout n € N, |u,| < 7.

Soit N = max(ng,n1). On a alors pour tout n > N,

[upvn — U = Jup(vy =) + 1 (up —1)|
|un|[vn = U]+ [V'l]un =]

<
< (r+ e,

ce qui prouve que lim wu,v, = Il
n——+o0o

3. Supposons qu'il existe ng € N tel que pour tout n > ng, v, # 0. Supposons également que
' #0.
1

) 1
Montrons que la suite ( converge vers .
VUn /> l

Puisque lim wv, =, il existe n; € N tel que pour tout n > nq,
n—-+o0o

i <m
|vn, |_27é0-

En particulier, pour tout n > nq,

17

[l = Jvp = U+ V| 2> Jfon = V| = U] = I'| = Jon, = U] > |I'| - 5 =5
N 2
d’ou pour tout n > ny, — < e
lon| = ||

Soit € > 0.

Puisque liglrl vy, = I, il existe na € N tel que pour tout n > na, v, —I'| < e.
n—-+00

Soit N = max(ng,n1,n2). Alors pour tout n > N, on a

1 1 U — vy,
v, U vy,
e 2
g -
L
2
R
. ) 1
ce qui assure que lim — = —.
n—too v, I
D’apres I’alinéa précédent, on en déduit que
. Up . . !
lim — = lim u,x lim — = -—.
n—+00 Up n——+00 n—+00 Up, U
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4. Soit € > 0.

Par définition, puisque (uy,)nen converge vers [, il existe ng € N tel que pour tout n > ny,
on a
|up, — 1] <e.

Ainsi, pour tout n > ng, on a
[unl = U] < un = 1] <,

donc lim |u,|=[I|.
n—+oo
[ |

Remarque 4. e La réciproque du deuxieme alinéa est faux comme le montre ’exemple de la
suite définie par u, = (—1)". En effet, cette suite n’admet pas de limite puisque pour tout
n €N, on a ug, =1 et ugp41 = —1.

En revanche, la suite (Ju,|)nen est la suite constante égale a 1, donc elle converge vers 1.

e Si une suite (uy,)nen converge vers [ € R, alors la suite (—uy)nen converge vers —I € R.

e Dans le cas particulier ot on prend la suite (vy)nen constante égale & a € R, on trouve

que si lim u, =10 € R, alors lim uy,+v,=10l4+aet lim uyv,=1Xa.
n—-4o0o n—-+4oo n—-4oo

Proposition 7

Soit (un)nen une suite réelle telle que lim w, = +oc.
n—-+o0o

1. Pour tout A € R, lim Au, = 400 et pour tout A € R*, lim Au, = —oo.
n—+o0 n—+00

. 1
2. Ona lim — =0".
n—+00 Uy,
3. Si (vn)nen est une suite minorée (en particulier si (vy,)nen est une suite convergente

ou si (vp)nen tend vers +00), alors lim w, + v, = +oc.
n—-+0oo

4. Soit (v )nen une suite convergente de limite [ € R.
e Sil >0, alors lim wu,v, = -+o00.
n—-+4o0o
e Sil<0,alors lim wu,v, =—00.
n—-+o0o
5. Si (vn)nen est une suite telle que lim v, = 400 (resp. —o0), alors lim w,v, =
n—+o0o n—-4o0
+00 (resp. —o0).

\.

Remarque 5. En effet, si une suite (v, )nen tend vers +oo, elle est minorée car par définition,
il existe ng € N tel que pour tout n > ng, v, > 1 donc pour tout n € N,

vy, > min{vg, v1, ..., Ung—1, 1}

Démonstration.
1. e Soit A € RY.
Soit A > 0. Puisque (uy,)nen tend vers 400, il existe ng € N tel que pour tout n > ng, u, >

A
e
Ainsi, pour tout n > ng, Au, > A, ce qui implique que liIf Ay, = +oo.
n—-+0oo
e Soit A € R*.
Alors —\ € R% donc d’apres ce qui précede, on a lim —Au, = +o0o0 d’olt
n——+00
lim Au, = —occ.

n—-+o0o
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2. Soit € > 0.
1
Puisque lim w, = 400, il existe ng € N tel que pour tout n > ng,u, > — > 0 d’ou
€

n—-+00

1
Vn > ng,0 < — < e,

u’l’b
ce qui implique que nli}rfoo w =0".
3. Soit (vp)nen une suite minorée telle que pour tout n € N, v, > m, ou m € R
Soit A > 0.
Puisque lim wu,, = +o0, il existe ng € N tel que pour tout n > ng, u, > A —m.

n—-+4oo
Ainsi, pour tout n > ng, on a

Up +Up > A—m+m=A,

ce qui implique que lim wu, + v, = +o0.
n—-+o0o

4. e Supposons que lirf vp, = | > 0. Par définition, il existe ng € N tel que pour tout
n—-+0o0

{ l
n > ng, v, =1 < 3 donc pour tout n > ng, v, > 3 > 0.

Soit A > 0. Puisque lim wu, = 400, il existe n1 € N tel que pour tout n > ny,u, >

n—-+40o
2A
T > 0.
. 241 L
Soit N = max(ng,n1). Alors pour tout n > N, on a u,v, > —— = Ad’ou lim wuyv, =
l 2 n——+oo
+00.
e Supposons que lim v, =1 <0.
n—-+0o

Alors lim —wv, = —I[ > 0 donc d’aprés ce qui précede,

n—-+oo

lim wu,(—v,) = lim —uyv, =400
n—-+4o0o n—-+00o

dou lim wupv, = —o00.

n—-+00

5. @ Soit (vp)nen une suite telle que lim v, = +00 (resp. —o0).
n—+o0o

Soit A > 0. Puisque (up)nen et (vn)nen tendent vers +oo, il existe deux entiers ng et ny
tels que

Vnan,unZ\/Z>O et Vnznl,an\/Z>0

d’out pour tout n > max(ng,n1), u,v, > A, ce qui implique que lirf Up Uy = +00.
n—-+0oo

e Si la suite (vp)nen tend vers —oo, alors la suite (—vy,)nen tend vers +oo, et d’apres ce
qui précede, on a

lim up(—v,) = lim —uyv, = +o0
n—4o0o n—4o0o
d’ou lim wu,v, = —oo.
n—-+oo

On a des résultats analogues pour une suite tendant vers —oo :
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Proposition 8

Soit (up)nen une suite réelle telle que lim w, = —oco.
n—-+oo

1. Pour tout A € R%, lim Aw, = —oo et pour tout A € R*, lim Au, = +oo.
n—-+oo n——+00

. 1 _
2.0na lim —=0".
n—+00 Uy,
3. Si (vn)nen est une suite majorée (en particulier si (vy,)nen est une suite convergente

ou si (vp)nen tend vers —oo), alors lim w, + v, = —oc.
n—-+o0o

4. Soit (vp)nen une suite convergente de limite [ € R.

e Sil >0, alors lim wu,v, = —00.
n——+0o0o

e Sil <0, alors lim wu,v, = +o00.
n—-+00

5. Si (vn)nen est une suite telle que lim v, = 400 (resp. —o0), alors lim wu,v, =
n—-+00 n—-+oo

—00 (resp. +00).

Remarque 6. En effet, si une suite (v, )nen tend vers —oo, elle est majorée car par définition,
il existe ng € N tel que pour tout n > ng, u, < —1 donc pour tout n € N,

up, < max{ug, u1, ..., Ung—1,—1}.

Démonstration. Il suffit d’appliquer les résultats de la proposition précédente a la suite
(—un)nen qui tend vers 400 et prendre 'opposé des résultats obtenus. |

Proposition 9

Soit (uyn)nen une suite réelle telle que lim w, = 0.
n—-+o0o
1
1. (a) Si lim w,=0" alors lim — = +o0.
n—-+o00o n—+00 Uy
(b) Si lim wu, =07, alors lim — = —o0.
n—+4o0o n—+00 Uy
2. Soit (vp,)nen une suite bornée.
Alors lim wupv, = 0.
n—-+00
Démonstration.
1. (a) Supposons que lim wu, = 0" et montrons que lim — = 4o0.
n—+400 n—>+00 Uy
Soit A > 0.
1
Puisque lim wu, = 0T, il existe ng € N tel que pour tout n > ng,0 < u, < — d’oit
n—-+oo A
1
vn > no, — > A7
n
ce qui implique que lim — = 4o0.
n—+00 Uy,
(b) Supposons que lim wu, = 07, de telle sorte que lim —u, =0V,
n—-+00 n——+o0o
D’apres ce qui précede, on en déduit que lim —— = +oo d’ou
n—+o00 Uy
i 1
lim — = —oc0.
n—+00 Uy
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2. Soit (vn)nen une suite bornée, i.e. il existe r € R% tel que pour tout n € N, |v,| < 7.

Soit € > 0.

Puisque lim wu, =0, il existe ng € N tel que pour tout n > ng, |uy,| <
n

—>+400

Ainsi, pour tout n > ng,

[tnvn| < rlu,| < r% =g,

ce qui prouve que lim wu,v, = 0.
n—-+o0o

Exemple 5. Soit (up)nen+ la suite définie pour tout n € N* par u,, =

9
.

cos(n)
-

La suite (cos(n))nen+ est bornée et la suite (1),en+ tend vers 0 donc la suite (uy,)pen+ tend

vers 0.

Remarque 7. On retient les regles suivantes quant aux opérations sur les limites : Soient
(Un)nen et (Un)nen deux suites.
Soient [ et I’ deux réels.

ll}I_’I_l Uy + Up, EEI_] Up =1 ET Uy = +00 ll)I_il_l Uy = — OO
n o0 n oo n o0 n oo
lim v, =10 147 400 —00
n—+oo
liril Uy = +00 +00 +00 forme indéterminée
n——+oo
lirf Uy = —00 —00 forme indéterminée —00
n—4o0
lirf UnUn lirf Up =1>0 lir+n Up =0 lir+n u, =1<0
n——+0oo n——+0oo n—-+00 n—-+00
lirf v, =1>0 i 0 w
n—-+0oo
lim v, =0 0 0 0
n—~+00
liI_E v, =1'<0 u 0 w
n—-+0o0o
lirf Vp = +00 400 forme indéterminée —00
n—-+00o
lirf Vp = —00 —00 forme indéterminée 400
n——+00
lim  upv, lim w, = +00 lim wu, = —oc0
n—-4o0o n—4o00 n—400
lim v,=0>0 +00 —00
n—-4o0o
lirf v, =0 forme indéterminée | forme indéterminée
n——+0oo
lim v,=10<0 —00 +00
n——+o0o
lim v, = +o00 400 —00
n——+o00
lim v, = —00 —00 400
n——+00
. ] 1 I
lim u,=1#0 lim — = -
n—-+40o n—+00 Uy
lim w, =0" lim — =4
n—-+00 n—+00 Uy
lim w, =0 lim — = -0
n—-+00 n—+00 Uy,
lim wu, =+o00 lim — =0t
n—-+40o n—+00 Uy
lim w, = —00 lim — =0
n—-+o0o n—+o0 Uy
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On a plusieurs formes indéterminées :

1. Si lim w, =-+4ocet lim v, = —o0, il peut tout se passer pour Lim u, + v, :
n——4o00 n—-4o00 n—-4o0o
e Si u, =n et v, = —n, alors u,, + v, = 0.
e Siu, =netuv,=-n+1,alors u, +v, = 1.
e Siu, =n%etv,=-n,alorsu, +v,=n>-n=n(n—-1 — +oo.
n—-+0o
e Siu, =n et v, =—n2 alors un—i—vn:n—nz:n(l—n) — —00.
n——+oo

2. 51 lim wuw,=0et lim v, =+o00, il peut tout se passer pour lim wu,v, :
n—-+o0o n—-+o0o n—-+0o0o

. 1
e Si u, = — et v, = n, alors u,v, = 1.
n
. 1 1
oSlun:—2 et v, = n, alors u,v, = — — 0.
n

n n—+oo

. 1
e Siu, =— et v, =n? alors upv, =n — —o0.
n n—-+00

Exemple 6. Pour lever une forme indéterminée de la forme +o0o — oo lorsqu’on est en présence
de racines, multiplier par la quantité conjuguée permet de lever 'indétermination.
Par exemple, déterminons liIE Vn+1—+/n.
n—-+0oo

On a

- _aVatltya o ontl-n 1
Vn+l—vn=(Vn+1 \F)M+\/ﬁ_m+\/ﬁ_m+\/ﬁ”joo

Enfin, mentionnons les propriétés importantes suivantes :

Proposition 10

0.

Soit p € Z.
Alors
400 sip>0
lim n? = 1 sip=0
e 0 sip<O.

Démonstration. e Soit p > 0. Montrons que lim n? = 4oo0.

n—-+o0o
1
Soit A > 0. Pour tout n > A»r, on a nP > A.
1

Posons ng = |A? | + 1.
Alors pour tout n > ng,n? > A.
Ceci montre que lim nP = +oo.

n—-+00
e Soit p = 0. Alors pour tout n € N,n? =1 donc lim n? = 1.

n—-+o0o

e Soit p < 0. Montrons que lim n? = 0.

n—-+0o00
Soit € > 0. Puisque —p > 0, on a montré précédemment qu’il existe ng € N tel que pour

tout n > ng,n P > —.
€

Ainsi, pour tout n > ng,0 < nP < ¢, ce qui implique que lim n? = 0. |
n—-+o0o
Remarque 8. Pour déterminer la limite d’expressions polynomiales ou de quotients de po-
lynomes, on factorise par les termes de plus haut degré.

Exemple 7. e Soit (u,)nen la suite définie par u, = n + 3 et (vp)nen la suite définie par
2
Up = —n-.

Ona lim w, =+ococet lim v, = —oco donc a priori, la limite de la suite (u, + vn)nen
n—-+o0o n—-+o0o

est indéterminée.
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2

Mais en factorisant par n°, on trouve :

1 3
lim w,+v,= lim —n’4+n+3= lim n2<—1++ >
n

n—-+00 n—-+o0o n—-+o0o n2

1 3
Or, lim n?=+ocoet lim (—1 + —+ > = —1 donc par produit des limites,
n

n—-+oo n—-+4oo ’n2

1 3
lim n? (—1—|—+2> = —00.
n o n

n—-+4o00o

3n3 +4 o0
e Déterminons lim 7+ A priori, ¢’est une forme indéterminée de la forme to
0 n—+oo 2n3 —n + 5 400
+oo X 0.

Pour cela, on factorise le numérateur et le dénominateur par les termes de plus haut degré :

3nd4+4  nd 3+ % 3+ % 3
= — = — =
203 —n+5 n32- L+ 5 2L 4 5 nsteo?

Enfin, mentionnons un dernier résultat que nous démontrerons dans le chapitre <« Limites
et continuité >.

Soit (un)nen une suite réelle de limite I € R U {—o0, +00}.
Soit f une application telle que liml flx)=1.
T—
Alors
lim  f(u,) =1

n—-+o0o

1
Exemple 8. Ona lim — =0 et lim cos(z) = 1 donc
n—-+o00 1 z—0

. 1
lim cos () =1.
n—-+4oo n

16.1.3 Résultats fondamentaux sur les limites et inégalités

Proposition 11

Soit (un)nen une suite réelle.
On suppose que la suite (u,)nen est convergente de limite [ € R.

1. Sil > 0, alors il existe ng € N, tel que pour tout n > ng, u, > 0.
2. Sil < 0, alors il existe ng € N, tel que pour tout n > ng, u, < 0.
3. Sl existe ng € N tel que pour tout n > ng, u, > 0 (ou u, > 0), alors [ > 0.
4. S'il existe ng € N tel que pour tout n > ng, u, < 0 (ou u, < 0), alors I < 0.

Démonstration.

1. Supposons que [ > 0. Soit € = 3 >
tel que pour tout n > ng, |u, — | < ¢, ie.
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2. Supposons que [ < 0. Alors la suite (—uy,)nen converge vers — > 0 donc d’apres ’alinéa
précédent, il existe ng € N tel que pour tout n > ng, —u, > 0, i.e. pour tout n > ng, u,, < 0.
3. Supposons qu’il existe ng € N tel que pour tout n > ng,u, > 0 (ou u, > 0).
Supposons par l'absurde que [ < 0. Alors d’apres l'alinéa précédent, il existe n; € N tel
que pour tout n > ni,u, < 0, ce qui contredit I’hypothese que pour tout n > ng, u, > 0.
L’hypothese | < 0 est donc absurde, ce qui implique que [ > 0.
4. Supposons qu’il existe ng € N tel que pour tout n > ng, u, < 0 (ou u, <0).
Alors pour tout n > ng, —u, > 0 (ou —u, > 0) donc d’apres I'alinéa précédent, puisque
la suite (—uy)nen converge vers —I, on a —! > 0 donc [ < 0.
[ |

Remarque 9. Il faut noter qu’en passant a la limite, les inégalités strictes deviennent larges.

En effet, pour tout n € N*, ona — > 0 mais lim — =0.
n n—+oo n

Ainsi, si pour tout n > ng, u, > 0 alors lim wu, > 0.
n—-+o0o

Corollaire 1

Soit a € R. Soit (uy)nen une suite réelle convergente de limite [ € R.
1. S’il existe ng € N tel que pour tout n > ng, u, > a (ou u, > a), alors [ > a.

2. S'il existe ng € N tel que pour tout n < ng, u, < a (ou u, < a), alors [ < a.

Démonstration. Il suffit d’appliquer la proposition précédente & la suite (u, — a)pen qui
converge vers [ — a. |

Théoréme 2: Théorémes de comparaison

Soient (un)nen et (vpn)nen deux suites réelles. On suppose qu’il existe ng € N tel que pour
tout n > ng, alors u, < v,.

1. Si lim w, = 400, alors lim v, = +oc.

n—-+o0o n—-+o0o
2. Si lim v, = —o0, alors lim wu, = —oc.
n—+o0o n—-+o0o

3. Si les suites (un)nen €t (vn)nen sont convergentes de limites respectives [ et I, alors
1<,

Démonstration.
1. On suppose que lim wu, = +o0.
n—4o00
Soit A > 0. Il existe donc n; € N tel que pour tout n > nq,u, > A.

Soit N = max(ng,n1). Pour tout n > N, on a alors A < u,, < vy, ce qui implique que

lim v, = +o0.

n—-+o0o
2. On suppose que lim v, = —oo. On a donc pour tout n > ng, —v, < —up et lim —v, =
n——+00 n——+00
+00.
D’apres I’alinéa précédent, on en déduit que lim —u, = +oo, d’ou lim wu, = —oc.
n—-+o0o n—-+oo

3. On suppose que lim u, =1l€Ret lim v, =10 €R.
n—-+o0o n—-+o0o

Ceci implique que lim v, —u, =1’ — L.
n—-+00

Par ailleurs, on a pour tout n > ng, v, — u, > 0. Donc d’apres la proposition précédente,
ceci implique que lim v, —u, >0,ie. ' =1 >0doul <.
n—-+o00
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Exemple 9. On pose pour tout n € N,u,, = (24 (=1)")n.
On a pour tout n € N;2 + (—1)" > 1 donc pour tout n € N, u,, > n donc par comparaison
lim w, = +oo.
n—-+o0o
Remarque 10. Il y a des cas ou ’on ne peut rien conclure :

eSi lim v, =1lou lim v, =400, on ne peut rien conclure de 'inégalité u,, < v,. Il se
n—-+o0o n—-+o0o

peut méme que la suite (uy)neny n’admette pas de limite.
Par exemple, si pour tout n € N, u,, = (—1)" et v, = n+1, alors on a pour tout n € N, u,, <
Uy La suite (v, )nen tend vers 400 mais la suite (uy)nen n'a pas de limite.

e [dem si lim w, = —occ ou lim wu, =1 € R, on ne peut rien conclure quant a la suite
n—-+o0o n—-+o00

(Un)nGN-

Théoréme 3: Théoréme des gendarmes

Soient (un)neN, (Un)nen et (wp)nen trois suites réelles. On suppose qu'il existe ng € N
tel que pour tout n > ng, U, < v, < Wy.

On suppose en outre que les suites (uy)nen €t (wy)nen convergent vers la méme limite
leR.

Alors la suite (v, )nen est convergente et on a  lim v, = [.
n—-+o0o

Démonstration. Soit € > 0. Puisque la suite (uy,)nen converge vers [, il existe ny € N tel
que pour tout n > nq, |u, —1| < €, ce qui implique en particulier que pour tout n > ni,u, > l—e¢.

De méme, puisque la suite (wy)nen converge vers [, il existe ng € N tel que pour tout
n > ng, |w, — | < e, ce qui implique en particulier que pour tout n > ng, w, <[+ ¢.

Posons N = max(ng, ni,ns).

Alors pour tout n > N, on a

l—e<u, <v, <w, <l+e¢

donc pour tout n > N,l —e <wv, <l+¢,ie |v, — ] <e.

On en déduit que la suite (v,)nen est convergente et que liI_il_l vy = L. |
n—-+0o0o

Exemple 10. Soit x € R. On pose pour tout n € N* u,, = M
n

Par définition de la partie entiere, on a pour tout n € N*,
nr—1< |nx] <nx

donc pour tout n € N*,
nr —1 nT
< [na]

<z,
n n

i.e. pour tout n € N*,

rT——<u,<zx
n

1
Puisque lim z—— = lim x = z, d’apres le théoreme des gendarmes, on peut en conclure
n—-+o0o n n—-+o0o

que la suite (u,)pen+ est convergente et que lim w, = x.
n—-+o0o
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16.1.4 Théoreme de la limite monotone

Théoréme 4: Théoréme de la limite monotone

1. Toute suite réelle croissante et majorée converge.

2. Toute suite réelle décroissante et minorée converge.

Démonstration. Soit (uy,)nen une suite réelle.

1. On suppose que la suite (uy)nen est croissante et majorée. Puisqu’elle est majorée, ’en-
semble A = {u,,n € N} est une partie de R non vide et majorée. Elle admet donc une
borne supérieure sup(A).

Montrons que la suite (uy)nen converge vers sup(A).
Soit € > 0.
Par définition de sup(A), il existe ng € N tel que sup(A4) — e < up, < sup(4).

Puisque la suite (un)nen est croissante, alors pour tout n > ng, un > up,. De plus, par
définition de sup(A), pour tout n € N, u,, <sup(A) donc pour tout n > ng, on a

sup(A4) — e < up, < up < sup(A)
i.e. pour tout n > ngy, —e < u, —sup(A) <0 < e d’on
Vn > ng, |u, —sup(A4)| < ¢,

ce qui prouve que la suite (u,)nen converge vers sup(A).

2. On suppose que la suite (up)nen est décroissante et minorée. Il existe donc m € R tel que
pour tout n € N, u,, > m.

Posons pour tout n € N, v, = —u,. Alors pour tout n € N, v, < —m donc la suite (vp,)nen
est majorée.
D’autre part, pour tout n € N,v,11 — vy = —Up+1 + up > 0 puisque la suite (up)nen est
décroissante.

On en déduit que la suite (v,)nen est croissante et majorée. D’apres 1'alinéa précédent,
on en déduit qu’elle est convergente de limite I € R donc la suite (uy)nen converge vers
—l.

Remarque 11. ¢ On a donc prouvé qu’une suite croissante et majorée converge vers son
plus petit majorant. De méme, une suite décroissante et minorée converge vers son plus grand
minorant.

e Réciproquement, soit A une partie de R non vide et majorée. Il existe alors une suite a
valeurs dans A convergeant vers sup(A).

En effet, par caractérisation de la borne supérieure, pour tout n € N* il existe z,, € A tel

1
que sup(A) — — < z, < sup(A), i.e. |z, —sup(A)| < —. D’apres le théoreme des gendarmes, on
n n
en conclut alors que lim =z, = sup(A).
n—-+o00
De méme, si A est une partie de R non vide et minorée, il existe une une suite a valeurs

dans A convergeant vers inf(A).

n

1
Exemple 11. Soit (u,)nen+ la suite définie par u, = i +—
' nn!

k=0

pour tout entier naturel n

non nul.
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La suite (up)nen+ est décroissante puisque pour tout n € N*,

1 1 1 nn+1)+n—(n+1)?2 1
n+1)!+(n+1)(n+1)!_m o+ 1)+ 1)t  nn+1)(n+ 1) =0.

Un41—Un = (

De plus, pour tout n € N* u,, > 0 donc la suite (uy),en+ est décroissante et minorée.
D’apres le théoreme de la limite monotone, on en déduit que la suite (uy,)nen+ est conver-
gente. On montrera plus tard qu’elle converge vers e.

Théoréme 5

1. Toute suite réelle croissante et non majorée tend vers +oco.

2. Toute suite réelle décroissante et non minorée tend vers —oo.

Démonstration. Soit (uy,)n,en une suite réelle.

1. On suppose que la suite (uy,)nen €st croissante et non majorée.

Soit A > 0. Puisque la suite (up)neny n’est pas majorée, A n’est pas un majorant de la
suite (up)nen donc il existe un entier ng € N tel que up, > A.
Puisque la suite (uy)nen est croissante, alors pour tout n > ng,u, > up, > A, ce qui
implique que lim wu, = 4oco0.

n—-+o0o

2. On suppose que la suite (uy,)nen est décroissante et non minorée.

Alors la suite (—uy,)pen est croissante et non majorée donc d’apres I’alinéa précédent, on

a lim —w, =+oco dou lim wu, = —oco.
n—-+oo n—-+4o0o

Remarque 12. En revanche, une suite non majorée (mais pas forcément croissante) ne tend
pas nécessairement vers +0oo.
En effet, considérons pour tout n € N, u,, = (—1)"n.

La suite (up)nen n'est pas majorée (car lirf ug, = +00) mais ne tend pas vers oo car
n—-+0oo

lim U2n+1 = —OQ.
n—-+o0o

16.2 Etude de suites

16.2.1 Limites de suites classiques

Proposition 12: Limite d’une suite arithmétique

Soit (up)nen une suite arithmétique de premier terme ug et de raison r.

Alors
400 sir>0

lim u, = ug sir=0
n—-+o0o .
—o0 sir<Q0.

Démonstration. On sait que pour tout n € N, u,, = ug + nr.

eSir>0,ona lim nr=+oc dou le résultat.
n—-+o00
e Si r =0, alors pour tout n € N, u,, = ug d’ou le résultat.

e Sir<0,ona lim nr=—oc dou le résultat. |
n—-+0o0o
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Proposition 13: Limite d’une suite géométrique

Soit (up)nen une suite géométrique de premier terme wuy # 0 et de raison ¢ € R.

1. Sig > 1, alors

lim wu, =
n—-+4o0o

+oo siug >0
—o0  siwug < 0.

2. Siqg=1, alors
ngr—il-loo e = L
3. Si |q| < 1, alors
lim u, = 0.
n—+o0o

4. Si g < —1, alors la suite (up)neny n’admet pas de limite.

Démonstration. D’apres la proposition précédente, on a pour tout n € N, u,, = ug x ¢". 1l
s’agit donc de déterminer la limite de la suite (¢")nen si celle-ci existe.

1. Supposons que ¢ > 1. Alors lim ¢" = lim "™ = 400 car In(g) > 0 donc
n—+o0o n—-+0o

lim wug x ¢" =
n—-+o00

400 siug >0
—oo siug < 0.
2. Supposons que g = 1. Alors pour tout n € N, u,, = ug donc le résultat en découle.

3. Supposons |¢| < 1,ie. —1 < g < 1.
eSi0<g<1,alors lim ¢"= lim €"™% =0 car In(q) < 0 donc

n—-+oo n—-+oo

lim wg x ¢" = 0.
n—-+o00

e Si g =0, alors pour tout n > 1,u, = 0 donc le résultat en découle.

eSi—-1<g<Oalors0< —¢ < 1donc lim ¢" = lim (—1)"(—¢)" = 0 car la suite
n—>+00 n—+00

((=1)")nen est bornée et la suite ((—q)™)nen tend vers 0.

On a donc bien lim wug x ¢ = 0.
n——+oo

4. Supposons que g < —1.

e Si g = —1, alors pour tout n € N, u,, = (—1)"uy donc pour tout n € N,
Uy = Uy —> Ug et U2pt+1 = —Ug —— —UQ.
n—-+4o0o n—-4o0o

Or, ug # —ug car ug # 0 donc les suites (uay)nen €t (U2n+1)nen sont convergentes de
limites différentes. On en déduit que la suite (u,),en n’admet pas de limite.

e Si g < —1. Alors —¢q > 1 et on a pour tout n € N, u,, = ug x (—=1)"(—¢q)".
Ainsi, pour tout n € N,

+o00 siug >0
am = 10 X (=)™ = 1o x (¢2)" — { 0

o | —00 siug < 0.
car ¢> > 1 et
_— 9 —o0 siug >0
Un4+1 = —Up X (_Q) mt = quo X (q )n n—>—+>oo { 400 siug <0

car g < 0 et ¢ > 1.
Ainsi, on a lim w9, # lim wg,41 donc la suite (uy,)peny n’admet pas de limite.
n—-+4o0o n—-+oo
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16.2.2 Suites arithmético-géométriques

Définition 4: Suites arithmético-géométriques (rappel)

Soit (un)nen une suite réelle.
La suite (uy)nen est dite arithmético-géométrique s’il existe (a,b) € R? tels que

Vn € N, up11 = auy, + 0.

Remarque 13. o Si a = 0, la suite (u,)nen est stationnaire et pour tout n > 1, u, = b.
e Si a =1, la suite (u,)nen est arithmétique de raison b.
e Si b =0, la suite (uy)nen est géométrique de raison a.
e Supposons que a # 1. Si la suite (u,)pen converge vers [ € R, alors on a également

liar_l Up+1 = [ donc en passant a la limite dans la relation uy,41 = auy, +0, on obtient I = al+b
n—-+00

b
d'oul = T—a Ceci légitime la proposition suivante, qui va servir de méthode pour étudier les
a

suites arithmético-géométriques en pratique.

Proposition 14

Soit (a,b) € R? avec a # 1. Soit (u,)nen une suite arithmético-géométrique qui vérifie

pour tout n € N, uy, 1 = auy, + b. Posons [ = 1 .
—a

Alors la suite (v, )pen définie pour tout n € N par v,, = u,, — [ est géométrique de raison

a.

Ainsi, pour tout n € N, u, = a"(ug — ) + 1.

En particulier, la suite (up)nen est convergente si |a] < 1 ou si ug = [ et dans ce cas

Iim w,=1[0= .
n—too 1—a

Démonstration. Montrons que la suite (v, )nen est géométrique de raison a.
Soit n € N. On a

b ab b
Un+1:un+1—l:aun+b—m:aun— T—a —a<un— 1—a> = a(un, — 1) = avy,
ce qui prouve que la suite (v,)pen est géométrique de raison a.
Ainsi, pour tout n € N,v,, = vg x a™ = (ug — 1) x a™.
11 s’ensuit que pour tout n € N, u, = v, +1=a"(ug — 1) + I.
D’apres I’étude des suites géométriques, on en déduit que la suite (uy,)nen est convergente
si et seulement si |a| < 1 (car a = 1 est impossible ici) et dans ce cas lim a" = 0 donc

n—-+o0o

lim w,= lim a"(ug—10)+1=1
n—-+00 n—-+o0o

Exemple 12. Soit (u,)nen une suite réelle de premier terme ug = 2 qui vérifie pour tout

1
ne€Nupy1 = iun - 3.

1
Commencons par chercher [ tel que [ = il -3& 3= -3« =-6.
Posons pour tout n € N, v, = u,, —l = u, + 6. On a alors pour tout n € N,

1 1 1 1
vn+1:un+1+6:§un—3+6:§un+3:§(un+6):§vn
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1
donc la suite (v, )nen est géométrique de raison 57 ce qui implique que

1\" 6 8 1
VnEN,vn:v0x<> _wtb_ S

2 gn  gn gn—3’
1
donc pour tout n € N, on a uy, = v, — 6 = o3 6.
Puisque . EI}}OO on3 = 0, on en déduit que nll}:l_loo u, = —6.

16.2.3 Suites adjacentes

Définition 5: Suites adjacentes

Soient (un)nen et (vn)nen deux suites réelles.

On dit que les suites (uy,)nen et (v )nen sont adjacentes si elles vérifient les trois propriétés
suivantes :

e La suite (uy)nen est croissante.

e La suite (v, )nen est décroissante.

e La suite (v, — up)nen est convergente et lim v, — u, = 0.
n—-+o0o

Remarque 14. On ne suppose pas a priori que les suites (uy, )nen €t (v, )nen soient convergentes.

1
Exemple 13. Posons pour tout entier naturel n € N*,u, =1 — —et v, =1+ —.
n

n
1 1 1
e Pour tout n € N*, u — Uy = — 4+ — = — > 0 donc la suite (u est
y Wn+1 n n+1 n n(n+1) ( n)nEN
croissante. ) .
e Pour tout n € N* v — Uy = — — = ———— < 0 donc la suite (v est
décroissante.
e Pour tout n € N, on a
2
Up —Up =— — 0
n n—+oo

donc les suites (uy)pen+ et (vn)nen+ sont adjacentes.

Soient (un)nen €t (vn)nen deux suites adjacentes avec la suite (uy,)pen croissante et la
suite (v, )nen décroissante.
Alors

vn € N, u, < vy,.

Démonstration. Posons pour tout n € N, w,, = v,, — uy.
Par définition des suites adjacentes, la suite (wy),en converge vers 0.
D’autre part, pour tout n € N, on a

Wn+4+1 — Wp = (Un+1 - un+1) - (Un - Un) = (Un+1 - Un) - (unJrl - Un)

Puisque les suites (vp,)nen et (un)nen sont décroissante et croissante respectivement, on a vy, 1 —
v <0 et Uupp1 — up > 0 donc wypy1 —wy < 0.
Ainsi, la suite (wy,)nen est décroissante et converge vers 0.
Nécessairement (cf. preuve du théoréme de la limite monotone), alors 0 = inf{w,,n € N}
donc pour tout n € N, w, > 0, i.e.
vn € N, up, < v,.
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Remarque 15. Avec les mémes notations que précédemment, on a donc pour tout entier
naturel n € N,

ug Sup Sug <o Sl S Uy Sy Svpo1 <LLovg S vy < .

Théoréeme 6: Théoreme des suites adjacentes

Soient (un)nen €t (vn)nen deux suites adjacentes.
Alors les suites (un)nen €t (vn)nen sont convergentes et on a

lim wu, = lim wv,.
n—-+4o0o n—+4o0o

Démonstration. On peut supposer sans perte de généralité que la suite (uy)nen est crois-
sante et la suite (v, )nen est décroissante.

D’apres le lemme précédent, on a pour tout n € N, u,, < v,. Puisque la suite (vy,)nen est
décroissante, alors pour tout n € N, v, < vy donc pour tout n € N, u,, < vg.

Ainsi, la suite (u,)pen est croissante et majorée par vg. D’apres le théoreme de la limite
monotone, elle est donc convergente vers une limite [ € R.

De méme, puisque la suite (u,)nen est croissante, alors pour tout n € N, uy < u,, < v, donc
la suite (v,)nen est décroissante et minorée par wg.

D’apres le théoréme de la limite monotone, elle est convergente vers une limite .

Or, par hypotheése, on a lim v, —u, =1 —1 =0donc | =1I'.
n—-+o0o

On en conclut que les suites (upn)nen €t (vn)nen sont convergentes et de méme limite. W

Remarque 16. e Une fois prouvée la convergence de la suite (uy,)nen, on pouvait simplement
remarquer que v, = (v, — Uy) + u, donc la suite (v,),en converge comme somme de suites
convergentes et

lim v, = lim (v, —up,)+ lim w,=0+1=1.
n—-+o0o n—-+oo n—-+o0o
e Avec les mémes notations que dans la preuve, si on note [ la limite commune des suites
(un)nen €t (Un)nen, on a alors pour tout n € N,

ug <uyp Sug <Ly Sup KL v, Svpog <lve <o L.

Exemple 14. Dans 'exemple pris ci-dessus, les deux suites (up)nen €t (vn)nen convergeaient
toutes deux vers 1.

16.2.4 Etudes de suites du type u,1 = f(uy,)

On s’intéresse dans cette section aux suites définies par récurrence, c’est a dire aux suites
vérifiant une relation de la forme wu,11 = f(u,) pour tout n € N ou f : D — R est une
application définie sur D. Pour cela, il est donc nécessaire de fixer le premier terme de la suite
ug € D et de s’assurer que l'ensemble D est stable par f, i.e. f(D) C D.

Ensuite, il peut étre utile de déterminer la monotonie de la suite (uy)nen en vue d’utiliser
le théoreme de la limite monotone.

Pour cela, on peut étudier le signe de up4+1 — up = f(up) — up, ce qui revient a étudier le
signe de f(z) —x pour x € D.

Enfin, on a le théoréme important suivant, qui sera démontré dans le chapitre < Limites et
continuité >.
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Soit D C R. Soit f : D — R une application continue. On suppose que f(D) C D.
Soit (un)nen une suite réelle définie par ug € D et par up+1 = f(uy) pour tout n € N.
On suppose que la suite (uy,)nen converge vers une limite [ € D.

Alors [ est un point fixe de f, i.e.

1= £(0).

Remarque 17. Ce théoreme signifie que les limites éventuelles d’une telle suite (uy,)nen sont
a chercher parmi les points fixes de f, c’est a dire les solutions de I’équation f(x) = z.

Exemple 15. Etudions la suite (uy,)nen définie par ug € R et wpp1 = upn (1 + uy).

On a bien une suite définie par récurrence de la forme u,+1 = f(up) ou f: x — z(1+ z)
est définie sur R tout entier.

Cherchons les points fixes de f, c’est a dire résolvons ’équation f(z) = x. On a

f@)=zer(l+r)=2c2°=02=0.

Ainsi, la seule limite possible de la suite (uy,)nen est [ = 0.

Par ailleurs, on a pour tout n € N, u,1 — up = up(1 + up) — uy = ui > 0 donc la suite
(un)nen est croissante.

Il y a maintenant plusieurs cas selon la valeur de wuyg :

e Siug > 0, la suite (u,)pen est strictement croissante et on a pour tout n € N, u,, > ug > 0.
La suite ne peut donc pas converger vers 0. Elle est donc croissante et non majorée, donc elle
diverge vers +4o0.

e Si ug = 0, alors pour tout n € N,u,, = 0 donc la suite est constante égale a 0 et on a

lim u, =0.
n—-+o0o

e Si —1 < ug < 0, puisque pour tout x €] —1,0[, -1 < = < f(z) < 0, I'intervalle | — 1, 0] est
stable par f et on a pour tout n € N, -1 < up, < upqq1 < 0.

La suite (un)nen est donc croissante et majorée. D’apres le théoréme de la limite monotone,
elle est convergente.

La seule limite possible étant 0, on a lim wu, = 0.
n—-+o0o

e Siuyg=—1,0n awu; =0 et pour tout n > 1, u, = 0 donc ngTooun =0.

e Siupg < —1,0onau; = f(ug) > 0 et donc pour tout n > 1,u, > 0 donc on trouve comme

dans le premier cas, lim wu, = +oc.
n—-+00

On en conclut donc que

0 si—-1<u<0
{ 400 sinon.
Remarque 18. La monotonie de f donne également des informations intéressantes sur la suite.

e Si f est croissante, alors la suite est monotone.

En effet, si ug < ug, alors u; = f(ug) < f(u1) = ug et on en déduit aisément par récurrence
que la suite est croissante.

En revanche, si ug > wuy, alors u; = f(ug) = f(u1) = ug et on en déduit aisément par
récurrence que la suite est décroissante.

e Si f est décroissante, alors f o f est croissante donc les suites (ugp)nen €t (U2n+1)nen sont
monotones.
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16.3 Etude asymptotique

16.3.1 Croissances comparées

Poura>1et a € R%, on a

lim n!l= lim a"= lim n® = +o0.
n——4oo n—-+o0o n—-+4o0o

Toutefois, ces trois suites ne tendent pas vers +0o0 < a la méme vitesse »>. L’objet du théoreme
suivant est de comparer les croissances de ces suites.

Théoreme 8: Théoréme de croissances comparées

Soit a > 1et o € RY.
Alors

n!
Démonstration. ¢ Montrons que lim — = +o00. Soit N = |a| + 1.
n—+oo qn

Pour tout n > N on a

. N . : .
puisque — > 1, donc par comparaison, on obtient bien
a

n!

lim — = +o0.
n—+oo g™
n
e Montrons que lim — = +o0.
n——+oo N
On a
n
a” 6nln(a)—aln(n) _ 6n(ln(a)—ox%)
ne B '

In(n
Or, par croissance comparée, lir}rl (n) = 0 donc puisque In(a) > 0, on obtient par
n—+oo n

composition des limites que
lim en(ln(a)faW) _
n—-+00

+o00

5N : a”
d’ou lim — = +o0. |
n—+oo N

Remarque 19. e Il faut retenir que la factorielle domine les suites géométriques, qui elles-

mémes dominent les suites puissances.
e Ceci implique en particulier que pour tout o € R*, ngl—fl—loo = ~+00.

Exemple 16. ¢ lim — =0.

n—+oo 3"

e lim (i)nf:o.

n—-+o0o
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16.3.2 Suites équivalentes

Définition 6: Suites équivalentes

Soient (un)nen €t (vn)nen deux suites réelles ne s’annulant pas a partir d’un certain rang,
i.e. on suppose qu’il existe ng € N, tel que pour tout n > ng, u, # 0 et v, # 0.
On dit que les suites (up)nen €t (vn)nen sont équivalentes, et on note u, ~ v, si

Un

lim — =1.
n—+00 Uy

. . Un
Remarque 20. Dans ce cas, on a également lim — =1.
n—+00 Uy

n+1

=14+— — 1doncn~n-++1.
n n——+oo

n +
vVn? -3 4 3 4
oOnan—n—i_: 1———i-f2 — 1 donc
n n n“ n—+oo

vVn?2—=3n+4~n.
Proposition 15

Soient (un)nen €t (vn)nen deux suites équivalentes.
On suppose que lim u, =1 € RU{—o00,+o0}.
n—-+o0o

Exemple 17. ¢ On a

Alors
lim v, =L
n—-+4o0o
, . v
Démonstration. Pour tout n € N, on a v, = up, x — — Ix1=1 |

Up, n—-+oo

Remarque 21. On vient donc de montrer que deux suites équivalentes ont méme limite. Mais
la réciproque est fausse.
n2
Ona lim n= lim n?=+4oc0mais lim — = 4oo.
n—-+oo n—-+4oo n—+oo n

On a toutefois une réciproque partielle :

Proposition 16

Soit (up)nen telle que lim wu, =1 € R*.
n—-+00

Alors la suite (up)nen est équivalente a la suite constante égale a [, i.e.

Uy ~ L.

Démonstration. On a vu qu’une suite qui tend vers une limite non nulle est du signe de
cette limite a partir d’un certain rang. En particulier, la suite (uy,)nen ne s’annule pas a partir
d’un certain rang et on a

m Y=l
n—+oo [ l

donc u, ~ 1. |

Remarque 22. En revanche, il est formellement interdit d’écrire u,, ~ 0.
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La notion d’équivalence vérifie les propriétés fondamentales suivantes :

Proposition 17: Propriétés de I’équivalence

Soient (un)neN, (Un)neN, (Wn)nen €t (Tn)nen des suites ne s’annulant pas a partir d’un
certain rang.

1. (Réflexivité) On a up ~ Up,.
. (Symétrie) Si u,, ~ vy, alors vy, ~ uy,.
. (Transitivité) Si u, ~ v, et v, ~ wy, alors u, ~ wy,.
1

. 1
. Siuy ~ v, alors — ~ —.
Unp, Un

2
3
4. Si u, ~ v, alors pour tout A € R* Au,, ~ Avy,.
5

6. Si u, ~ vy, alors pour tout p € Z, ubh ~ vh.

Si de plus, les suites (up)nen €t (vn)nen sont stictement positives a partir d’un
certain rang, alors pour tout o € R, ul ~ v,

7. Si up ~ Uy, alors |u,| ~ |vy|.

8. Si u, ~ v, et w, ~ x,, alors

Up, Up,
UpWy ~ UnTy €6 — ~ —.
Wn Tn
Démonstration.
U
1. Onapour toutne N, — =1 — 1.
Unp, n——+0o
. Un
2. Ona lim — =1 donc
n—+00 Uy
(% .
lim — = lim -— — 1,
n—+00 Uy, n—+oo v—” n——+oo
donc v,, ~ u,,.
3. On a
Up  Up Un 1
Wn, Vp Wy n—+00
donc uy, ~ wy,.
4. Soit A € R*. Alors
AUy, Up 1
)\Un Vp N—+00
donc A\u, ~ Avy,.
5. On a
by )
ol
—_ Un, n—-+oo
Un
1 1
donc — ~ —.
Up  Up
6. Soit p € Z. Alors

donc ub, ~ vh.

Supposons que les suites (uy )nen et (vn)nen sont stictement positives a partir d’un certain

rang ng € N.
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Soit a € R. Alors

« o ln(un
up _ ™) n(un)—n(en) _ o),
v eaIn(vn) n—-+o0

par composition de limites.

7. Par composition de limites, puisque lirri |z| =1, alors
T—

donc |up| ~ |vy].

8. On a

UnWp _ Up Wy

UnTn Up Ty n—+00
donc u,wy, ~ v, et
Un U T
n n
7";’: =—xXx— — 1x1=1
Zn Un Wy, N—+00
Un Un
donc — ~ —.
Wnp Tn

Exemple 18. ¢ On a
vni+bin—-1 n 1

Mm+3  2n 2
e Ona
1 _sin(n) (—1)”:L _ ,sin(n) (=1)" o _ 1
R 1 v s ) I R

Remarque 23. En revanche, on ne peut pas additionner les équivalents.
En effet, onan ~n+1et —n ~ —n mais on n’a pas n —n ~ n—+ 1 —n car sinon on aurait
0~ 1!

On ne peut pas non plus les composer par des fonctions. En effet, on a n ~ n + 1 mais
en-l—l

— = e ne tend pas vers 1 donc ™! o €.
e

Les équivalents suivants sont importants et a connaitre :

Proposition 18: Equivalents de référence

Soit (up)nen une suite réelle qui ne s’annule pas a partir d’un certain rang et telle que
lim wu, = 0. Alors

n——+00
L. sin(uy) ~ up; 4. In(1 + up) ~ up;
2. tan(uy) ~ Up; 5. eUn — 1~ up;,
2
u
3. 1 —cos(up) ~ 7"; 6. Va € R* (1 + up)® — 1 ~ auy,.

.

Remarque 24. En particulier, si (up)nen tend vers 0, alors /1 + u, — 1 ~ u?n

Démonstration.

Année 2025-2026 26 / 27 WASSFI



BCPST1 Lycée Fénelon

1. On a lim sin(z)
x—0 x

= sin’(0) = cos(0) = 1 donc par composition de limites,

lim 500 _
n—-+oo Un,

d’ou sin(uy,) ~ uy.

2. Puisque lim w, =0 et lim cos(z) = 1, par composition de limites, on a lim cos(u,) =
n——+00 x—0 n—-+00
1. Ainsi, on a
sin(un,)  up
tan(uy,) = ~ — = Up.
(un) cos(uy) 1 "

3. Pour tout x € R, on a cos(2x) = 1 — 2sin?(x) donc 1 — cos(2z) = 2sin?(x). On en déduit

que
U up\2 U
-t <2 () 2 ()"
cos(un) sin” { 5 5
On peut utiliser I’équivalent sin (—) ~ — car si lim wu, = 0, alors on a aussi
2 2 n—-+00
U
lim —* =0.
n—+oo 2
In(1
4. On a lim M = 1 donc par composition de limites
z—0 X
In(1
lim M -1
n—-+4oo U,

donc In(1 + wuy) ~ uy.

xT
1
5 On a lim &
x—0 xr

= exp/(0) = €® = 1 donc par composition de limites

lim =1,
n—-+0o00 Un

d’ou e¥r — 1 ~ uy,.

6. Soit @ € R*. En se servant du fait que hIJIrl aln(l 4+ u,) = 0 et des deux résultats
n—-+0oo

précédents, on a

Exemple 19. On a
cos (%) —1
sin ( L )

n

~—— — 0.

1
—53 1
~ _ 2n?
1 2n n—+oo
n

Enfin, signalons la formule de Stirling, qui est un équivalent célebre, mais que nous ne
démontrerons ni n’utiliserons pas :

n n
n! ~V2mn (—) .
e
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