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16.1 Généralités

16.1.1 Définition et premières propriétés

Définition 1: Suites majorées, minorées, bornées

Soit n0 ∈ N. Soit (un)n≥n0 une suite réelle.

1. On dit que la suite (un)n≥n0 est majorée s’il existe un réel M tel que pour tout
n ≥ n0, un ≤ M.

2. On dit que la suite (un)n≥n0 est minorée s’il existe un réel m tel que pour tout
n ≥ n0, un ≥ m.

3. On dit que la suite (un)n≥n0 est bornée si elle est à la fois majorée et minorée.

Exemple 1. • La suite (un)n∈N définie pour tout n ∈ N par un = n est minorée par 0 mais
n’est pas majorée.

• La suite (un)n∈N définie pour tout n ∈ N par un = −n est majorée par 0 mais n’est pas
minorée.
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• La suite (un)n∈N∗ définie pour tout n ∈ N∗ par un =
(−1)n

n
est bornée puisque majorée

par 1 et minorée par −1.
• La suite (un)n∈N définie pour tout n ∈ N par un = (−1)nn n’est ni majorée ni minorée.

Remarque 1. Il est équivalent de dire que la suite (un)n≥n0 est majorée (resp. minorée, bornée)
et que l’ensemble {un, n ≥ n0} est majoré (resp. minoré, borné).

Proposition 1

Soit n0 ∈ N. Soit (un)n≥n0 une suite réelle.
La suite (un)n≥n0 est bornée si et seulement si il existe un réel positif r tel que pour tout
n ≥ n0, |un| ≤ r.

Démonstration. La suite (un)n≥n0 est bornée si et seulement si l’ensemble {un, n ≥ n0}
est borné.

D’après un résultat du chapitre ≪ Nombres réels ≫, ceci équivaut au fait qu’il existe r ≥ 0
tel que pour tout n ≥ n0, |un| ≤ r. ■

Définition 2: Suites monotones

Soit n0 ∈ N. Soit (un)n≥n0 une suite réelle.

1. On dit que la suite (un)n≥n0 est croissante (resp. strictement croissante) si pour
tout n ≥ n0, un+1 ≥ un (resp. un+1 > un).

2. On dit que la suite (un)n≥n0 est décroissante (resp. strictement décroissante) si pour
tout n ≥ n0, un+1 ≤ un (resp. un+1 < un).

3. On dit que la suite (un)n≥n0 est monotone si elle est croissante ou décroissante.

4. On dit que la suite (un)n≥n0 est constante si pour tout n ≥ n0, un+1 = un.

5. On dit que la suite (un)n∈N est stationnaire si elle est constante à partir d’un certain
rang n0.

Remarque 2. • On montre par une récurrence immédiate que si la suite (un)n≥n0 est croissante
(resp. décroissante, resp. constante), alors pour tout n ≥ n0, un ≥ un0 (resp. un ≤ un0 , resp.
un = un0).

• Il est possible que ces propriétés ne soient vérifiées qu’à partir d’un certain rang n1 > n0

et on dit alors que la suite (un)n≥n0 est croissante (ou décroissante, ou constante) à partir du
rang n1.

Proposition 2

Soit n0 ∈ N. Soit (un)n≥n0 une suite réelle.

1. La suite (un)n≥n0 est croissante (resp. strictement croissante) si et seulement si
pour tout n ≥ n0, un+1 − un ≥ 0 (resp. un+1 − un > 0).

2. La suite (un)n≥n0 est décroissante (resp. strictement décroissante) si et seulement
si pour tout n ≥ n0, un+1 − un ≤ 0 (resp. un+1 − un < 0).

3. La suite (un)n≥n0 est constante si et seulement si pour tout n ≥ n0, un+1 − un = 0.

Démonstration. Immédiate d’après la définition. ■

Exemple 2. • La suite (un)n∈N définie pour tout n ∈ N par un = 3n − 2 est strictement
croissante car pour tout n ∈ N, on a

un+1 − un = 3(n+ 1)− 2− (3n− 2) = 3n+ 1− 3n+ 2 = 3 > 0.
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• La suite (un)n∈N définie pour tout n ∈ N par un = −2n + 1 est strictement décroissante
car pour tout n ∈ N, on a

un+1 − un = −2(n+ 1) + 1− (−2n+ 1) = −2n− 1 + 2n− 1 = −2 < 0.

• La suite (un)n∈N définie pour tout n ∈ N par un = π est constante.

16.1.2 Convergence

Dorénavant, on notera toujours une suite sous la forme (un)n∈N. Si une suite (un)n≥n0 n’est
définie qu’à partir de l’entier n0, il suffit de poser une nouvelle suite (vn)n∈N définie pour tout
n ∈ N par vn = un+n0 .

Définition 3

Soit (un)n∈N une suite réelle.

1. Soit l ∈ R.
On dit que la suite (un)n∈N converge (ou tend) vers l si

∀ε > 0,∃n0 ∈ N, ∀n ≥ n0, |un − l| ≤ ε.

On écrit alors lim
n→+∞

un = l (ou un −→
n→+∞

l) et l est appelé la limite la suite (un)n∈N.

Dans le cas où l = 0, deux cas particuliers sont importants :

(a) On dit que la suite (un)n∈N converge vers 0+ si pour tout ε > 0, il existe
n0 ∈ N tel que pour tout n ≥ n0, 0 < un ≤ ε.

On note alors lim
n→+∞

un = 0+ (ou un −→
n→+∞

0+).

(b) On dit que la suite (un)n∈N converge vers 0− si pour tout ε > 0, il existe
n0 ∈ N tel que pour tout n ≥ n0,−ε ≤ un < 0.

On note alors lim
n→+∞

un = 0− (ou un −→
n→+∞

0−).

Une suite qui converge est dite convergente ; une suite qui ne converge pas est dite
divergente.

2. On dit que la suite (un)n∈N tend vers +∞ et on note lim
n→+∞

un = +∞ (ou un −→
n→+∞

+∞) si
∀A > 0,∃n0 ∈ N, ∀n ≥ n0, un ≥ A.

3. On dit que la suite (un)n∈N tend vers −∞ et on note lim
n→+∞

un = −∞ (ou un −→
n→+∞

−∞) si
∀A < 0,∃n0 ∈ N, ∀n ≥ n0, un ≤ A.

Remarque 3. • En particulier, une suite qui tend vers +∞ ou −∞ n’est pas bornée.
• La convergence d’une suite ne dépend pas de ses premiers termes. En effet, il suffit qu’une

certaine inégalité ait lieu à partir d’un certain rang pour établir qu’une suite est convergente.
• Supposons que la suite (un)n∈N converge vers l. Soit ε > 0. Par définition, on sait qu’à

partir d’un certain rang, tous les termes de la suite seront dans l’intervalle [l − ε, l + ε].
• Pour montrer la convergence d’une suite vers sa limite l, il suffit de prouver que pour tout

ε > 0, il existe n0 ∈ N tel que pour tout n ≥ n0, |un − l| ≤ αε où α est un réel strictement
positif qui ne dépend pas de ε. En effet, si ε parcourt R∗

+, αε fait de même.
• Par définition, on a l’équivalence

lim
n→+∞

un = l ⇔ lim
n→+∞

|un − l| = 0.
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• Si lim
n→+∞

un = 0, on n’a pas forcément lim
n→+∞

un = 0+ ou lim
n→+∞

un = 0−.

En effet, soit un =
(−1)n

n
pour tout n ∈ N∗. On a lim

n→+∞
un = 0 mais pour tout n ∈

N∗, u2n > 0 et u2n+1 < 0. On ne peut donc pas avoir lim
n→+∞

un = 0+ ni lim
n→+∞

un = 0−.

Proposition 3: Unicité de la limite

Soit (un)n∈N une suite réelle. Soient l et l′ deux réels.
Si (un)n∈N converge vers l et vers l′, alors l = l′.

Démonstration. Soit ε > 0.
Par définition, puisque (un)n∈N converge vers l, il existe n0 ∈ N tel que pour tout n ≥ n0,

on a
|un − l| ≤ ε

2
.

De même, puisque (un)n∈N converge vers l′, il existe n1 ∈ N tel que pour tout n ≥ n1, on a

|un − l′| ≤ ε

2
.

Soit N = max{n0, n1}. Alors on a

|l − l′| = |l − uN + uN − l′|
≤ |l − uN |+ |uN − l′|

≤ ε

2
+

ε

2
≤ ε.

Ainsi, pour tout ε > 0, |l − l′| ≤ ε, d’où |l − l′| = 0, i.e. l = l′. ■

Exemple 3. • La suite (un)n∈N∗ définie pour tout n ∈ N∗ par un =
1

n
tend vers 0.

En effet, soit ε > 0. On a ∣∣∣∣ 1n − 0

∣∣∣∣ ≤ ε ⇔ 1

n
≤ ε ⇔ n ≥ 1

ε
.

Posons n0 =

⌊
1

ε

⌋
+ 1. Alors pour tout n ≥ n0, on a n ≥ 1

ε
d’où |un − 0| ≤ ε.

Ainsi, on a bien montré que pour tout ε > 0, il existe n0 ∈ N tel que pour tout n ≥
n0, |un − l| ≤ ε, ce qui prouve que lim

n→+∞

1

n
= 0.

• La suite (vn)n∈N définie pour tout n ∈ N par vn =
√
n tend vers +∞.

En effet, soit A > 0. On a vn ≥ A ⇔
√
n ≥ A ⇔ n ≥ A2.

On pose n0 = ⌊A2⌋+ 1. Alors pour tout n ≥ n0, on a n ≥ A2 d’où vn ≥ A. Ainsi, on a bien
montré que pour tout A > 0, il existe n0 ∈ N tel que pour tout n ≥ n0, vn ≥ A, ce qui prouve
que lim

n→+∞
vn = +∞.

• Toute suite constante est convergente. En effet, soit a ∈ R. Soit (un)n∈N la suite constante
égale à a.

Alors pour tout n ∈ N, |un − a| = 0 ≤ ε pour tout ε > 0.

Proposition 4

Soit (un)n∈N une suite réelle convergeant vers une limite l ∈ R.
Alors la suite (un)n∈N est bornée.
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Démonstration.
Soit ε > 0.
Par définition, puisque (un)n∈N converge vers l, il existe n0 ∈ N tel que pour tout n ≥ n0,

on a
|un − l| ≤ ε.

Ainsi, pour tout n ≥ n0, on a

|un| ≤ |un − l|+ |l| ≤ ε+ |l|.

Soit r = max {|u0|, |u1|, · · · , |un0−1|, ε+ |l|}. Alors on a pour tout n ∈ N, |un| ≤ r, donc la suite
(un)n∈N est bornée. ■

Proposition 5

Soit (un)n∈N une suite réelle.

1. La suite (un)n∈N converge vers un réel l si et seulement si les deux suites (u2n)n∈N
et (u2n+1)n∈N convergent également vers le même réel l.

2. La suite (un)n∈N tend vers +∞ (resp.−∞) si et seulement si les deux suites (u2n)n∈N
et (u2n+1)n∈N tendent également vers +∞ (resp. −∞).

Démonstration.

1. • Supposons que lim
n→+∞

un = l ∈ R.

Par définition de la convergence, on a

∀ε > 0,∃n0 ∈ N, ∀n ≥ n0, |un − l| ≤ ε.

Montrons que les suites (u2n)n∈N et (u2n+1)n∈N convergent vers l.

Soit ε > 0. Alors pour tout n ≥ n0, on a 2n ≥ n0 et 2n+ 1 ≥ n0 d’où

|u2n − l| ≤ ε et |u2n+1 − l| ≤ ε.

Ceci assure que lim
n→+∞

u2n = lim
n→+∞

u2n+1 = l.

• Supposons que lim
n→+∞

u2n = lim
n→+∞

u2n+1 = l ∈ R.

Soit ε > 0. Par définition, il existe deux entiers n0 et n1 tels que

∀n ≥ n0, |u2n − l| ≤ ε et ∀n ≥ n1, |u2n+1 − l| ≤ ε.

Soit N = max(n0, n1). Alors pour tout n ≥ N, on a n ≥ n0 et n ≥ n1 donc pour tout
n ≥ N, on a

|u2n − l| ≤ ε et |u2n+1 − l| ≤ ε,

i.e.
∀n ≥ 2N, |un − l| ≤ ε,

d’où lim
n→+∞

un = l ∈ R.

2. • Supposons que lim
n→+∞

un = +∞. Par définition, on a

∀A > 0,∃n0 ∈ N, ∀n ≥ n0, un ≥ A.

Montrons que les suites (u2n)n∈N et (u2n+1)n∈N tendent vers +∞.

Soit A > 0. Alors pour tout n ≥ n0, on a 2n ≥ n0 et 2n+ 1 ≥ n0 d’où

u2n ≥ A et u2n+1 ≥ A.
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Ceci assure que lim
n→+∞

u2n = lim
n→+∞

u2n+1 = +∞.

• Supposons que lim
n→+∞

u2n = lim
n→+∞

u2n+1 = +∞.

Soit A > 0. Par définition, il existe deux entiers n0 et n1 tels que

∀n ≥ n0, u2n ≥ A et ∀n ≥ n1, u2n+1 ≥ A.

Soit N = max(n0, n1). Alors pour tout n ≥ N, on a n ≥ n0 et n ≥ n1 donc pour tout
n ≥ N, on a

u2n ≥ A et u2n+1 ≥ A,

i.e.
∀n ≥ 2N, un ≥ A,

d’où lim
n→+∞

un = +∞.

Le cas où lim
n→+∞

un = −∞ se montre de la même manière en inversant les inégalités.

■

Exemple 4. La suite (un)n∈N définie pour tout n ∈ N par un = (−1)n n’est pas convergente
puisque pour tout n ∈ N, on a u2n = 1 et u2n+1 = −1 donc lim

n→+∞
u2n = 1 et lim

n→+∞
u2n+ = −1.

Ainsi, les deux suites (u2n)n∈N et (u2n+1)n∈N sont convergentes de limite différente, ce qui
implique que la suite (un)n∈N ne peut pas être convergente.

En revanche, la suite (un)n∈N est bornée puisque pour tout n ∈ N, on a |un| = 1. Ainsi, une
suite bornée n’est pas nécessairement convergente.

Proposition 6

Soient (un)n∈N et (vn)n∈N deux suites réelles convergeant vers l ∈ R et l′ ∈ R respective-
ment.

1. Pour tout (λ, µ) ∈ R2, la suite (λun + µvn)n∈N converge vers λl + µl′.

2. La suite (unvn)n∈N converge vers ll′.

3. Si la suite (vn)n∈N est non nulle à partir d’un certain rang n0 et si l′ ̸= 0, alors la

suite

(
1

vn

)
n≥n0

converge vers
1

l′
et

(
un
vn

)
n≥n0

converge vers
l

l′
.

4. La suite (|un|)n∈N converge vers |l| (la réciproque est fausse).

Démonstration.

1. Soit (λ, µ) ∈ R2.

Soit ε > 0.

Par définition, puisque (un)n∈N converge vers l, il existe n0 ∈ N tel que pour tout n ≥ n0,
on a

|un − l| ≤ ε.

De même, puisque (vn)n∈N converge vers l′, il existe n1 ∈ N tel que pour tout n ≥ n1, on
a

|vn − l′| ≤ ε.

Soit N = max{n0, n1}. Alors, pour tout n ≥ N , on a

|λun + µvn − (λl + µl′)| ≤ |λ(un − l)|+ |µ(vn − l′)|
≤ |λ||un − l|+ |µ||vn − l′|
≤ (|λ|+ |µ|)ε,

donc lim
n→+∞

λun + µvn = λl + µl′.
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2. Soit ε > 0. Par définition, puisque (un)n∈N converge vers l, il existe n0 ∈ N tel que pour
tout n ≥ n0, on a

|un − l| ≤ ε.

De même, puisque (vn)n∈N converge vers l′, il existe n1 ∈ N tel que pour tout n ≥ n1, on
a

|vn − l′| ≤ ε.

Enfin, puisque la suite (un)n∈N est convergente, alors elle est bornée. Il existe donc un réel
positif r tel que pour tout n ∈ N, |un| ≤ r.

Soit N = max(n0, n1). On a alors pour tout n ≥ N,

|unvn − ll′| = |un(vn − l′) + l′(un − l)|
≤ |un||vn − l′|+ |l′||un − l|
≤ (r + |l′|)ε,

ce qui prouve que lim
n→+∞

unvn = ll′.

3. Supposons qu’il existe n0 ∈ N tel que pour tout n ≥ n0, vn ̸= 0. Supposons également que
l′ ̸= 0.

Montrons que la suite

(
1

vn

)
n≥n0

converge vers
1

l′
.

Puisque lim
n→+∞

vn = l′, il existe n1 ∈ N tel que pour tout n ≥ n1,

|vn − l′| ≤ |l′|
2

̸= 0.

En particulier, pour tout n ≥ n1,

|vn| = |vn − l′ + l′| ≥ ||vn − l′| − |l′|| = |l′| − |vn − l′| ≥ |l′| − |l′|
2

=
|l′|
2
,

d’où pour tout n ≥ n1,
1

|vn|
≤ 2

|l′|
.

Soit ε > 0.

Puisque lim
n→+∞

vn = l′, il existe n2 ∈ N tel que pour tout n ≥ n2, |vn − l′| ≤ ε.

Soit N = max(n0, n1, n2). Alors pour tout n ≥ N, on a∣∣∣∣ 1vn − 1

l′

∣∣∣∣ =

∣∣∣∣ l′ − vn
l′vn

∣∣∣∣
≤ ε

|l′|
2

|l′|

=
2ε

|l′|2

ce qui assure que lim
n→+∞

1

vn
=

1

l′
.

D’après l’alinéa précédent, on en déduit que

lim
n→+∞

un
vn

= lim
n→+∞

un × lim
n→+∞

1

vn
=

l

l′
.
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4. Soit ε > 0.

Par définition, puisque (un)n∈N converge vers l, il existe n0 ∈ N tel que pour tout n ≥ n0,
on a

|un − l| ≤ ε.

Ainsi, pour tout n ≥ n0, on a

||un| − |l|| ≤ |un − l| ≤ ε,

donc lim
n→+∞

|un| = |l|.

■

Remarque 4. • La réciproque du deuxième alinéa est faux comme le montre l’exemple de la
suite définie par un = (−1)n. En effet, cette suite n’admet pas de limite puisque pour tout
n ∈ N, on a u2n = 1 et u2n+1 = −1.

En revanche, la suite (|un|)n∈N est la suite constante égale à 1, donc elle converge vers 1.
• Si une suite (un)n∈N converge vers l ∈ R, alors la suite (−un)n∈N converge vers −l ∈ R.
• Dans le cas particulier où on prend la suite (vn)n∈N constante égale à a ∈ R, on trouve

que si lim
n→+∞

un = l ∈ R, alors lim
n→+∞

un + vn = l + a et lim
n→+∞

unvn = l × a.

Proposition 7

Soit (un)n∈N une suite réelle telle que lim
n→+∞

un = +∞.

1. Pour tout λ ∈ R∗
+, lim

n→+∞
λun = +∞ et pour tout λ ∈ R∗

−, lim
n→+∞

λun = −∞.

2. On a lim
n→+∞

1

un
= 0+.

3. Si (vn)n∈N est une suite minorée (en particulier si (vn)n∈N est une suite convergente
ou si (vn)n∈N tend vers +∞), alors lim

n→+∞
un + vn = +∞.

4. Soit (vn)n∈N une suite convergente de limite l ∈ R.
• Si l > 0, alors lim

n→+∞
unvn = +∞.

• Si l < 0, alors lim
n→+∞

unvn = −∞.

5. Si (vn)n∈N est une suite telle que lim
n→+∞

vn = +∞ (resp. −∞), alors lim
n→+∞

unvn =

+∞ (resp. −∞).

Remarque 5. En effet, si une suite (vn)n∈N tend vers +∞, elle est minorée car par définition,
il existe n0 ∈ N tel que pour tout n ≥ n0, vn ≥ 1 donc pour tout n ∈ N,

vn ≥ min{v0, v1, . . . , vn0−1, 1}.

Démonstration.

1. • Soit λ ∈ R∗
+.

Soit A > 0. Puisque (un)n∈N tend vers +∞, il existe n0 ∈ N tel que pour tout n ≥ n0, un ≥
A

λ
.

Ainsi, pour tout n ≥ n0, λun ≥ A, ce qui implique que lim
n→+∞

λun = +∞.

• Soit λ ∈ R∗
−.

Alors −λ ∈ R∗
+ donc d’après ce qui précède, on a lim

n→+∞
−λun = +∞ d’où

lim
n→+∞

λun = −∞.
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2. Soit ε > 0.

Puisque lim
n→+∞

un = +∞, il existe n0 ∈ N tel que pour tout n ≥ n0, un ≥ 1

ε
> 0 d’où

∀n ≥ n0, 0 <
1

un
≤ ε,

ce qui implique que lim
n→+∞

1

un
= 0+.

3. Soit (vn)n∈N une suite minorée telle que pour tout n ∈ N, vn ≥ m, où m ∈ R.

Soit A > 0.

Puisque lim
n→+∞

un = +∞, il existe n0 ∈ N tel que pour tout n ≥ n0, un ≥ A−m.

Ainsi, pour tout n ≥ n0, on a

un + vn ≥ A−m+m = A,

ce qui implique que lim
n→+∞

un + vn = +∞.

4. • Supposons que lim
n→+∞

vn = l > 0. Par définition, il existe n0 ∈ N tel que pour tout

n ≥ n0, |vn − l| ≤ l

2
donc pour tout n ≥ n0, vn ≥ l

2
> 0.

Soit A > 0. Puisque lim
n→+∞

un = +∞, il existe n1 ∈ N tel que pour tout n ≥ n1, un ≥
2A

l
> 0.

Soit N = max(n0, n1). Alors pour tout n ≥ N, on a unvn ≥ 2A

l

l

2
= A d’où lim

n→+∞
unvn =

+∞.

• Supposons que lim
n→+∞

vn = l < 0.

Alors lim
n→+∞

−vn = −l > 0 donc d’après ce qui précède,

lim
n→+∞

un(−vn) = lim
n→+∞

−unvn = +∞

d’où lim
n→+∞

unvn = −∞.

5. • Soit (vn)n∈N une suite telle que lim
n→+∞

vn = +∞ (resp. −∞).

Soit A > 0. Puisque (un)n∈N et (vn)n∈N tendent vers +∞, il existe deux entiers n0 et n1

tels que

∀n ≥ n0, un ≥
√
A > 0 et ∀n ≥ n1, vn ≥

√
A > 0

d’où pour tout n ≥ max(n0, n1), unvn ≥ A, ce qui implique que lim
n→+∞

unvn = +∞.

• Si la suite (vn)n∈N tend vers −∞, alors la suite (−vn)n∈N tend vers +∞, et d’après ce
qui précède, on a

lim
n→+∞

un(−vn) = lim
n→+∞

−unvn = +∞

d’où lim
n→+∞

unvn = −∞.

■
On a des résultats analogues pour une suite tendant vers −∞ :
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Proposition 8

Soit (un)n∈N une suite réelle telle que lim
n→+∞

un = −∞.

1. Pour tout λ ∈ R∗
+, lim

n→+∞
λun = −∞ et pour tout λ ∈ R∗

−, lim
n→+∞

λun = +∞.

2. On a lim
n→+∞

1

un
= 0−.

3. Si (vn)n∈N est une suite majorée (en particulier si (vn)n∈N est une suite convergente
ou si (vn)n∈N tend vers −∞), alors lim

n→+∞
un + vn = −∞.

4. Soit (vn)n∈N une suite convergente de limite l ∈ R.
• Si l > 0, alors lim

n→+∞
unvn = −∞.

• Si l < 0, alors lim
n→+∞

unvn = +∞.

5. Si (vn)n∈N est une suite telle que lim
n→+∞

vn = +∞ (resp. −∞), alors lim
n→+∞

unvn =

−∞ (resp. +∞).

Remarque 6. En effet, si une suite (vn)n∈N tend vers −∞, elle est majorée car par définition,
il existe n0 ∈ N tel que pour tout n ≥ n0, un ≤ −1 donc pour tout n ∈ N,

un ≤ max{u0, u1, . . . , un0−1,−1}.

Démonstration. Il suffit d’appliquer les résultats de la proposition précédente à la suite
(−un)n∈N qui tend vers +∞ et prendre l’opposé des résultats obtenus. ■

Proposition 9

Soit (un)n∈N une suite réelle telle que lim
n→+∞

un = 0.

1. (a) Si lim
n→+∞

un = 0+, alors lim
n→+∞

1

un
= +∞.

(b) Si lim
n→+∞

un = 0−, alors lim
n→+∞

1

un
= −∞.

2. Soit (vn)n∈N une suite bornée.

Alors lim
n→+∞

unvn = 0.

Démonstration.

1. (a) Supposons que lim
n→+∞

un = 0+ et montrons que lim
n→+∞

1

un
= +∞.

Soit A > 0.

Puisque lim
n→+∞

un = 0+, il existe n0 ∈ N tel que pour tout n ≥ n0, 0 < un ≤ 1

A
d’où

∀n ≥ n0,
1

un
≥ A,

ce qui implique que lim
n→+∞

1

un
= +∞.

(b) Supposons que lim
n→+∞

un = 0−, de telle sorte que lim
n→+∞

−un = 0+.

D’après ce qui précède, on en déduit que lim
n→+∞

− 1

un
= +∞ d’où

lim
n→+∞

1

un
= −∞.
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2. Soit (vn)n∈N une suite bornée, i.e. il existe r ∈ R∗
+ tel que pour tout n ∈ N, |vn| ≤ r.

Soit ε > 0.

Puisque lim
n→+∞

un = 0, il existe n0 ∈ N tel que pour tout n ≥ n0, |un| ≤
ε

r
.

Ainsi, pour tout n ≥ n0,

|unvn| ≤ r|un| ≤ r
ε

r
= ε,

ce qui prouve que lim
n→+∞

unvn = 0.

■

Exemple 5. Soit (un)n∈N∗ la suite définie pour tout n ∈ N∗ par un =
cos(n)

n
.

La suite (cos(n))n∈N∗ est bornée et la suite ( 1n)n∈N∗ tend vers 0 donc la suite (un)n∈N∗ tend
vers 0.

Remarque 7. On retient les règles suivantes quant aux opérations sur les limites : Soient
(un)n∈N et (vn)n∈N deux suites.

Soient l et l′ deux réels.

lim
n→+∞

un + vn lim
n→+∞

un = l lim
n→+∞

un = +∞ lim
n→+∞

un = −∞
lim

n→+∞
vn = l′ l + l′ +∞ −∞

lim
n→+∞

vn = +∞ +∞ +∞ forme indéterminée

lim
n→+∞

vn = −∞ −∞ forme indéterminée −∞

lim
n→+∞

unvn lim
n→+∞

un = l > 0 lim
n→+∞

un = 0 lim
n→+∞

un = l < 0

lim
n→+∞

vn = l′ > 0 ll′ 0 ll′

lim
n→+∞

vn = 0 0 0 0

lim
n→+∞

vn = l′ < 0 ll′ 0 ll′

lim
n→+∞

vn = +∞ +∞ forme indéterminée −∞
lim

n→+∞
vn = −∞ −∞ forme indéterminée +∞

lim
n→+∞

unvn lim
n→+∞

un = +∞ lim
n→+∞

un = −∞
lim

n→+∞
vn = l′ > 0 +∞ −∞

lim
n→+∞

vn = 0 forme indéterminée forme indéterminée

lim
n→+∞

vn = l′ < 0 −∞ +∞
lim

n→+∞
vn = +∞ +∞ −∞

lim
n→+∞

vn = −∞ −∞ +∞

lim
n→+∞

un = l ̸= 0 lim
n→+∞

1

un
=

1

l

lim
n→+∞

un = 0+ lim
n→+∞

1

un
= +∞

lim
n→+∞

un = 0− lim
n→+∞

1

un
= −∞

lim
n→+∞

un = +∞ lim
n→+∞

1

un
= 0+

lim
n→+∞

un = −∞ lim
n→+∞

1

un
= 0−
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On a plusieurs formes indéterminées :

1. Si lim
n→+∞

un = +∞ et lim
n→+∞

vn = −∞, il peut tout se passer pour lim
n→+∞

un + vn :

• Si un = n et vn = −n, alors un + vn = 0.

• Si un = n et vn = −n+ 1, alors un + vn = 1.

• Si un = n2 et vn = −n, alors un + vn = n2 − n = n(n− 1) −→
n→+∞

+∞.

• Si un = n et vn = −n2, alors un + vn = n− n2 = n(1− n) −→
n→+∞

−∞.

2. Si lim
n→+∞

un = 0 et lim
n→+∞

vn = +∞, il peut tout se passer pour lim
n→+∞

unvn :

• Si un =
1

n
et vn = n, alors unvn = 1.

• Si un =
1

n2
et vn = n, alors unvn =

1

n
−→

n→+∞
0.

• Si un =
1

n
et vn = n2, alors unvn = n −→

n→+∞
+∞.

Exemple 6. Pour lever une forme indéterminée de la forme +∞−∞ lorsqu’on est en présence
de racines, multiplier par la quantité conjuguée permet de lever l’indétermination.

Par exemple, déterminons lim
n→+∞

√
n+ 1−

√
n.

On a

√
n+ 1−

√
n = (

√
n+ 1−

√
n)

√
n+ 1 +

√
n√

n+ 1 +
√
n
=

n+ 1− n√
n+ 1 +

√
n
=

1√
n+ 1 +

√
n

−→
n→+∞

0.

Enfin, mentionnons les propriétés importantes suivantes :

Proposition 10

Soit p ∈ Z.
Alors

lim
n→+∞

np =


+∞ si p > 0
1 si p = 0
0 si p < 0.

Démonstration. • Soit p > 0. Montrons que lim
n→+∞

np = +∞.

Soit A > 0. Pour tout n ≥ A
1
p , on a np ≥ A.

Posons n0 = ⌊A
1
p ⌋+ 1.

Alors pour tout n ≥ n0, n
p ≥ A.

Ceci montre que lim
n→+∞

np = +∞.

• Soit p = 0. Alors pour tout n ∈ N, np = 1 donc lim
n→+∞

np = 1.

• Soit p < 0. Montrons que lim
n→+∞

np = 0.

Soit ε > 0. Puisque −p > 0, on a montré précédemment qu’il existe n0 ∈ N tel que pour

tout n ≥ n0, n
−p ≥ 1

ε
.

Ainsi, pour tout n ≥ n0, 0 < np ≤ ε, ce qui implique que lim
n→+∞

np = 0. ■

Remarque 8. Pour déterminer la limite d’expressions polynomiales ou de quotients de po-
lynômes, on factorise par les termes de plus haut degré.

Exemple 7. • Soit (un)n∈N la suite définie par un = n + 3 et (vn)n∈N la suite définie par
vn = −n2.

On a lim
n→+∞

un = +∞ et lim
n→+∞

vn = −∞ donc a priori, la limite de la suite (un + vn)n∈N

est indéterminée.
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Mais en factorisant par n2, on trouve :

lim
n→+∞

un + vn = lim
n→+∞

−n2 + n+ 3 = lim
n→+∞

n2

(
−1 +

1

n
+

3

n2

)
.

Or, lim
n→+∞

n2 = +∞ et lim
n→+∞

(
−1 +

1

n
+

3

n2

)
= −1 donc par produit des limites,

lim
n→+∞

n2

(
−1 +

1

n
+

3

n2

)
= −∞.

• Déterminons lim
n→+∞

3n3 + 4

2n3 − n+ 5
. A priori, c’est une forme indéterminée de la forme

+∞
+∞

=

+∞× 0.
Pour cela, on factorise le numérateur et le dénominateur par les termes de plus haut degré :

3n3 + 4

2n3 − n+ 5
=

n3

n3

3 + 4
n3

2− 1
n2 + 5

n3

=
3 + 4

n3

2− 1
n2 + 5

n3

−→
n→+∞

3

2
.

Enfin, mentionnons un dernier résultat que nous démontrerons dans le chapitre ≪ Limites
et continuité ≫.

Théorème 1

Soit (un)n∈N une suite réelle de limite l ∈ R ∪ {−∞,+∞}.
Soit f une application telle que lim

x→l
f(x) = l′.

Alors
lim

n→+∞
f(un) = l′.

Exemple 8. On a lim
n→+∞

1

n
= 0 et lim

x→0
cos(x) = 1 donc

lim
n→+∞

cos

(
1

n

)
= 1.

16.1.3 Résultats fondamentaux sur les limites et inégalités

Proposition 11

Soit (un)n∈N une suite réelle.
On suppose que la suite (un)n∈N est convergente de limite l ∈ R.

1. Si l > 0, alors il existe n0 ∈ N, tel que pour tout n ≥ n0, un > 0.

2. Si l < 0, alors il existe n0 ∈ N, tel que pour tout n ≥ n0, un < 0.

3. S’il existe n0 ∈ N tel que pour tout n ≥ n0, un > 0 (ou un ≥ 0), alors l ≥ 0.

4. S’il existe n0 ∈ N tel que pour tout n ≥ n0, un < 0 (ou un ≤ 0), alors l ≤ 0.

Démonstration.

1. Supposons que l > 0. Soit ε =
l

2
> 0. Puisque (un)n∈N converge vers l, il existe n0 ∈ N

tel que pour tout n ≥ n0, |un − l| ≤ ε, i.e.

∀n ≥ n0, l − ε ≤ un ≤ l + ε,

d’où pour tout n ≥ n0, un ≥ l − ε =
l

2
> 0.
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2. Supposons que l < 0. Alors la suite (−un)n∈N converge vers −l > 0 donc d’après l’alinéa
précédent, il existe n0 ∈ N tel que pour tout n ≥ n0,−un > 0, i.e. pour tout n ≥ n0, un < 0.

3. Supposons qu’il existe n0 ∈ N tel que pour tout n ≥ n0, un > 0 (ou un ≥ 0).

Supposons par l’absurde que l < 0. Alors d’après l’alinéa précédent, il existe n1 ∈ N tel
que pour tout n ≥ n1, un < 0, ce qui contredit l’hypothèse que pour tout n ≥ n0, un ≥ 0.

L’hypothèse l < 0 est donc absurde, ce qui implique que l ≥ 0.

4. Supposons qu’il existe n0 ∈ N tel que pour tout n ≥ n0, un < 0 (ou un ≤ 0).

Alors pour tout n ≥ n0,−un > 0 (ou −un ≥ 0) donc d’après l’alinéa précédent, puisque
la suite (−un)n∈N converge vers −l, on a −l ≥ 0 donc l ≤ 0.

■

Remarque 9. Il faut noter qu’en passant à la limite, les inégalités strictes deviennent larges.

En effet, pour tout n ∈ N∗, on a
1

n
> 0 mais lim

n→+∞

1

n
= 0.

Ainsi, si pour tout n ≥ n0, un > 0 alors lim
n→+∞

un ≥ 0.

Corollaire 1

Soit a ∈ R. Soit (un)n∈N une suite réelle convergente de limite l ∈ R.
1. S’il existe n0 ∈ N tel que pour tout n ≥ n0, un > a (ou un ≥ a), alors l ≥ a.

2. S’il existe n0 ∈ N tel que pour tout n ≤ n0, un < a (ou un ≤ a), alors l ≤ a.

Démonstration. Il suffit d’appliquer la proposition précédente à la suite (un − a)n∈N qui
converge vers l − a. ■

Théorème 2: Théorèmes de comparaison

Soient (un)n∈N et (vn)n∈N deux suites réelles. On suppose qu’il existe n0 ∈ N tel que pour
tout n ≥ n0, alors un ≤ vn.

1. Si lim
n→+∞

un = +∞, alors lim
n→+∞

vn = +∞.

2. Si lim
n→+∞

vn = −∞, alors lim
n→+∞

un = −∞.

3. Si les suites (un)n∈N et (vn)n∈N sont convergentes de limites respectives l et l′, alors
l ≤ l′.

Démonstration.

1. On suppose que lim
n→+∞

un = +∞.

Soit A > 0. Il existe donc n1 ∈ N tel que pour tout n ≥ n1, un ≥ A.

Soit N = max(n0, n1). Pour tout n ≥ N, on a alors A ≤ un ≤ vn, ce qui implique que

lim
n→+∞

vn = +∞.

2. On suppose que lim
n→+∞

vn = −∞. On a donc pour tout n ≥ n0,−vn ≤ −un et lim
n→+∞

−vn =

+∞.

D’après l’alinéa précédent, on en déduit que lim
n→+∞

−un = +∞, d’où lim
n→+∞

un = −∞.

3. On suppose que lim
n→+∞

un = l ∈ R et lim
n→+∞

vn = l′ ∈ R.

Ceci implique que lim
n→+∞

vn − un = l′ − l.

Par ailleurs, on a pour tout n ≥ n0, vn − un ≥ 0. Donc d’après la proposition précédente,
ceci implique que lim

n→+∞
vn − un ≥ 0, i.e. l′ − l ≥ 0 d’où l ≤ l′.
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■

Exemple 9. On pose pour tout n ∈ N, un = (2 + (−1)n)n.

On a pour tout n ∈ N, 2 + (−1)n ≥ 1 donc pour tout n ∈ N, un ≥ n donc par comparaison
lim

n→+∞
un = +∞.

Remarque 10. Il y a des cas où l’on ne peut rien conclure :

• Si lim
n→+∞

vn = l ou lim
n→+∞

vn = +∞, on ne peut rien conclure de l’inégalité un ≤ vn. Il se

peut même que la suite (un)n∈N n’admette pas de limite.

Par exemple, si pour tout n ∈ N, un = (−1)n et vn = n+1, alors on a pour tout n ∈ N, un ≤
vn. La suite (vn)n∈N tend vers +∞ mais la suite (un)n∈N n’a pas de limite.

• Idem si lim
n→+∞

un = −∞ ou lim
n→+∞

un = l ∈ R, on ne peut rien conclure quant à la suite

(vn)n∈N.

Théorème 3: Théorème des gendarmes

Soient (un)n∈N, (vn)n∈N et (wn)n∈N trois suites réelles. On suppose qu’il existe n0 ∈ N
tel que pour tout n ≥ n0, un ≤ vn ≤ wn.
On suppose en outre que les suites (un)n∈N et (wn)n∈N convergent vers la même limite
l ∈ R.
Alors la suite (vn)n∈N est convergente et on a lim

n→+∞
vn = l.

Démonstration. Soit ε > 0. Puisque la suite (un)n∈N converge vers l, il existe n1 ∈ N tel
que pour tout n ≥ n1, |un−l| ≤ ε, ce qui implique en particulier que pour tout n ≥ n1, un ≥ l−ε.

De même, puisque la suite (wn)n∈N converge vers l, il existe n2 ∈ N tel que pour tout
n ≥ n2, |wn − l| ≤ ε, ce qui implique en particulier que pour tout n ≥ n2, wn ≤ l + ε.

Posons N = max(n0, n1, n2).

Alors pour tout n ≥ N, on a

l − ε ≤ un ≤ vn ≤ wn ≤ l + ε

donc pour tout n ≥ N, l − ε ≤ vn ≤ l + ε, i.e. |vn − l| ≤ ε.

On en déduit que la suite (vn)n∈N est convergente et que lim
n→+∞

vn = l. ■

Exemple 10. Soit x ∈ R. On pose pour tout n ∈ N∗, un =
⌊nx⌋
n

.

Par définition de la partie entière, on a pour tout n ∈ N∗,

nx− 1 < ⌊nx⌋ ≤ nx

donc pour tout n ∈ N∗,

nx− 1

n
<

⌊nx⌋
n

≤ x,

i.e. pour tout n ∈ N∗,

x− 1

n
< un ≤ x

Puisque lim
n→+∞

x− 1

n
= lim

n→+∞
x = x, d’après le théorème des gendarmes, on peut en conclure

que la suite (un)n∈N∗ est convergente et que lim
n→+∞

un = x.
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16.1.4 Théorème de la limite monotone

Théorème 4: Théorème de la limite monotone

1. Toute suite réelle croissante et majorée converge.

2. Toute suite réelle décroissante et minorée converge.

Démonstration. Soit (un)n∈N une suite réelle.

1. On suppose que la suite (un)n∈N est croissante et majorée. Puisqu’elle est majorée, l’en-
semble A = {un, n ∈ N} est une partie de R non vide et majorée. Elle admet donc une
borne supérieure sup(A).

Montrons que la suite (un)n∈N converge vers sup(A).

Soit ε > 0.

Par définition de sup(A), il existe n0 ∈ N tel que sup(A)− ε < un0 ≤ sup(A).

Puisque la suite (un)n∈N est croissante, alors pour tout n ≥ n0, un ≥ un0 . De plus, par
définition de sup(A), pour tout n ∈ N, un ≤ sup(A) donc pour tout n ≥ n0, on a

sup(A)− ε < un0 ≤ un ≤ sup(A)

i.e. pour tout n ≥ n0,−ε < un − sup(A) ≤ 0 < ε d’où

∀n ≥ n0, |un − sup(A)| < ε,

ce qui prouve que la suite (un)n∈N converge vers sup(A).

2. On suppose que la suite (un)n∈N est décroissante et minorée. Il existe donc m ∈ R tel que
pour tout n ∈ N, un ≥ m.

Posons pour tout n ∈ N, vn = −un. Alors pour tout n ∈ N, vn ≤ −m donc la suite (vn)n∈N
est majorée.

D’autre part, pour tout n ∈ N, vn+1 − vn = −un+1 + un ≥ 0 puisque la suite (un)n∈N est
décroissante.

On en déduit que la suite (vn)n∈N est croissante et majorée. D’après l’alinéa précédent,
on en déduit qu’elle est convergente de limite l ∈ R donc la suite (un)n∈N converge vers
−l.

■

Remarque 11. • On a donc prouvé qu’une suite croissante et majorée converge vers son
plus petit majorant. De même, une suite décroissante et minorée converge vers son plus grand
minorant.

• Réciproquement, soit A une partie de R non vide et majorée. Il existe alors une suite à
valeurs dans A convergeant vers sup(A).

En effet, par caractérisation de la borne supérieure, pour tout n ∈ N∗, il existe xn ∈ A tel

que sup(A)− 1

n
< xn ⩽ sup(A), i.e. |xn − sup(A)| < 1

n
. D’après le théorème des gendarmes, on

en conclut alors que lim
n→+∞

xn = sup(A).

De même, si A est une partie de R non vide et minorée, il existe une une suite à valeurs
dans A convergeant vers inf(A).

Exemple 11. Soit (un)n∈N∗ la suite définie par un =
n∑

k=0

1

k!
+

1

nn!
pour tout entier naturel n

non nul.
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La suite (un)n∈N∗ est décroissante puisque pour tout n ∈ N∗,

un+1−un =
1

(n+ 1)!
+

1

(n+ 1)(n+ 1)!
− 1

nn!
=

n(n+ 1) + n− (n+ 1)2

n(n+ 1)(n+ 1)!
= − 1

n(n+ 1)(n+ 1)!
≤ 0.

De plus, pour tout n ∈ N∗, un ≥ 0 donc la suite (un)n∈N∗ est décroissante et minorée.

D’après le théorème de la limite monotone, on en déduit que la suite (un)n∈N∗ est conver-
gente. On montrera plus tard qu’elle converge vers e.

Théorème 5

1. Toute suite réelle croissante et non majorée tend vers +∞.

2. Toute suite réelle décroissante et non minorée tend vers −∞.

Démonstration. Soit (un)n∈N une suite réelle.

1. On suppose que la suite (un)n∈N est croissante et non majorée.

Soit A > 0. Puisque la suite (un)n∈N n’est pas majorée, A n’est pas un majorant de la
suite (un)n∈N donc il existe un entier n0 ∈ N tel que un0 > A.

Puisque la suite (un)n∈N est croissante, alors pour tout n ≥ n0, un ≥ un0 > A, ce qui
implique que lim

n→+∞
un = +∞.

2. On suppose que la suite (un)n∈N est décroissante et non minorée.

Alors la suite (−un)n∈N est croissante et non majorée donc d’après l’alinéa précédent, on
a lim

n→+∞
−un = +∞ d’où lim

n→+∞
un = −∞.

■

Remarque 12. En revanche, une suite non majorée (mais pas forcément croissante) ne tend
pas nécessairement vers +∞.

En effet, considérons pour tout n ∈ N, un = (−1)nn.

La suite (un)n∈N n’est pas majorée (car lim
n→+∞

u2n = +∞) mais ne tend pas vers +∞ car

lim
n→+∞

u2n+1 = −∞.

16.2 Etude de suites

16.2.1 Limites de suites classiques

Proposition 12: Limite d’une suite arithmétique

Soit (un)n∈N une suite arithmétique de premier terme u0 et de raison r.
Alors

lim
n→+∞

un =


+∞ si r > 0
u0 si r = 0
−∞ si r < 0.

Démonstration. On sait que pour tout n ∈ N, un = u0 + nr.

• Si r > 0, on a lim
n→+∞

nr = +∞ d’où le résultat.

• Si r = 0, alors pour tout n ∈ N, un = u0 d’où le résultat.

• Si r < 0, on a lim
n→+∞

nr = −∞ d’où le résultat. ■
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Proposition 13: Limite d’une suite géométrique

Soit (un)n∈N une suite géométrique de premier terme u0 ̸= 0 et de raison q ∈ R.
1. Si q > 1, alors

lim
n→+∞

un =

{
+∞ si u0 > 0
−∞ si u0 < 0.

2. Si q = 1, alors
lim

n→+∞
un = u0.

3. Si |q| < 1, alors
lim

n→+∞
un = 0.

4. Si q ≤ −1, alors la suite (un)n∈N n’admet pas de limite.

Démonstration. D’après la proposition précédente, on a pour tout n ∈ N, un = u0 × qn. Il
s’agit donc de déterminer la limite de la suite (qn)n∈N si celle-ci existe.

1. Supposons que q > 1. Alors lim
n→+∞

qn = lim
n→+∞

en ln(q) = +∞ car ln(q) > 0 donc

lim
n→+∞

u0 × qn =

{
+∞ si u0 > 0
−∞ si u0 < 0.

2. Supposons que q = 1. Alors pour tout n ∈ N, un = u0 donc le résultat en découle.

3. Supposons |q| < 1, i.e. −1 < q < 1.

• Si 0 < q < 1, alors lim
n→+∞

qn = lim
n→+∞

en ln(q) = 0 car ln(q) < 0 donc

lim
n→+∞

u0 × qn = 0.

• Si q = 0, alors pour tout n ≥ 1, un = 0 donc le résultat en découle.

• Si −1 < q < 0 alors 0 < −q < 1 donc lim
n→+∞

qn = lim
n→+∞

(−1)n(−q)n = 0 car la suite

((−1)n)n∈N est bornée et la suite ((−q)n)n∈N tend vers 0.

On a donc bien lim
n→+∞

u0 × qn = 0.

4. Supposons que q ≤ −1.

• Si q = −1, alors pour tout n ∈ N, un = (−1)nu0 donc pour tout n ∈ N,

u2n = u0 −→
n→+∞

u0 et u2n+1 = −u0 −→
n→+∞

−u0.

Or, u0 ̸= −u0 car u0 ̸= 0 donc les suites (u2n)n∈N et (u2n+1)n∈N sont convergentes de
limites différentes. On en déduit que la suite (un)n∈N n’admet pas de limite.

• Si q < −1. Alors −q > 1 et on a pour tout n ∈ N, un = u0 × (−1)n(−q)n.

Ainsi, pour tout n ∈ N,

u2n = u0 × (−q)2n = u0 × (q2)n −→
n→+∞

{
+∞ si u0 > 0
−∞ si u0 < 0.

car q2 > 1 et

u2n+1 = −u0 × (−q)2n+1 = qu0 × (q2)n −→
n→+∞

{
−∞ si u0 > 0
+∞ si u0 < 0.

car q < 0 et q2 > 1.

Ainsi, on a lim
n→+∞

u2n ̸= lim
n→+∞

u2n+1 donc la suite (un)n∈N n’admet pas de limite.

■
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16.2.2 Suites arithmético-géométriques

Définition 4: Suites arithmético-géométriques (rappel)

Soit (un)n∈N une suite réelle.
La suite (un)n∈N est dite arithmético-géométrique s’il existe (a, b) ∈ R2 tels que

∀n ∈ N, un+1 = aun + b.

Remarque 13. • Si a = 0, la suite (un)n∈N est stationnaire et pour tout n ⩾ 1, un = b.
• Si a = 1, la suite (un)n∈N est arithmétique de raison b.
• Si b = 0, la suite (un)n∈N est géométrique de raison a.
• Supposons que a ̸= 1. Si la suite (un)n∈N converge vers l ∈ R, alors on a également

lim
n→+∞

un+1 = l donc en passant à la limite dans la relation un+1 = aun+ b, on obtient l = al+ b

d’où l =
b

1− a
. Ceci légitime la proposition suivante, qui va servir de méthode pour étudier les

suites arithmético-géométriques en pratique.

Proposition 14

Soit (a, b) ∈ R2 avec a ̸= 1. Soit (un)n∈N une suite arithmético-géométrique qui vérifie

pour tout n ∈ N, un+1 = aun + b. Posons l =
b

1− a
.

Alors la suite (vn)n∈N définie pour tout n ∈ N par vn = un − l est géométrique de raison
a.
Ainsi, pour tout n ∈ N, un = an(u0 − l) + l.
En particulier, la suite (un)n∈N est convergente si |a| < 1 ou si u0 = l et dans ce cas

lim
n→+∞

un = l =
b

1− a
.

Démonstration. Montrons que la suite (vn)n∈N est géométrique de raison a.
Soit n ∈ N. On a

vn+1 = un+1 − l = aun + b− b

1− a
= aun − ab

1− a
= a

(
un − b

1− a

)
= a(un − l) = avn,

ce qui prouve que la suite (vn)n∈N est géométrique de raison a.
Ainsi, pour tout n ∈ N, vn = v0 × an = (u0 − l)× an.
Il s’ensuit que pour tout n ∈ N, un = vn + l = an(u0 − l) + l.
D’après l’étude des suites géométriques, on en déduit que la suite (un)n∈N est convergente

si et seulement si |a| < 1 (car a = 1 est impossible ici) et dans ce cas lim
n→+∞

an = 0 donc

lim
n→+∞

un = lim
n→+∞

an(u0 − l) + l = l.

■

Exemple 12. Soit (un)n∈N une suite réelle de premier terme u0 = 2 qui vérifie pour tout

n ∈ N, un+1 =
1

2
un − 3.

Commençons par chercher l tel que l =
1

2
l − 3 ⇔ l

2
= −3 ⇔ l = −6.

Posons pour tout n ∈ N, vn = un − l = un + 6. On a alors pour tout n ∈ N,

vn+1 = un+1 + 6 =
1

2
un − 3 + 6 =

1

2
un + 3 =

1

2
(un + 6) =

1

2
vn
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donc la suite (vn)n∈N est géométrique de raison
1

2
, ce qui implique que

∀n ∈ N, vn = v0 ×
(
1

2

)n

=
u0 + 6

2n
=

8

2n
=

1

2n−3
,

donc pour tout n ∈ N, on a un = vn − 6 =
1

2n−3
− 6.

Puisque lim
n→+∞

1

2n−3
= 0, on en déduit que lim

n→+∞
un = −6.

16.2.3 Suites adjacentes

Définition 5: Suites adjacentes

Soient (un)n∈N et (vn)n∈N deux suites réelles.
On dit que les suites (un)n∈N et (vn)n∈N sont adjacentes si elles vérifient les trois propriétés
suivantes :
• La suite (un)n∈N est croissante.
• La suite (vn)n∈N est décroissante.
• La suite (vn − un)n∈N est convergente et lim

n→+∞
vn − un = 0.

Remarque 14. On ne suppose pas a priori que les suites (un)n∈N et (vn)n∈N soient convergentes.

Exemple 13. Posons pour tout entier naturel n ∈ N∗, un = 1− 1

n
et vn = 1 +

1

n
.

• Pour tout n ∈ N∗, un+1 − un = − 1

n+ 1
+

1

n
=

1

n(n+ 1)
> 0 donc la suite (un)n∈N est

croissante.

• Pour tout n ∈ N∗, vn+1 − vn =
1

n+ 1
− 1

n
= − 1

n(n+ 1)
< 0 donc la suite (vn)n∈N est

décroissante.
• Pour tout n ∈ N, on a

vn − un =
2

n
−→

n→+∞
0

donc les suites (un)n∈N∗ et (vn)n∈N∗ sont adjacentes.

Lemme 1

Soient (un)n∈N et (vn)n∈N deux suites adjacentes avec la suite (un)n∈N croissante et la
suite (vn)n∈N décroissante.
Alors

∀n ∈ N, un ≤ vn.

Démonstration. Posons pour tout n ∈ N, wn = vn − un.
Par définition des suites adjacentes, la suite (wn)n∈N converge vers 0.
D’autre part, pour tout n ∈ N, on a

wn+1 − wn = (vn+1 − un+1)− (vn − un) = (vn+1 − vn)− (un+1 − un).

Puisque les suites (vn)n∈N et (un)n∈N sont décroissante et croissante respectivement, on a vn+1−
vn ≤ 0 et un+1 − un ≥ 0 donc wn+1 − wn ≤ 0.

Ainsi, la suite (wn)n∈N est décroissante et converge vers 0.
Nécessairement (cf. preuve du théorème de la limite monotone), alors 0 = inf{wn, n ∈ N}

donc pour tout n ∈ N, wn ≥ 0, i.e.
∀n ∈ N, un ≤ vn.

■
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Remarque 15. Avec les mêmes notations que précédemment, on a donc pour tout entier
naturel n ∈ N,

u0 ≤ u1 ≤ u2 ≤ · · · ≤ un−1 ≤ un ≤ vn ≤ vn−1 ≤ . . . v2 ≤ v1 ≤ v0.

Théorème 6: Théorème des suites adjacentes

Soient (un)n∈N et (vn)n∈N deux suites adjacentes.
Alors les suites (un)n∈N et (vn)n∈N sont convergentes et on a

lim
n→+∞

un = lim
n→+∞

vn.

Démonstration. On peut supposer sans perte de généralité que la suite (un)n∈N est crois-
sante et la suite (vn)n∈N est décroissante.

D’après le lemme précédent, on a pour tout n ∈ N, un ≤ vn. Puisque la suite (vn)n∈N est
décroissante, alors pour tout n ∈ N, vn ≤ v0 donc pour tout n ∈ N, un ≤ v0.

Ainsi, la suite (un)n∈N est croissante et majorée par v0. D’après le théorème de la limite
monotone, elle est donc convergente vers une limite l ∈ R.

De même, puisque la suite (un)n∈N est croissante, alors pour tout n ∈ N, u0 ≤ un ≤ vn donc
la suite (vn)n∈N est décroissante et minorée par u0.

D’après le théorème de la limite monotone, elle est convergente vers une limite l′.

Or, par hypothèse, on a lim
n→+∞

vn − un = l′ − l = 0 donc l = l′.

On en conclut que les suites (un)n∈N et (vn)n∈N sont convergentes et de même limite. ■

Remarque 16. • Une fois prouvée la convergence de la suite (un)n∈N, on pouvait simplement
remarquer que vn = (vn − un) + un donc la suite (vn)n∈N converge comme somme de suites
convergentes et

lim
n→+∞

vn = lim
n→+∞

(vn − un) + lim
n→+∞

un = 0 + l = l.

• Avec les mêmes notations que dans la preuve, si on note l la limite commune des suites
(un)n∈N et (vn)n∈N, on a alors pour tout n ∈ N,

u0 ≤ u1 ≤ u2 ≤ · · · ≤ un−1 ≤ un ≤ l ≤ vn ≤ vn−1 ≤ . . . v2 ≤ v1 ≤ v0.

Exemple 14. Dans l’exemple pris ci-dessus, les deux suites (un)n∈N et (vn)n∈N convergeaient
toutes deux vers 1.

16.2.4 Etudes de suites du type un+1 = f(un)

On s’intéresse dans cette section aux suites définies par récurrence, c’est à dire aux suites
vérifiant une relation de la forme un+1 = f(un) pour tout n ∈ N où f : D −→ R est une
application définie sur D. Pour cela, il est donc nécessaire de fixer le premier terme de la suite
u0 ∈ D et de s’assurer que l’ensemble D est stable par f, i.e. f(D) ⊂ D.

Ensuite, il peut être utile de déterminer la monotonie de la suite (un)n∈N en vue d’utiliser
le théorème de la limite monotone.

Pour cela, on peut étudier le signe de un+1 − un = f(un) − un, ce qui revient à étudier le
signe de f(x)− x pour x ∈ D.

Enfin, on a le théorème important suivant, qui sera démontré dans le chapitre ≪ Limites et
continuité ≫.
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Théorème 7

Soit D ⊂ R. Soit f : D −→ R une application continue. On suppose que f(D) ⊂ D.
Soit (un)n∈N une suite réelle définie par u0 ∈ D et par un+1 = f(un) pour tout n ∈ N.
On suppose que la suite (un)n∈N converge vers une limite l ∈ D.
Alors l est un point fixe de f, i.e.

l = f(l).

Remarque 17. Ce théorème signifie que les limites éventuelles d’une telle suite (un)n∈N sont
à chercher parmi les points fixes de f, c’est à dire les solutions de l’équation f(x) = x.

Exemple 15. Etudions la suite (un)n∈N définie par u0 ∈ R et un+1 = un(1 + un).

On a bien une suite définie par récurrence de la forme un+1 = f(un) où f : x 7−→ x(1 + x)
est définie sur R tout entier.

Cherchons les points fixes de f, c’est à dire résolvons l’équation f(x) = x. On a

f(x) = x ⇔ x(1 + x) = x ⇔ x2 = 0 ⇔ x = 0.

Ainsi, la seule limite possible de la suite (un)n∈N est l = 0.

Par ailleurs, on a pour tout n ∈ N, un+1 − un = un(1 + un) − un = u2n ≥ 0 donc la suite
(un)n∈N est croissante.

Il y a maintenant plusieurs cas selon la valeur de u0 :

• Si u0 > 0, la suite (un)n∈N est strictement croissante et on a pour tout n ∈ N, un > u0 > 0.
La suite ne peut donc pas converger vers 0. Elle est donc croissante et non majorée, donc elle
diverge vers +∞.

• Si u0 = 0, alors pour tout n ∈ N, un = 0 donc la suite est constante égale à 0 et on a
lim

n→+∞
un = 0.

• Si −1 < u0 < 0, puisque pour tout x ∈]− 1, 0[,−1 < x < f(x) < 0, l’intervalle ]− 1, 0[ est
stable par f et on a pour tout n ∈ N,−1 < un ≤ un+1 < 0.

La suite (un)n∈N est donc croissante et majorée. D’après le théorème de la limite monotone,
elle est convergente.

La seule limite possible étant 0, on a lim
n→+∞

un = 0.

• Si u0 = −1, on a u1 = 0 et pour tout n ≥ 1, un = 0 donc lim
n→+∞

un = 0.

• Si u0 < −1, on a u1 = f(u0) > 0 et donc pour tout n ≥ 1, un > 0 donc on trouve comme
dans le premier cas, lim

n→+∞
un = +∞.

On en conclut donc que

lim
n→+∞

un =

{
0 si − 1 ≤ u0 ≤ 0

+∞ sinon.

Remarque 18. La monotonie de f donne également des informations intéressantes sur la suite.

• Si f est croissante, alors la suite est monotone.

En effet, si u0 ⩽ u1, alors u1 = f(u0) ⩽ f(u1) = u2 et on en déduit aisément par récurrence
que la suite est croissante.

En revanche, si u0 ⩾ u1, alors u1 = f(u0) ⩾ f(u1) = u2 et on en déduit aisément par
récurrence que la suite est décroissante.

• Si f est décroissante, alors f ◦ f est croissante donc les suites (u2n)n∈N et (u2n+1)n∈N sont
monotones.
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16.3 Etude asymptotique

16.3.1 Croissances comparées

Pour a > 1 et α ∈ R∗
+, on a

lim
n→+∞

n! = lim
n→+∞

an = lim
n→+∞

nα = +∞.

Toutefois, ces trois suites ne tendent pas vers +∞ ≪ à la même vitesse ≫. L’objet du théorème
suivant est de comparer les croissances de ces suites.

Théorème 8: Théorème de croissances comparées

Soit a > 1 et α ∈ R∗
+.

Alors

lim
n→+∞

n!

an
= +∞ et lim

n→+∞

an

nα
= +∞.

Démonstration. • Montrons que lim
n→+∞

n!

an
= +∞. Soit N = ⌊a⌋+ 1.

Pour tout n > N on a

n!

an
=

n∏
k=1

k

a
=

N∏
k=1

k

a

n∏
k=N+1

k

a
>

N !

aN

(
N

a

)n−N

−→
n→+∞

+∞

puisque
N

a
> 1, donc par comparaison, on obtient bien

lim
n→+∞

n!

an
= +∞.

• Montrons que lim
n→+∞

an

nα
= +∞.

On a
an

nα
= en ln(a)−α ln(n) = en(ln(a)−α

ln(n)
n

).

Or, par croissance comparée, lim
n→+∞

ln(n)

n
= 0 donc puisque ln(a) > 0, on obtient par

composition des limites que

lim
n→+∞

en(ln(a)−α
ln(n)
n

) = +∞

d’où lim
n→+∞

an

nα
= +∞. ■

Remarque 19. • Il faut retenir que la factorielle domine les suites géométriques, qui elles-
mêmes dominent les suites puissances.

• Ceci implique en particulier que pour tout α ∈ R∗
+, lim

n→+∞

n!

nα
= +∞.

Exemple 16. • lim
n→+∞

n37

3n
= 0.

• lim
n→+∞

(
3

4

)n√
n = 0.
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16.3.2 Suites équivalentes

Définition 6: Suites équivalentes

Soient (un)n∈N et (vn)n∈N deux suites réelles ne s’annulant pas à partir d’un certain rang,
i.e. on suppose qu’il existe n0 ∈ N, tel que pour tout n ≥ n0, un ̸= 0 et vn ̸= 0.
On dit que les suites (un)n∈N et (vn)n∈N sont équivalentes, et on note un ∼ vn si

lim
n→+∞

un
vn

= 1.

Remarque 20. Dans ce cas, on a également lim
n→+∞

vn
un

= 1.

Exemple 17. • On a
n+ 1

n
= 1 +

1

n
−→

n→+∞
1 donc n ∼ n+ 1.

• On a

√
n2 − 3n+ 4

n
=

√
1− 3

n
+

4

n2
−→

n→+∞
1 donc

√
n2 − 3n+ 4 ∼ n.

Proposition 15

Soient (un)n∈N et (vn)n∈N deux suites équivalentes.
On suppose que lim

n→+∞
un = l ∈ R ∪ {−∞,+∞}.

Alors
lim

n→+∞
vn = l.

Démonstration. Pour tout n ∈ N, on a vn = un × vn
un

−→
n→+∞

l × 1 = l. ■

Remarque 21. On vient donc de montrer que deux suites équivalentes ont même limite. Mais
la réciproque est fausse.

On a lim
n→+∞

n = lim
n→+∞

n2 = +∞ mais lim
n→+∞

n2

n
= +∞.

On a toutefois une réciproque partielle :

Proposition 16

Soit (un)n∈N telle que lim
n→+∞

un = l ∈ R∗.

Alors la suite (un)n∈N est équivalente à la suite constante égale à l, i.e.

un ∼ l.

Démonstration. On a vu qu’une suite qui tend vers une limite non nulle est du signe de
cette limite à partir d’un certain rang. En particulier, la suite (un)n∈N ne s’annule pas à partir
d’un certain rang et on a

lim
n→+∞

un
l

=
l

l
= 1

donc un ∼ l. ■

Remarque 22. En revanche, il est formellement interdit d’écrire un ∼ 0.
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La notion d’équivalence vérifie les propriétés fondamentales suivantes :

Proposition 17: Propriétés de l’équivalence

Soient (un)n∈N, (vn)n∈N, (wn)n∈N et (xn)n∈N des suites ne s’annulant pas à partir d’un
certain rang.

1. (Réflexivité) On a un ∼ un.

2. (Symétrie) Si un ∼ vn alors vn ∼ un.

3. (Transitivité) Si un ∼ vn et vn ∼ wn, alors un ∼ wn.

4. Si un ∼ vn alors pour tout λ ∈ R∗, λun ∼ λvn.

5. Si un ∼ vn alors
1

un
∼ 1

vn
.

6. Si un ∼ vn, alors pour tout p ∈ Z, upn ∼ vpn.

Si de plus, les suites (un)n∈N et (vn)n∈N sont stictement positives à partir d’un
certain rang, alors pour tout α ∈ R, uαn ∼ vαn .

7. Si un ∼ vn, alors |un| ∼ |vn|.
8. Si un ∼ vn et wn ∼ xn, alors

unwn ∼ vnxn et
un
wn

∼ vn
xn

.

Démonstration.

1. On a pour tout n ∈ N,
un
un

= 1 −→
n→+∞

1.

2. On a lim
n→+∞

un
vn

= 1 donc

lim
n→+∞

vn
un

= lim
n→+∞

1
un
vn

−→
n→+∞

1,

donc vn ∼ un.

3. On a
un
wn

=
un
vn

vn
wn

−→
n→+∞

1

donc un ∼ wn.

4. Soit λ ∈ R∗. Alors
λun
λvn

=
un
vn

−→
n→+∞

1

donc λun ∼ λvn.

5. On a
1
un

1
vn

=
vn
un

−→
n→+∞

1

donc
1

un
∼ 1

vn
.

6. Soit p ∈ Z. Alors
upn
vpn

=

(
un
vn

)p

−→
n→+∞

1

donc upn ∼ vpn.

Supposons que les suites (un)n∈N et (vn)n∈N sont stictement positives à partir d’un certain
rang n0 ∈ N.
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Soit α ∈ R. Alors

uαn
vαn

=
eα ln(un)

eα ln(vn)
= eα(ln(un)−ln(vn)) = eα ln(un

vn
) −→
n→+∞

1

par composition de limites.

7. Par composition de limites, puisque lim
x→1

|x| = 1, alors

lim
n→+∞

|un|
|vn|

=

∣∣∣∣unvn
∣∣∣∣ −→
n→+∞

1

donc |un| ∼ |vn|.
8. On a

unwn

vnxn
=

un
vn

wn

xn
−→

n→+∞
1× 1 = 1

donc unwn ∼ vnxn et
un
wn
vn
xn

=
un
vn

× xn
wn

−→
n→+∞

1× 1 = 1

donc
un
wn

∼ vn
xn

.

■

Exemple 18. • On a √
n2 + 5n− 1

2n+ 3
∼ n

2n
∼ 1

2
.

• On a

1√
n
− 2

sin(n)

n
+

(−1)n

n2
=

1√
n

(
1− 2

sin(n)√
n

+
(−1)n

n
√
n

)
∼ 1√

n
× 1 =

1√
n
.

Remarque 23. En revanche, on ne peut pas additionner les équivalents.

En effet, on a n ∼ n+ 1 et −n ∼ −n mais on n’a pas n− n ∼ n+ 1− n car sinon on aurait
0 ∼ 1!

On ne peut pas non plus les composer par des fonctions. En effet, on a n ∼ n + 1 mais
en+1

en
= e ne tend pas vers 1 donc en+1 ̸∼ en.

Les équivalents suivants sont importants et à connâıtre :

Proposition 18: Equivalents de référence

Soit (un)n∈N une suite réelle qui ne s’annule pas à partir d’un certain rang et telle que
lim

n→+∞
un = 0. Alors

1. sin(un) ∼ un;

2. tan(un) ∼ un;

3. 1− cos(un) ∼
u2n
2
;

4. ln(1 + un) ∼ un;

5. eun − 1 ∼ un; ,

6. ∀α ∈ R∗, (1 + un)
α − 1 ∼ αun.

Remarque 24. En particulier, si (un)n∈N tend vers 0, alors
√
1 + un − 1 ∼ un

2
.

Démonstration.
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BCPST1 Lycée Fénelon

1. On a lim
x→0

sin(x)

x
= sin′(0) = cos(0) = 1 donc par composition de limites,

lim
n→+∞

sin(un)

un
= 1

d’où sin(un) ∼ un.

2. Puisque lim
n→+∞

un = 0 et lim
x→0

cos(x) = 1, par composition de limites, on a lim
n→+∞

cos(un) =

1. Ainsi, on a

tan(un) =
sin(un)

cos(un)
∼ un

1
= un.

3. Pour tout x ∈ R, on a cos(2x) = 1− 2 sin2(x) donc 1− cos(2x) = 2 sin2(x). On en déduit
que

1− cos(un) = 2 sin2
(un

2

)
∼ 2

(un
2

)2
=

u2n
2
.

On peut utiliser l’équivalent sin
(un

2

)
∼ un

2
car si lim

n→+∞
un = 0, alors on a aussi

lim
n→+∞

un
2

= 0.

4. On a lim
x→0

ln(1 + x)

x
= 1 donc par composition de limites

lim
n→+∞

ln(1 + un)

un
= 1

donc ln(1 + un) ∼ un.

5. On a lim
x→0

ex − 1

x
= exp′(0) = e0 = 1 donc par composition de limites

lim
n→+∞

eun − 1

un
= 1,

d’où eun − 1 ∼ un.

6. Soit α ∈ R∗. En se servant du fait que lim
n→+∞

α ln(1 + un) = 0 et des deux résultats

précédents, on a

(1 + un)
α − 1 = eα ln(1+un) − 1 ∼ α ln(1 + un) ∼ αun.

■

Exemple 19. On a
cos

(
1
n

)
− 1

sin
(
1
n

) ∼
− 1

2n2

1
n

∼ − 1

2n
−→

n→+∞
0.

Enfin, signalons la formule de Stirling, qui est un équivalent célèbre, mais que nous ne
démontrerons ni n’utiliserons pas :

n! ∼
√
2πn

(n
e

)n
.
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