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Corrigé de la liste d’exercices n°16 Suites réelles

Exercice 1

1. On a pour tout n ∈ N,

un+1

un

=
4n+1(n+ 1)!2

(2(n+ 1))!
× (2n)!

4nn!2
=

4(n+ 1)2

(2n+ 2)(2n+ 1)
=

2(n+ 1)

2n+ 1
=

2n+ 2

2n+ 1
> 1

donc la suite (un)n∈N est strictement croissante.

2. On a pour tout n ∈ N,

un+1

un

=
(n+ 1)!

(n+ 1)n+1
× nn

n!
=

(
n

n+ 1

)n

< 1

donc la suite (un)n∈N est strictement décroissante.

Exercice 2

1. On a pour tout n ∈ N∗,−n
3
< ⌊1− n

3
⌋ ⩽ 1− n

3
donc −1

3
<

⌊1−n
3
⌋

n
⩽ 1

n
− 1

3
.

Puisque lim
n→+∞

1

n
− 1

3
= −1

3
, on déduit du théorème des gendarmes que

lim
n→+∞

⌊1− n
3
⌋

n
= −1

3
.

2. On a pour tout n ∈ N,−2 + (−1)n ⩽ −1 donc (−2 + (−1)n)n ⩽ −n.

Puisque lim
n→+∞

−n = −∞, on en déduit par comparaison que lim
n→+∞

(−2+(−1)n)n = −∞.

3. On a pour tout n ∈ N, u2n = 2n et u2n+1 = 0. Ainsi, lim
n→+∞

u2n = +∞ et lim
n→+∞

u2n+1 = 0.

Puisque lim
n→+∞

u2n ̸= lim
n→+∞

u2n+1, on en déduit que la suite (un)n∈N ne converge pas.

4. On a pour tout n ∈ N∗,

un = −2n2 + n(1 + sin(n)) = n2

(
−2 +

1 + sin(n)

n

)
.

La suite (1 + sin(n))n∈N∗ est bornée donc lim
n→+∞

1 + sin(n)

n
= 0.

On en déduit par somme de limites que lim
n→+∞

−2 +
1 + sin(n)

n
= −2 donc par produit,

lim
n→+∞

n2

(
−2 +

1 + sin(n)

n

)
= −∞.

5. Pour tout n ∈ N∗,

un = (3n−1)7−(2n−1)6 = n7

(
3− 1

n

)7

−n6

(
2− 1

n

)6

= n7

[(
3− 1

n

)7

− 1

n

(
2− 1

n

)6
]
.

On a lim
n→+∞

(
3− 1

n

)7

− 1

n

(
2− 1

n

)6

= 37.

On en déduit que lim
n→+∞

un = +∞.



6. Pour tout n ∈ N∗,

un =
n5(1 + 1

n2 )

n5( sin(n)
n3 − 1)

=
1 + 1

n2

sin(n)
n3 − 1

.

Puisque (sin(n))n∈N∗ est bornée et lim
n→+∞

1

n3
= 0, alors lim

n→+∞

sin(n)

n3
= 0 donc

lim
n→+∞

sin(n)

n3
− 1 = −1.

Par ailleurs, lim
n→+∞

1 +
1

n2
= 1 donc par quotient, on obtient lim

n→+∞
un = −1.

7. En multipliant par n3 le numérateur et le dénominateur, on obtient pour tout n ∈ N∗,

un =
n− 2n2

n+ (−1)n
=

n2( 1
n
− 2)

n(1 + (−1)n

n
)
= n

1
n
− 2

1 + (−1)n

n

.

Puisque ((−1)n)n∈N∗ est bornée et lim
n→+∞

1

n
= 0, alors lim

n→+∞

(−1)n

n
= 0, donc

lim
n→+∞

1 +
(−1)n

n
= 1.

Par ailleurs, lim
n→+∞

1

n
− 2 donc par quotient, lim

n→+∞

1
n
− 2

1 + (−1)n

n

= −2 donc par quotient

lim
n→+∞

un = lim
n→+∞

n
1
n
− 2

1 + (−1)n

n

= −∞.

Exercice 3

1. En multipliant par la quantité conjuguée, on obtient pour tout n ∈ N,

un =
√

n(n+ 1)− n =
(
√

n(n+ 1)− n)(
√
n(n+ 1) + n)√

n(n+ 1) + n

=
n

n
(√

1 + 1
n
+ 1
)

=
1√

1 + 1
n
+ 1

.

On en déduit que lim
n→+∞

un =
1

2
.

2. On a pour tout n ∈ N,

vn =
3n((2

3
)n − 1)

3n((2
3
)n + 1)

=
(2
3
)n − 1

(2
3
)n + 1

.

Puisque
2

3
∈]− 1, 1[, alors lim

n→+∞

(
2

3

)n

= 0 donc lim
n→+∞

vn = −1.



3. On a pour tout n ∈ N∗,

wn =

(
3n((2

3
)n + 1)

2

) 1
n

= 3

(
(2
3
)n + 1

2

) 1
n

= 3e

1
n
ln

(2
3
)n + 1

2


.

Puisque
2

3
∈]− 1, 1[, alors lim

n→+∞

(
2

3

)n

= 0 donc lim
n→+∞

ln

(
(2
3
)n + 1

2

)
= ln

(
1

2

)
.

On en déduit que lim
n→+∞

1

n
ln

(
(2
3
)n + 1

2

)
= 0 donc lim

n→+∞
e

1
n
ln

(2
3
)n + 1

2


= 1.

Finalement, lim
n→+∞

wn = 3.

4. Pour tout n ∈ N∗, on a

xn =

2
n−1∑
k=0

k + n

n(n+1)
2

=
(n− 1)n+ n

n(n+1)
2

=
2n2

n2 + n
=

2

1 + 1
n

donc lim
n→+∞

xn = 2.

5. Pour tout n ∈ N∗,

yn = ln

(
n+ 1

n

)
= ln

(
1 +

1

n

)
.

On a lim
n→+∞

1 +
1

n
= 1 et lim

x→1
ln(x) = 0 donc par composition de limites,

lim
n→+∞

un = 0.

Exercice 4

1. On a pour tout n ∈ N, un ⩽ 1 − n et lim
n→+∞

1 − n = −∞ donc par comparaison, on en

déduit que lim
n→+∞

un = −∞.

2. Puisque
3

4
∈]− 1, 1[, alors lim

n→+∞

(
3

4

)n

= 0.

Par ailleurs, la suite (sin(n))n∈N est bornée, donc lim
n→+∞

(
3

4

)n

sin(n) = 0.

3. On a pour tout n ∈ N∗,

un =
n(1 + sin(n)

n
)

n2(1 + 1
n2 )

=
1 + sin(n)

n

n(1 + 1
n2 )

.

Puisque (sin(n))n∈N est bornée et lim
n→+∞

1

n
= 0, on en déduit que lim

n→+∞

sin(n)

n
= 0 donc

lim
n→+∞

1 +
sin(n)

n
= 1.

Par ailleurs, lim
n→+∞

1 +
1

n2
= 1 donc par produit, lim

n→+∞
n

(
1 +

1

n2

)
= +∞. Finalement,

par quotient, on obtient

lim
n→+∞

un = lim
n→+∞

1 + sin(n)
n

n(1 + 1
n2 )

= 0.



4. On a pour tout n ∈ N∗,

un = (−1)n
ln(n)

n
+

sin(n)

n
.

Par croissance comparée, on sait que lim
n→+∞

ln(n)

n
= 0. Puisque ((−1)n)n∈N∗ est bornée,

on en déduit que lim
n→+∞

(−1)n
ln(n)

n
= 0.

On a déjà vu par ailleurs que lim
n→+∞

sin(n)

n
= 0 donc lim

n→+∞
un = 0.

5. On a pour tout n ∈ N∗,

un = n

(
1 + (−1)n

ln(n)

n

)
.

On a vu que lim
n→+∞

(−1)n
ln(n)

n
= 0 donc lim

n→+∞
1 + (−1)n

ln(n)

n
= 1 donc par produit, on

en déduit que

lim
n→+∞

un = lim
n→+∞

n

(
(−1)n

ln(n)

n

)
= +∞.

6. Puisque pour tout réel x, | sin(x)| ⩽ 1, on a pour tout n ∈ N∗,

|un| =
∣∣∣∣12 sin(n!)

∣∣∣∣n ⩽

(
1

2

)n

.

Puisque
1

2
∈] − 1, 1[, on a lim

n→+∞

(
1

2

)n

= 0 donc par comparaison, on en déduit que

lim
n→+∞

un = 0.

Exercice 5

1. En multipliant par la quantité conjuguée, on obtient

un =
(
√
n2 + 3−

√
n2 + 1)(

√
n2 + 3 +

√
n2 + 1)

(
√
n2 + 3 +

√
n2 + 1)

=
n2 + 3− (n2 + 1)

(
√
n2 + 3 +

√
n2 + 1)

=
2

(
√
n2 + 3 +

√
n2 + 1)

.

Or, lim
n→+∞

(
√
n2 + 3 +

√
n2 + 1) = +∞ donc lim

n→+∞
un = 0+.

2. On a lim
n→+∞

1

n
= 0 et lim

x→0
cos(x) = 1 donc par composition de limites, on obtient

lim
n→+∞

cos

(
1

n

)
= 1.

Par produit, on en déduit que lim
n→+∞

n cos

(
1

n

)
= +∞.

3. Puisque (cos(n))n∈N est bornée et lim
n→+∞

1

n
= 0, on en déduit que lim

n→+∞

cos(n)

n
= 0.

4. Puisque ((−1)n)n∈N est bornée et lim
n→+∞

1

n
= 0, on en déduit que lim

n→+∞

(−1)n

n
= 0 donc

lim
n→+∞

exp

(
1− (−1)n

n

)
= e.



Exercice 6

1. Soit n ∈ N∗.

Pour tout k ∈ J1, nK, on a n+ k ⩽ 2n donc
1√

n+ k
⩾

1√
2n

. En sommant pour k allant

de 1 à n, on obtient pour tout n ∈ N∗,

un =
n∑

k=1

1√
n+ k

⩾
n∑

k=1

1√
2n

=
n√
2n

=

√
n

2
.

Or, lim
n→+∞

√
n

2
= +∞ donc par comparaison, on obtient lim

n→+∞
un = +∞.

2. Soit n ∈ N∗. On a pour tout k ∈ J1, nK, n+ 1 ⩽ n+ k ⩽ 2n donc

1

4n2
⩽

1

(n+ k)2
⩽

1

(n+ 1)2
.

En sommant pour k allant de 1 à n, on obtient pour tout n ∈ N∗,

n∑
k=1

1

4n2
⩽

n∑
k=1

1

(n+ k)2
⩽

n∑
k=1

1

(n+ 1)2

d’où
1

4n
⩽ vn ⩽

n

(n+ 1)2
.

Or, pour tout n ∈ N∗,
n

(n+ 1)2
=

n

n2 + 2n+ 1
=

1

n+ 2 + 1
n

−→
n→+∞

0. De même,

lim
n→+∞

1

4n
= 0 donc d’après le théorème des gendarmes, on en déduit que lim

n→+∞
vn = 0.

Exercice 7

1. Soit x ∈ R. On a pour tout n ∈ N∗, n2x− 1 < ⌊n2x⌋ ⩽ n2x donc nx− 1
n
<

⌊n2x⌋
n

⩽ nx.

• Si x = 0, alors pour tout n ∈ N∗, un = 0.

• Si x > 0, alors lim
n→+∞

nx − 1

n
= +∞ donc par comparaison, on en déduit que

lim
n→+∞

⌊n2x⌋
n

= +∞.

• Si x < 0, alors lim
n→+∞

nx = −∞ donc par comparaison, on en déduit que lim
n→+∞

⌊n2x⌋
n

=

−∞.

2. Soit x ∈ R. Soit n ∈ N∗. On a pour tout k ∈ J1, nK, kx − 1 < ⌊kx⌋ ⩽ kx donc
kx− 1

n2
<

⌊kx⌋
n2

⩽
kx

n2
.

En sommant pour k allant de 1 à n, on trouve

n∑
k=1

kx− 1

n2
<

n∑
k=1

⌊kx⌋
n2

⩽
n∑

k=1

kx

n2

d’où
n(n+ 1)x

2n2
− 1

n
< vn ⩽

n(n+ 1)x

2n2
.

Or,
n(n+ 1)x

2n2
=

(1 + 1
n
)x

2
−→

n→+∞

x

2
. De même, lim

n→+∞

n(n+ 1)x

2n2
− 1

n
=

x

2
donc d’après

le théorème des gendarmes, on en déduit que lim
n→+∞

vn =
x

2
.



Exercice 8

Montrons par récurrence que pour tout n ∈ N∗, |un| ⩽ kn|u0|.
• Initialisation : Pour n = 0, on a k0|u0| = |u0| ⩾ |u0| donc la propriété est vraie au rang
n = 0.
• Hérédité : Soit n ∈ N fixé tel que |un| ⩽ kn|u0|. Montrons que |un+1| ⩽ kn+1|u0|.
Par propriété de la suite, on a |un+1| ⩽ k|un| donc en utilisant l’hypothèse de récurrence (et
puisque k > 0), on en déduit que

|un+1| ⩽ k × kn|u0| = kn+1|u0|,

ce qui prouve la propriété au rang n+ 1 et achève la récurrence.
Ainsi, on a pour tout n ∈ N, 0 ⩽ |un| ⩽ kn|u0|.
Or, puisque k ∈]0, 1[, on sait que lim

n→+∞
kn|u0| = 0 donc par comparaison, on en déduit que

lim
n→+∞

|un| = 0, i.e. lim
n→+∞

un = 0.

Exercice 9

On a pour tout n ∈ N, 0 ⩽ vn ⩽ 1 donc en multipliant par un (qui est positif), on obtient pour
tout n ∈ N, 0 ⩽ unvn ⩽ un ⩽ 1.
Puisque lim

n→+∞
unvn = 1, par hypothèse, on déduit du théorème des gendarmes que lim

n→+∞
un = 1.

En échangeant un et vn (qui jouent des rôles symétriques), on trouve de même que lim
n→+∞

vn = 1.

Exercice 10

1. Montrons par récurrence que pour tout n ∈ N, un > 0.

•Initialisation : Pour n = 0, on a u0 = 2 > 0 donc la propriété est vraie au rang n = 0.

•Hérédité : Soit n ∈ N fixé tel que un > 0. Montrons que un+1 > 0.

Par définition de la suite, on a un+1 =
un

2
+

1

un

.

Or, par hypothèse de récurrence, un > 0 donc
un

2
> 0 et

1

un

d’où
un

2
+

1

un

> 0, ce qui

assure que un+1 > 0 et achève la récurrence.

2. On a pour tout n ∈ N

un+1 −
√
2 =

u2
n + 2

2un

−
√
2 =

u2
n − 2

√
2un + 2

2un

=
(un −

√
2)2

2un

⩾ 0

car pour tout n ∈ N, un > 0. Ceci prouve que pour tout n ⩾ 1, un ⩾
√
2. Or, on a

également u0 = 2 ⩾
√
2 donc on a bien montré que pour tout n ∈ N, un ⩾

√
2.

3. Pour tout n ∈ N, on a

un+1 − un =
u2
n + 2

2un

− un =
u2
n + 2− 2u2

n

2un

=
2− u2

n

2un

.

Or, on sait que pour tout n ∈ N, un ⩾
√
2 donc u2

n ⩾ 2 d’où 2 − u2
n ⩽ 0. Puisque pour

tout n ∈ N, 2un > 0, on en déduit que
2− u2

n

2un

⩽ 0, i.e. pour tout n ∈ N, un+1 − un ⩽ 0,

ce qui assure que la suite (un)n∈N est décroissante.



4. La suite (un)n∈N est décroissante et minorée par
√
2. D’après le théorème de la limite

monotone, elle est convergente de limite l ⩾
√
2.

Puisque lim
n→+∞

un = l, on a également lim
n→+∞

un+1 = l, et en passant à la limite dans

l’égalité un+1 =
u2
n + 2

2un

, on obtient

l =
l2 + 2

2l

d’où l2 = 2, i.e. l = ±
√
2. Puisque l ⩾

√
2, on en déduit que l =

√
2, i.e. lim

n→+∞
un =

√
2.

Exercice 11

1.

{
u0 = 3,

un+1 =
1
2
un + 2.

Expression de un. Point fixe l vérifiant = 1
2
l + 2, donc = 4. On pose vn = un − l : alors

vn+1 =
1
2
vn, v0 = u0 − l = 3− 4 = −1. Ainsi vn = −

(
1
2

)n
et

un = 4−
(

1
2

)n
.

Limite. Comme
(
1
2

)n → 0, on a lim
n→∞

un = 4 .

Somme. Pour tout n ∈ N,
n∑

k=0

uk =
n∑

k=0

(
4− 2−k

)
= 4(n+ 1)−

n∑
k=0

2−k = 4(n+ 1)−
1− (1

2
)n+1

1− 1
2

= 4n+ 2 + 2−n.

Donc
n∑

k=0

uk = 4n+ 2 + 2−n −−−→
n→∞

+∞ .

2.

{
u0 = 5, u1 = 2,

un+2 = 4un+1 − 3un.

Expression de un. Équation caractéristique r2 − 4r + 3 = 0 d’où (r − 1)(r − 3) = 0,
racines 1 et 3. Donc un = A+B 3n. Avec u0 = 5 et u1 = 2 :{

A+B = 5,

A+ 3B = 2
⇒ B = −3

2
, A = 13

2
.

Ainsi

un =
13

2
− 3

2
3n =

13− 3n+1

2
.

Limite. Le terme −3
2
3n domine : lim

n→∞
un = −∞ .

Somme. Pour tout n ∈ N,
n∑

k=0

uk =
n∑

k=0

(
13
2
− 3

2
3k
)
=

13

2
(n+ 1)− 3

2
· 3

n+1 − 1

3− 1
=

13

2
(n+ 1)− 3n+2

4
+

3

4
.

Donc
n∑

k=0

uk =
13

2
(n+ 1)− 3n+2

4
+

3

4
−−−→
n→∞

−∞ .



3.

{
u0 = 4,

un+1 = un − 3.

Expression de un. Suite arithmétique de raison −3 :

un = 4− 3n .

Limite. lim
n→∞

un = −∞ .

Somme. Pour tout n ∈ N,
n∑

k=0

uk =
n∑

k=0

(4− 3k) = 4(n+ 1)− 3
n∑

k=0

k = 4(n+ 1)− 3 · n(n+ 1)

2
= (n+ 1)

(
4− 3

2
n
)
.

Ainsi
n∑

k=0

uk = (n+ 1)
(
4− 3

2
n
)

−−−→
n→∞

−∞ .

Exercice 12

1. Montrons par récurrence que pour tout n ∈ N, un ⩽ vn.

•Initialisation : Pour n = 0, on a u0 = 1 ⩽ 5 = v0, ce qui prouve la propriété au rang
n = 0.

•Hérédité : Soit n ∈ N fixé tel que un ⩽ vn. Montrons que un+1 ⩽ vn+1.

On a vn+1 − un+1 =
1

3
(vn − un) ⩾ 0 par hypothèse de récurrence, ce qui prouve la

propriété au rang n+ 1 et achève la récurrence.

2. • Pour tout n ∈ N, on a un+1−un =
1

3
(vn−un) ⩾ 0 d’après la question précédente donc

la suite (un)n∈N est croissante.

• Pour tout n ∈ N, on a vn+1− vn =
1

3
(un− vn) ⩽ 0 d’après la question précédente donc

la suite (vn)n∈N est décroissante.

• Enfin, on a pour tout n ∈ N, vn+1 − un+1 =
1

3
(vn − un) donc la suite (vn − un)n∈N est

géométrique de raison
1

3
.

Ainsi, pour tout n ∈ N, vn − un =
v0 − u0

3n
d’où lim

n→+∞
vn − un = 0.

On a donc bien montré que les suites (un)n∈N et (vn)n∈N sont adjacentes.

3. D’après le théorème sur les suites adjacentes, les suites (un)n∈N et (vn)n∈N sont conver-
gentes de même limite l.

En particulier, on a lim
n→+∞

un + vn = 2l.

Or, pour tout n ∈ N, un+1 + vn+1 = un + vn donc la suite (un + vn)n∈N est constante
égale à u0 + v0 = 6.

Ainsi, lim
n→+∞

un + vn = 6 = 2l d’où l = 3.

Finalement, on a lim
n→+∞

un = lim
n→+∞

vn = 3.

Exercice 13

1. • Pour tout n ∈ N∗,

L2(n+1) − L2n = L2n+2 − L2n =
1

2n+ 2
− 1

2n+ 1
⩽ 0



donc la suite (L2n)n∈N∗ est décroissante.

• Pour tout n ∈ N∗,

L2(n+1)+1 − L2n+1 = L2n+3 − L2n+1 = − 1

2n+ 3
+

1

2n+ 2
⩾ 0

donc la suite (L2n+1)n∈N∗ est croissante.

• Enfin, pour tout n ∈ N∗,

L2n+1 − L2n = − 1

2n+ 1
−→

n→+∞
0.

Les suites (L2n)n∈N∗ et (L2n+1)n∈N∗ sont donc bien adjacentes.

2. D’après le théorème des suites adjacentes, ceci implique que les suites (L2n)n∈N∗ et
(L2n+1)n∈N∗ sont convergentes et de même limite l.

On en conclut que la suite (Ln)n∈N∗ est convergente de limite l. (On peut en fait montrer
que l = − ln(2).)

Exercice 14

1. Montrons par récurrence que pour tout n ∈ N, un > 0 et vn > 0.

•Initialisation : Pour n = 0, on a u0 = a > 0 et v0 = b > 0 donc la propriété est vraie
au rang n = 0.

•Hérédité : Soit n ∈ N tel que un > 0 et vn > 0. Montrons que un+1 > 0 et vn+1 > 0.

On a un+1 =
√
unvn > 0 et vn+1 =

un + vn
2

> 0 par hypothèse de récurrence, ce qui

prouve la propriété au rang n+ 1 et achève la récurrence.

2. Pour tout n ∈ N, on a

vn+1 − un+1 =
un + vn

2
−

√
unvn =

un + vn − 2
√
unvn

2
=

(
√
un −

√
vn)

2

2
⩾ 0

donc pour tout n ∈ N, un+1 ⩽ vn+1, ce qui implique que pour tout n ⩾ 1, un ⩽ vn.

3. • Pour tout n ⩾ 1, on a

un+1 − un =
√
unvn − un =

√
un(

√
vn −

√
un).

On sait que pour tout n ∈ N, un > 0 donc
√
un > 0. D’autre part, on sait que pour tout

n ⩾ 1, 0 < un ⩽ vn donc par croissance de la racine carrée sur R+, on en déduit que
pour tout n ⩾ 1,

√
un ⩽

√
vn, i.e.

√
vn −

√
un ⩾ 0.

Il en découle que pour tout n ⩾ 1, un+1 − un ⩾ 0, ce qui prouve la croissance de la suite
(un)n⩾1.

• Pour tout n ⩾ 1, on a

vn+1 − vn =
un + vn

2
− vn =

un − vn
2

⩽ 0

d’après la question précédente donc la suite (vn)n⩾1 est décroissante.

4. • On a pour tout n ⩾ 1, un ⩽ vn.

Puisque la suite (vn)n⩾1 est décroissante, alors pour tout n ⩾ 1, vn ⩽ v1 donc pour tout
n ⩾ 1, un ⩽ vn ⩽ v1.

Ainsi, la suite (un)n⩾1 est croissante et majorée par v1. D’après le théorème de la limite
monotone, elle est donc convergente de limite l ∈ R.



• De même, la suite (un)n⩾1 est croissante donc pour tout n ⩾ 1, u1 ⩽ un ⩽ vn.

Ainsi, la suite (vn)n⩾1 est décroissante et minorée par u1. D’après le théorème de la limite
monotone, elle est donc convergente de limite l′ ∈ R.

• En passant à la limite dans l’égalité vn+1 =
un + vn

2
, on trouve l′ =

l + l′

2
d’où l = l′.

Finalement, les suites (un)n∈N et (vn)n∈N sont donc bien convergentes de même limite
l ∈ R.

5. On a déjà vu que la suite (un)n⩾1 est croissante et que la suite (vn)n⩾1 est décroissante.

Enfin, d’après la question précédente, lim
n→+∞

vn − un = l − l = 0.

Les suites (un)n⩾1 et (vn)n⩾1 sont donc bien adjacentes.

Remarque : on pouvait montrer dès la question 3 que les suites (un)n⩾1 et (vn)n⩾1 sont
adjacentes car pour tout n ⩾ 1,

vn+1 − un+1 ⩽ vn+1 − un =
vn − un

2
,

ce qui implique que lim
n→+∞

vn − un = 0 en utilisant le résultat de l’exercice 8.

Exercice 15

1. Montrons par récurrence que pour tout n ∈ N, un > 0 et vn > 0.

• Initialisation : pour n = 0, on a u0 = 1 > 0 et v0 = 2 > 0 donc la propriété est vraie
au rang n = 0.

•Hérédité : Soit n ∈ N fixé. On suppose que un > 0 et vn > 0. Montrons que un+1 > 0
et vn+1 > 0.

Alors
1

un

+
1

vn
> 0 donc

2

un+1

> 0, ce qui implique que un+1 > 0.

De même,
un + vn

2
> 0 donc vn+1 > 0.

Ainsi, la propriété est vraie au rang n+ 1, ce qui achève la récurrence.

2. Pour tout n ∈ N, on a
2

un+1

=
un + vn
unvn

donc un+1 =
2unvn
un + vn

.

Ainsi, pour tout n ∈ N,

vn+1−un+1 =
un + vn

2
− 2unvn
un + vn

=
(un + vn)

2 − 4unvn
2(un + vn)

=
u2
n − 2unvn + v2n
2(un + vn)

=
(un − vn)

2

2(un + vn)
.

Or, (un − vn)
2 ⩾ 0 et d’après la question précédente, un + vn > 0 donc pour tout

n ∈ N, vn+1 − un+1 ⩾ 0, ce qui implique que pour tout n ⩾ 1, un ⩽ vn.

Puisque u0 = 1 ⩽ 2 = v0, on en déduit que pour toutn ∈ N, un ⩽ vn.

3. Soit n ∈ N. On a

un+1 − un =
2unvn
un + vn

− un =
2unvn − u2

n − unvn
un + vn

=
unvn − u2

n

un + vn
=

un(vn − un)

un + vn
.

Or, pour tout n ∈ N, un > 0, un + vn > 0 et vn − un ⩾ 0 d’après la question précédente

donc pour tout n ∈ N, un+1−un ⩾ 0, ce qui implique que la suite (un)n∈N est croissante.

De même, pour tout n ∈ N, on a

vn+1 − vn =
un + vn

2
− vn =

un − vn
2

⩽ 0

d’après la question précédente, donc la suite (vn)n∈N est décroissante.



4. Puisque la suite (vn)n∈N est décroissante, on a pour tout n ∈ N, vn ⩽ v0 et d’après la
question 2), un ⩽ vn ⩽ v0.

Ainsi, la suite (un)n∈N est croissante et majorée par v0. D’après le théorème de la limite
monotone, elle est donc convergente de limite l ∈ R.
De même, puisque la suite (un)n∈N est croissante, on a pour tout n ∈ N, un ⩾ u0 et
d’après la question 2), vn ⩾ un ⩾ u0.

Ainsi, la suite (vn)n∈N est décroissante et minorée par u0. D’après le théorème de la
limite monotone, elle est donc convergente de limite l′ ∈ R.

En passant à la limite dans la relation vn+1 =
un + vn

2
, on trouve

l′ =
l + l′

2
⇔ 2l′ = l + l′ ⇔ l = l′.

On en déduit que les suites (un)n∈N et (vn)n∈N sont convergentes et de même limite.

5. Pour tout n ∈ N, on a

un+1vn+1 =
2unvn
un + vn

× un + vn
2

= unvn.

On en déduit que la suite (unvn)n∈N est constante donc pour tout n ∈ N, unvn = u0v0 = 2.

Soit l = lim
n→+∞

un = lim
n→+∞

vn.

On a alors par unicité de la limite lim
n→+∞

unvn = l2 = 2 d’où l =
√
2 ou l = −

√
2.

Or, on a prouvé en question 1) que pour tout n ∈ N, un > 0 et vn > 0 et si on avait
lim

n→+∞
un = −

√
2 < 0, il existerait un rang n0 ∈ N tel que pour tout n ⩾ n0, un < 0, ce

qui est absurde.

Nécessairement, lim
n→+∞

un = lim
n→+∞

vn =
√
2.

Exercice 16

Pour tout n ∈ N, un+1 = f(un) où f est la fonction définie sur R \ {−2} par f(x) =
2x+ 3

x+ 2
.

• On sait que la limite éventuelle de (un)n∈N est à chercher parmi les points fixes de f.

Or, on a f(l) = l ⇔ 2l + 3

l + 2
= l ⇔ 2l + 3 = l2 + 2l ⇔ l2 = 3 ⇔ l = ±

√
3.

• On a pour tout x ̸= −2, f ′(x) =
2(x+ 2)− (2x+ 3)

(x+ 2)2
=

1

(x+ 2)2
> 0 donc f est strictement

croissante sur ]− 2,+∞[ (on s’intéresse à cet intervalle-là car u0 = 1).
Ainsi, f est croissante sur [1,+∞[ et f([1,+∞[) = [5

3
,+∞[⊂ [1,+∞[, ce qui montre que pour

tout n ∈ N, un ⩾ 1.

On a u1 = f(u0) =
5

3
⩾ 1 = u0 et puisque f est croissante sur [1,+∞[, on en déduit que la

suite (un)n∈N est croissante.
• Montrons par récurrence que pour tout n ∈ N, un ∈ [1,

√
3].

Initialisation : Pour n = 0, on a u0 = 1 ⩽
√
3 donc la propriété est vraie au rang n = 0.

Hérédité : Soit n ∈ N. On suppose que un ∈ [1,
√
3]. Montrons que un+1 ∈ [1,

√
3].

Puisque 1 ⩽ un ⩽
√
3, par croissance de f sur [1,

√
3], on en déduit que

1 ⩽ f(1) =
5

3
⩽ un+1 = f(un) ⩽ f(

√
3) =

√
3

donc un+1 ∈ [1,
√
3], ce qui prouve la propriété au rang n+ 1 et achève la récurrence.



On a donc bien montré par récurrence que pour tout n ∈ N, un ∈ [1,
√
3].

• La suite (un)n∈N est croissante et majorée par
√
3 donc d’après le théorème de la limite

monotone, la suite (un)n∈N converge vers l ∈ [1,
√
3].

Puisque les limites éventuelles de (un)n∈N sont
√
3 ou −

√
3, on en déduit que lim

n→+∞
un =

√
3.

Exercice 17

On a pour tout n ∈ N, un+1 = f(un) où f est la fonction définie sur [−35
2
,+∞[ par

f(x) =
√
2x+ 35.

• La fonction f est croissante sur [−35
2
,+∞[.

Cherchons les points fixes de f.
On a f(l) = l ⇔

√
2l + 35 = l ⇒ 2l + 35 = l2 ⇒ l2 − 2l − 35 = 0.

Les racines de ce trinôme du second degré sont 7 et −5. Parmi ces deux racines, seule 7 est
réellement un point fixe de f.
• Etudions le signe de f(x)− x.
- Si x ∈ [−35

2
, 0[, on a f(x) ⩾ 0 et −x ⩾ 0 donc f(x)− x ⩾ 0.

- Si x ⩾ 0, on a (par croissance de la fonction carrée sur R+) les équivalences

f(x)− x ⩽ 0 ⇔
√
2x+ 35 ⩽ x ⇔ 2x+ 35 ⩽ x3 ⇔ x2 − 2x− 35 ⩾ 0 ⇔ x ⩾ 7.

Finalement, f(x)− x ⩾ 0 pour x ∈ [−35
2
, 7] et f(x)− x ⩽ 0 pour x ∈ [7,+∞[.

• Pour que la suite soit bien définie, il faut que pour tout n ∈ N, 2un + 35 ⩾ 0 ⇔ un ⩾ −35

2
.

Pour cela, il suffit que u0 ⩾ −35

2
car f est à valeurs positives donc pour tout n ⩾ 1,

un ⩾ 0 > −35

2
.

• Si u0 ⩾ 7, alors u1 = f(u0) ⩽ u0 et puisque f est croissante sur son domaine de définition,
on en déduit que la suite (un)n∈N est décroissante.
Puisque la suite (un)n∈N est décroissante et minorée par 0, on déduit du théorème de la limite
monotone que la suite (un)n∈N converge vers 7 qui est le seul point fixe de f.
• Si −35

2
⩽ u0 ⩽ 7, alors u1 = f(u0) ⩾ u0 et puisque f est est croissante sur son domaine de

définition, on en déduit que la suite (un)n∈N est croissante.
Montrons alors par récurrence que pour tout n ∈ N, un ⩽ 7.
Pour n = 0, on a u0 ⩽ 7, donc la propriété est vraie au rang n = 0.
Soit n ∈ N tel que un ⩽ 7. Par croissance de f, on en déduit que un+1 = f(un) ⩽ f(7) = 7
donc la propriété est vraie au rang n+ 1.
Ainsi, pour tout n ∈ N, un ⩽ 7. La suite (un)n∈N est donc croissante et majorée par 7.
D’après le théorème de la limite monotone, on en déduit que la suite (un)n∈N converge vers 7
qui est le seul point fixe de f.

Exercice 18

On a pour tout n ∈ N, un+1 = f(un) où f est la fonction définie sur ]−∞, 12] par

f(x) =
√
12− x.

• La fonction f est décroissante sur ] −∞, 12]. De plus, on a f(0) =
√
12 < 12 et f(12) = 0

donc f([0, 12]) = [0,
√
12] ⊂ [0, 12].



Cherchons les points fixes de f. On a

f(x) = x ⇔
√
12− x = x ⇒ 12− x = x2 ⇒ x2 + x− 12 = 0.

Les racines de ce trinôme sont 3 et −4, mais seul 3 est un point fixe de f.
• Pour que la suite soit bien définie, il faut que pour tout n ∈ N, un ∈] −∞, 12]. Or, f est à
valeurs positives donc pour tout n ⩾ 1, on aura un ∈ [0, 12].
Il faut donc que u0 ∈ [−132, 12] car f([−132, 12]) = [0, 12].
Ensuite, pour tout n ∈ N, on a

un+1 − 3 =
√
12− un − 3 =

(
√
12− un − 3)(

√
12− un + 3)√

12− un + 3
=

12− un − 9√
12− un + 3

=
3− un

3
.

On en déduit que pour tout n ∈ N, |un+1 − 3| ⩽ |un − 3|
3

et on montre alors aisément par

récurrence que pour tout n ∈ N, |un − 3| ⩽ |u0 − 3|
3n

donc lim
n→+∞

un − 3 = 0, i.e. lim
n→+∞

un = 3.

Exercice 19

On a pour tout n ∈ N, un+1 = f(un) où f est la fonction définie sur R \ {−1
2
} par

f(x) = x+
1 + x

1 + 2x
.

• On a pour tout l ̸= −1

2
, f(l) = l ⇔ 1 + l

1 + 2l
= 0 ⇔ l = −1 donc −1 est le seul point fixe de f.

• On a pour tout x ̸= −1
2
, f(x) − x =

1 + x

1 + 2x
donc f(x) − x ⩾ 0 si et seulement si x ∈

]−∞,−1]∪]− 1
2
,+∞[ et f(x) ⩽ 0 si et seulement si x ∈ [−1,−1

2
[.

• Pour tout x ̸= −1
2
, on a

f ′(x) = 1 +
1 + 2x− 2(1 + x)

(1 + 2x)2
=

(1 + 2x)2 − 1

(1 + 2x)2
=

4x+ 4x2

(1 + 2x)2
=

4x(x+ 1)

(1 + 2x)2
.

On en déduit le tableau de variations suivant pour f :

x

f(x)− x

f ′(x)

f(x)

−∞ −1 −1
2 0 +∞

+ 0 − + +

+ 0 − − 0 +

−∞−∞

−1−1

−∞

+∞

11

+∞+∞

On a donc plusieurs cas de figure selon le choix de u0 :
• Si u0 ∈]− 1

2
,+∞[: on remarque que f(]− 1

2
,+∞[) = [1 +∞[⊂]− 1

2
,+∞[.

La suite (un)n∈N est donc bien définie, à valeurs dans ] − 1
2
,+∞[ et puisque pour tout x ∈

] − 1
2
,+∞[, f(x) ⩾ x, on en déduit que la suite (un)n∈N est croissante donc pour tout n ∈

N, un ⩾ u0 > −1
2
.

Si la suite (un)n∈N était majorée, d’après le théorème de la limite monotone, elle convergerait
vers une limite l telle que l ⩾ u0 > −1

2
. Or, la seule limite possible pour la suite (un)n∈N est



−1. Ainsi, la suite (un)n∈N n’est pas majorée, et puisqu’elle est croissante, on en déduit que
lim

n→+∞
un = +∞.

• Si u0 ∈]−∞,−1] : on remarque que f(]−∞,−1]) =]−∞,−1] donc la suite (un)n∈N est bien
définie et est à valeurs dans ]−∞,−1], donc elle est majorée par −1.
Puisque pour tout x ∈]−∞,−1], f(x) ⩾ x, on en déduit que la suite (un)n∈N est croissante.
D’après le théorème de la limite monotone, on en déduit que lim

n→+∞
un = −1 (qui est le seul

point fixe de f).
• Si u0 ∈]− 1,−1

2
[, on a u1 = f(u0) ∈]−∞,−1[ et on est donc ramenés au cas précédent.

Conclusion : lim
n→+∞

un =

{
−1 siu0 < −1

2

+∞ siu0 > −1
2
.

Exercice 20

On a pour tout n ∈ N, un+1 = f(un) où f est la fonction définie sur R∗ par f(x) =
1

2

(
x+

a

x

)
.

• Déterminons les points fixes de f. On a les équivalences suivantes :

f(x) = x ⇔ x+
a

x
= 2x ⇔ x2 = a ⇔ x =

√
a ou x = −

√
a.

Puisque a > 0,−
√
a < 0 <

√
a donc f admet deux points fixes distincts.

• On a pour tout x ̸= 0, f(x)− x =
1

2

(a
x
− x
)
=

a− x2

2x
donc f(x)− x ⩾ 0 si et seulement si

x ∈]−∞,−
√
a]∪]0,

√
a] et f(x)− x ⩽ 0 si et seulement si x ∈ [−

√
a, 0[∪[

√
a,+∞[.

• On a pour tout x ̸= 0, f ′(x) =
1

2

(
1− a

x2

)
=

x2 − a

2x2
donc f ′(x) ⩾ 0 si et seulement si

x ∈]−∞,−
√
a] ∪ [

√
a,+∞[ et f ′(x) ⩽ 0 si et seulement si x ∈ [−

√
a, 0[∪]0,

√
a].

On en déduit le tableau de variations suivant pour f :

x

f(x)− x

f ′(x)

f(x)

−∞ −
√
a 0

√
a +∞

+ 0 − + 0 −

+ 0 − − 0 +

−∞−∞

−
√
a−

√
a

−∞

+∞

√
a

√
a

+∞+∞

On a donc plusieurs cas de figure selon le choix de u0 :
• Si u0 ∈ [

√
a,+∞[, puisque f([

√
a,+∞[) = [

√
a,+∞[, alors pour tout n ∈ N, un ⩾

√
a donc

la suite (un)n∈N est minorée par
√
a.

D’autre part, pour tout x ∈ [
√
a,+∞[, f(x) ⩽ x donc la suite (un)n∈N est décroissante et

minorée. D’après le théorème de la limite monotone, elle est convergente.
Puisque pour tout n ∈ N, un ⩾

√
a, la suite (un)n∈N ne peut pas tendre vers −

√
a donc

lim
n→+∞

un =
√
a.

• Si u0 ∈]0,
√
a], on a u1 = f(u0) ∈ [

√
a,+∞[ et on est ramenés au cas précédent.

• Si u0 ∈]−∞,−
√
a], puisque f(]−∞,−

√
a]) =]−∞,−

√
a], alors pour tout n ∈ N, un ⩽ −

√
a

donc la suite (un)n∈N est majorée par −
√
a.

D’autre part, pour tout x ∈] − ∞,−
√
a], f(x) ⩾ x donc la suite (un)n∈N est croissante et

majorée. D’après le théorème de la limite monotone, elle est convergente.



Puisque pour tout n ∈ N, un ⩽ −
√
a, la suite (un)n∈N ne peut pas tendre vers

√
a donc

lim
n→+∞

un = −
√
a.

• Si u0 ∈ [−
√
a, 0[, alors u1 = f(u0) ∈]−∞,−

√
a] et on est ramenés au cas précédent.

Conclusion : lim
n→+∞

un =

{ √
a siu0 > 0

−
√
a siu0 < 0.

Exercice 21

Données : f est définie sur R∗
+ par f(x) = 1 +

2

x
et (un) est définie par

u0 = 1 et un+1 = f(un).

1. Étude des variations de f et stabilité de [1, 3].

On a pour tout x > 0 :

f ′(x) = − 2

x2
< 0.

Donc f est strictement décroissante sur R∗
+.

Calculons f(1) et f(3) :

f(1) = 1 +
2

1
= 3, f(3) = 1 +

2

3
=

5

3
.

Comme f est décroissante, pour tout x ∈ [1, 3] :

f(1) = 3 ≥ f(x) ≥ f(3) =
5

3
.

Donc f(x) ∈
[
5
3
, 3
]
⊂ [1, 3]. Ainsi, [1, 3] est stable par f .

2. Définition et bornes de la suite (un).

On a u0 = 1 ∈ [1, 3]. Si un ∈ [1, 3], alors un+1 = f(un) ∈ [1, 3] d’après la stabilité.

Par récurrence, on a donc :
∀n ∈ N, un ∈ [1, 3].

Ainsi la suite est bien définie et reste dans [1, 3].

3. Montrons que (u2n) est croissante.

On remarque que :
un+2 = f(un+1) = f(f(un)).

Posons g(x) = f(f(x)).

Comme f est décroissante, la composée de deux fonctions décroissantes est croissante :

g est croissante sur R∗
+.

On a u2 = f(u1) = f(3) =
5

3
> 1 = u0.

Comme g est croissante sur R∗
+ et u2n ∈ [1, 3], et que pour tout n

u2n+2 = g(u2n) et u2n = g(u2n−2).

une récurrence immédiate permet de justifier que pour tout n

u2n+2 ≥ u2n.

Donc (u2n) est croissante.



4. Montrons que (u2n+1) est décroissante et déduisons sa limite.

On a aussi u2n+1 = f(u2n) et u2n+3 = f(u2n+2).

Comme f est décroissante et que (u2n) est croissante :

u2n+2 ≥ u2n ⇒ f(u2n+2) ≤ f(u2n),

c’est-à-dire :
u2n+3 ≤ u2n+1.

Donc (u2n+1) est décroissante.

Comme (u2n) est croissante et bornée dans [1, 3], elle converge vers une limite ℓ1. Comme
(u2n+1) est décroissante et bornée, elle converge vers une limite ℓ2.

Or, d’après la relation de récurrence :

u2n+1 = f(u2n) et u2n+2 = f(u2n+1).

En passant à la limite, on obtient :

ℓ2 = f(ℓ1) et ℓ1 = f(ℓ2).

Donc :
ℓ1 = f(f(ℓ1)) ou encore g(ℓ1) = ℓ1.

Les points fixes de f vérifient f(x) = x, soit :

1 +
2

x
= x ⇒ x2 − x− 2 = 0 ⇒ x = 2 ou x = −1.

Comme on travaille sur R∗
+, seul x = 2 convient.

Ainsi, on a ℓ1 = ℓ2 = 2.

lim
n→∞

u2n = lim
n→∞

u2n+1 = 2.

5. Convergence de (un).

Comme les sous-suites (u2n) et (u2n+1) convergent vers la même limite 2, on en déduit
que :

lim
n→∞

un = 2.

Exercice 22

1. On a pour tout n ∈ N∗,
un = en ln(1+ 1

n
).

Or, puisque lim
n→+∞

1

n
= 0, on a ln(1 + 1

n
) ∼
+∞

1
n
donc n ln(1 + 1

n
) ∼
+∞

1.

Ainsi, lim
n→+∞

n ln

(
1 +

1

n

)
= 1.

Par composition de limites, on trouve finalement lim
n→+∞

un = e.

2. Puisque lim
n→+∞

1

n
= 0, alors sin

(
1

n

)
∼
+∞

1

n
.

D’autre part, pour tout n ∈ N∗,

√
n2 − 1− n = n

(√
1− 1

n2
− 1

)
∼ n×

(
− 1

2n2

)
= − 1

2n
.



Finalement, par produit, on obtient

sin

(
1

n

)
(
√
n2 − 1− n) ∼

+∞
− 1

2n2
,

d’où lim
n→+∞

sin

(
1

n

)
(
√
n2 − 1− n) = 0.

3. Puisque lim
n→+∞

(−1)n

n2
= 0, on a tan

(
(−1)n

n2

)
∼
+∞

(−1)n

n2
.

D’autre part, on a
√
cos( 1

n
)− 1 =

√
1 + cos( 1

n
)− 1− 1.

On a lim
n→+∞

cos

(
1

n

)
− 1 = 0 donc

√
1 + cos( 1

n
)− 1− 1 ∼

+∞

cos( 1
n
)− 1

2
∼
+∞

− 1

4n2
.

Par quotient, on en déduit que

√
cos( 1

n
)− 1

tan

(
(−1)n

n2

) ∼
+∞

(−1)n+1

4
.

4. On a pour tout n ∈ N∗,
un = −n

10
3 (−n− 5

6 + 1− n− 16
3 ).

Puisque lim
n→+∞

−n− 5
6 +1−n− 16

3 = 1, on en déduit que un ∼
+∞

−n
10
3 , d’où lim

n→+∞
un = −∞.

Exercice 23

1. Pour tout n ∈ N, un =
n(n+ 1)

2
=

n2 + n

2
=

n2

2

(
1 +

1

n

)
.

Puisque lim
n→+∞

1 +
1

n
= 1, on en déduit que un ∼

+∞

n2

2
d’où lim

n→+∞
un = +∞.

2. On a pour tout n ∈ N,
√
n+ 2−

√
n =

√
n
(√

1 + 2
n
− 1
)
∼

√
n
2

2n
=

1√
n
car lim

n→+∞

2

n
=

0.

Puisque lim
n→+∞

1√
n
= 0, on en déduit que lim

n→+∞

√
n+ 2−

√
n = 0, d’où par composition

de limites, lim
n→+∞

un = 1. En particulier, un ∼
+∞

1.

3. On a pour tout n ∈ N∗,

n3 − 1 + n2

n2 + 1
=

n3(1− 1
n3 +

1
n
)

n2(1 + 1
n2 )

= n×
1− 1

n3 +
1
n

1 + 1
n2

.

Puisque lim
n→+∞

1− 1
n3 +

1
n

1 + 1
n2

= 1, on en déduit que
n3 − 1 + n2

n2 + 1
∼
+∞

n.

D’autre part, ln(1 + n4) = ln(n4(1 + 1
n4 )) = ln(n4) + ln(1 + 1

n4 ) = 4 ln(n)
(
1 +

ln(1+ 1
n4 )

4 ln(n)

)
.

On a lim
n→+∞

ln(1 +
1

n4
) = 0 et lim

n→+∞
4 ln(n) = +∞ donc par somme et quotient, on en

déduit que lim
n→+∞

1 +
ln(1 + 1

n4 )

4 ln(n)
= 1, d’où ln(1 + n4) ∼

+∞
4 ln(n).

Par produit, on en déduit que un ∼
+∞

4n ln(n) donc lim
n→+∞

un = +∞.

4. Pour tout n ⩾ 1, on a un = n
(√

1 + 1
n
− 1

n2 − 1
)
.

Puisque lim
n→+∞

1

n
− 1

n2
= 0, on en déduit que

√
1 + 1

n
− 1

n2 − 1 ∼
+∞

1

2n
− 1

2n2
.



Or,
1

2n
− 1

2n2
=

1

2n

(
1− 1

n

)
avec lim

n→+∞
1− 1

n
= 1 donc

1

2n
− 1

2n2
∼
+∞

1

2n
.

Ainsi,
√
1 + 1

n
− 1

n2 − 1 ∼
+∞

1

2n
, donc un ∼

+∞

1

2
, i.e. lim

n→+∞
un =

1

2
.

5. Puisque lim
n→+∞

1

n!
= 0 et lim

x→0
cos(x) = 1, on en déduit que lim

n→+∞
cos

(
1

n!

)
= 1.

Ainsi, pour tout n ∈ N, ln
(
cos
(

1
n!

))
= ln(1+ cos

(
1
n!

)
− 1) avec lim

n→+∞
cos

(
1

n!

)
− 1 = 0.

On en déduit que ln
(
cos
(

1
n!

))
∼
+∞

cos
(

1
n!

)
− 1 ∼

+∞
− 1

2n!2
.

Il en découle que un ∼
+∞

−1
2

(
n
n!

)2
= − 1

2(n−1)!2
.

Puisque lim
n→+∞

− 1

2(n− 1)!2
= 0, on en déduit que lim

n→+∞
un = 0.

6. Pour tout n ∈ N, on a

un =
(
√
n+ 1−

√
n− 1)(

√
n+ 1 +

√
n− 1)

(
√
n+ 1 +

√
n− 1)

=
2

√
n
(√

1 + 1
n
+
√

1− 1
n

) .
Or, lim

n→+∞

√
1 +

1

n
+

√
1− 1

n
= 2 donc

√
1 + 1

n
+
√

1− 1
n

∼
+∞

2 d’où un ∼
+∞

1√
n
.

On en déduit que lim
n→+∞

un = 0.

Exercice 24

On considère la fonction f : ]−∞, 2] → R définie par

f(x) =
√
2− x.

1. Étude de f et points fixes.

(a) f est continue sur ]−∞, 2] comme composition de fonctions continues. Sur ]−∞, 2[,
la fonction x 7→ 2 − x est dérivable, et la racine carrée est dérivable sur R∗

+ ; pour
tout x < 2, on a 2− x > 0, donc f est dérivable sur ]−∞, 2[ et

f ′(x) = − 1

2
√
2− x

< 0.

Ainsi, f est strictement décroissante sur ]−∞, 2].

(b) Résolvons f(x) = x :

√
2− x = x ⇐⇒

{
2− x = x2,

x ≥ 0,
⇐⇒

{
x2 + x− 2 = 0,

x ≥ 0.

Le discriminant vaut ∆ = 1 + 8 = 9, d’où les racines −2 et 1. La seule racine
compatible avec x ≥ 0 est 1.

L’unique point fixe de f est 1.

2. Suite définie par itération. On pose u0 = 0 et un+1 = f(un).



(a) À l’aide de la représentation graphique (méthode de l’escargot), on conjecture que
(u2n)n∈N est croissante et que (u2n+1)n∈N est décroissante.
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(b) Montrons par récurrence la propriété P (n) : ≪ un est défini et un ∈ [0, 2] ≫.

Initialisation. u0 = 0 ∈ [0, 2].

Hérédité. Supposons un ∈ [0, 2]. Alors un ≤ 2, donc un est dans le domaine de f , et
un+1 = f(un) est bien défini. Comme f est décroissante sur ]−∞, 2], on a

f(0) ≥ f(un) ≥ f(2) =⇒
√
2 ≥ un+1 ≥ 0.

Or
√
2 ≤ 2, donc un+1 ∈ [0, 2].

Conclusion. Pour tout n ∈ N, un est bien défini et un ∈ [0, 2].

3. Étude de h = f ◦ f . Pour x ∈ [0, 2], on a f([0, 2]) = [f(2), f(0)] = [0,
√
2] ⊂] −∞, 2],

donc h(x) = f(f(x)) est bien définie sur [0, 2]. Comme f est décroissante, h est croissante
sur [0, 2] (composition de deux fonctions décroissantes). On peut aussi écrire

h(x) =

√
2−

√
2− x .

4. Sous-suites paires et impaires.

(a) Pour tout n ∈ N,

h(u2n) = f(f(u2n)) = f(u2n+1) = u2n+2, h(u2n+1) = f(f(u2n+1)) = f(u2n+2) = u2n+3.

Donc
u2(n+1) = h(u2n) et u2(n+1)+1 = h(u2n+1).

(b) Monotonie. On calcule

u0 = 0, u1 =
√
2, u2 =

√
2−

√
2.

En particulier u0 ≤ u2.

Montrons par récurrence que ∀n ∈ N, u2n ≤ u2n+2. Si u2n ≤ u2n+2, alors, comme h
est croissante sur [0, 2] et que uk ∈ [0, 2],

h(u2n) ≤ h(u2n+2) =⇒ u2n+2 ≤ u2n+4.

Donc (u2n) est croissante.

Ensuite, si u2n ≤ u2n+2, en composant par f (décroissante sur [0, 2]), on obtient

u2n+1 = f(u2n) ≥ f(u2n+2) = u2n+3,

donc (u2n+1) est décroissante.

Les deux suites (u2n) et (u2n+1) sont monotones et bornées (entre 0 et 2), donc elles
convergent.



(c) Points fixes de h. On résout h(x) = x :√
2−

√
2− x = x ⇐⇒

{
2−

√
2− x = x2,

x ≥ 0,

puis

2− x2 =
√
2− x ⇐⇒


(2− x2)2 = 2− x,

x ≥ 0,

2− x2 ≥ 0.

En développant :

(2− x2)2 = 4− 4x2 + x4 = 2− x ⇐⇒ x4 − 4x2 + x+ 2 = 0.

Ainsi
h(x) = x ⇐⇒

(
x4 − 4x2 + x+ 2 = 0 et x ≥ 0 et 2− x2 ≥ 0

)
.

(d) On vérifie que 1 et −2 sont racines de x4−4x2+x+2, donc ce polynôme se factorise
sous la forme

x4 − 4x2 + x+ 2 = (x− 1)(x+ 2)(x2 − x− 1).

Les racines de x2 − x− 1 sont 1−
√
5

2
< 0 et 1+

√
5

2
. Or

2−

(
1 +

√
5

2

)2

= 2−

(
1 +

√
5

2
+ 1

)
=

1−
√
5

2
< 0,

donc 1+
√
5

2
ne vérifie pas 2− x2 ≥ 0. Le seul point fixe admissible de h est donc

1.

(e) Soient ℓ1 = limu2n et ℓ2 = limu2n+1. La fonction h est continue sur [0, 2] et ℓ1, ℓ2 ∈
[0, 2]. En passant à la limite dans u2n+2 = h(u2n) et u2n+3 = h(u2n+1), on obtient

ℓ1 = h(ℓ1), ℓ2 = h(ℓ2).

Comme h a un unique point fixe sur [0, 2], on a ℓ1 = ℓ2 = 1. Donc

un −→ 1.

5. Comportement selon u0. D’après la représentation graphique, la suite (un) est bien
définie si et seulement si u0 ∈ [−2, 2]. Dans ce cas, elle converge toujours vers 1.


