LycEE FENELON BCPST1
ANNEE 2025-2026 WASSFI

Corrigé de la liste d’exercices n°16 Suites réelles

Exercice 1

1. On a pour tout n € N,

Uny1 A4+ (2n) 4(n +1)* ~2(n+1)  2n+2

= X = = = > 1
U, (2(n+1))! 4?2 (2n+2)(2n + 1) 2n+1 2n +1

donc la suite (u,),en est strictement croissante.
2. On a pour tout n € N,

Up, (n+ 1)+t nl

donc la suite (u,),en est strictement décroissante.

Exercice 2

1. On a pour tout n € N*, =% < [1 — ] < 1— % donc —%<$<%—%.
1 1 1
Puisque lim — — = = ——, on déduit du théoreme des gendarmes que
n—+oo 1 3 3
1-2 1
T £
n—+oo N 3
2. On a pour tout n € N, =2+ (—=1)" < —1 donc (=2 + (=1)")n < —n.
Puisque lirf —n = —00, on en déduit par comparaison que hI_P (=2+(=1)")n = —o0.
n—-+0oo n—-+0o0

3. On a pour tout n € N, ug, = 2n et ug, 1 = 0. Ainsi, lim wug, = +oo et lim wug, 1 = 0.
n—-+00 n—-+00

Puisque lim wug, # lim wug,41, on en déduit que la suite (uy,),eny ne converge pas.
n—-4o0o n—400

4. On a pour tout n € N*,

u, = —2n* + n(1 +sin(n)) = n? (—2 + 1+S—m(n)) :

n
1 + sin(n)

La suite (1 + sin(n))pen+ est bornée donc lim —————= = 0.
n—-+oo n
)

L . . 1+ sin(n )
On en déduit par somme de limites que IH_{I -2+ —( = —2 donc par produit,
n—-+o0o n

lim n? (—2 + 1+S—m(n)) = —00.

n—-+oo n

5. Pour tout n € N*,

U, = (3n—1)"—(2n—1)% = n’ (3 - %)lnfﬁ (2 — %)6 =n' [(3 - %)7 - % (2 — %)6] .

1\ 1 1\°
On a lim (3——) ——(2——) =37,
n—-+400o n n n

On en déduit que lim wu, = +oo.
n—-+0oo



6. Pour tout n € N*,

ConP(l+55) 145
n n5(sir;(3n) - 1) Sir;gn) _ 1
Puisque (sin(n)) t bornée et Tim = = 0, alors Tim S0 _ g q
uisque (sin(n))nen- est bornée et lim —5 =0, alors lim —-= =0 donc
fm S gy
n—-+4oo n
) ) 1 . ) .
Par ailleurs, lim 1+ — =1 donc par quotient, on obtient lim w, = —1.
n——+00 n n——+0o00

7. En multipliant par n?® le numérateur et le dénominateur, on obtient pour tout n € N*,

n — 2n? n*(: —2) 1_2
Un = n E —1)n
n+ (1) a4 4 B

(="

—~

1
Puisque ((—1)")nen+ est bornée et lim — = 0, alors lim

= 0, donc
n—-4oo N, n—-+oo n
—1)»
lim 1+ (=1 =1.
n—-+4+o0o n
. 1 . a2 :
Par ailleurs, lim — —2 donc par quotient, lim —*——— = —2 donc par quotient
n—+oo N n—+oo ] + %
1_
lim u, = lim n—"——m = —00.
n—-+o0o n—-+o00 1 + u
n

Exercice 3

1. En multipliant par la quantité conjuguée, on obtient pour tout n € N,

v = AT T~ WAEFD (/G +0)

n(n+1)+n
B n
n(y1+L+1)
B 1
1+ 41
Omn en déduit que lim wu, = -
n—-+oo
2. On a pour tout n € N,
B () R
FE+) G

3

2 2
Puisque 3 €] —1,1], alors lim (g) =0donc lim v, =—1.

n—-+o0o n—-+00



3. On a pour tout n € N*,

. (wy L, (@”—“)i _3(()%1)

2 2
2 2\" 4+ 1 1
Puisque = €] — 1,1[, alors lim (=] =0donc lim In L =In(=).
3 n—+oo \ 3 n—+o00 2 2
()
L i
On en déduit que lim —In (L) =0 donc lim e =1
n—4+oo N 2 n—-+oo
Finalement, lim w, = 3.
n—-+o0o
4. Pour tout n € N*, on a
n—1
2 k+n
kz:% (n—1n+n 2n? 2
Ln n(n2+1) n(n2+1) n2+n 1+ 1
donc lim =z, = 2.
n—-+00
5. Pour tout n € N*,
1 1
yn:ln(n+ ) zln(1+—).
n n
. 1 . o o
Ona lim 1+ — =1 et limln(z) = 0 donc par composition de limites,
n—-+o0o n rz—1
lim w, =0.
n—-+00
Exercice 4
1. On a pour tout n € Nyu, <1 —mn et liril 1 —n = —oo donc par comparaison, on en
n—-—+0oo
déduit que lim wu, = —oo.
n—-+00
2. Puisque 5 €] —1,1], alors lim )" 0
' ! 4 ’ ’ n—-4o00 4 e
3 n
Par ailleurs, la suite (sin(n)),en est bornée, donc lir+n (Z) sin(n) = 0.
n—-+0oo
3. On a pour tout n € N*,
n(l + sinygn)) 14+ sinygn)
Uy = = )
n?(1+ %) n(l+ %)
: : , .1 o . sin(n)
Puisque (sin(n)),en est bornée et lim — = 0, on en déduit que lim = 0 donc
] n—+oo n n——+oo n
i 14500 g
n—-+o0o n

n—-+oo n2 n—-+oo

1 1
Par ailleurs, lim 14 — =1 donc par produit, lim n (1 + —2> = +00. Finalement,
n

par quotient, on obtient

1+ sin(n)
lim u, = lim ——%~ =0.
n——+o0o n——+oo n(]_ + ﬁ)



4. On a pour tout n € N*|

" — (_Unln(n) N Sin(n)'

n n

Par croissance comparée, on sait que lim = 0. Puisque ((—1)"),en~ est bornée,

n—+o00 n
|
on en déduit que lim (—1)" a(n)
n—+00 n

= 0.

sin(n)

On a déja vu par ailleurs que lim =0donc lim wu, =0.
n—-4o0o n n—-+oo

Up =M (1 + (—1)"M> :

5. On a pour tout n € N*,

n

1 1
On a vu que lim (—1)" n(n) =0donc lim 1+ (—1)" n(n)

n—-4o00 n n——400 n
en déduit que

= 1 donc par produit, on

m u, = lim n ((—1)"M) = fo0.

n—-+oo n——+oo n

6. Puisque pour tout réel z,|sin(z)| < 1, on a pour tout n € N*,
n 1 n
< 5) -

1 1\"
Puisque 5 €] —1,1], on a lirf (—) = 0 donc par comparaison, on en déduit que
n—-+0oo

1
— |2 sin(n!
| | ‘28111(72)

lim wu, = 0.
n—-+o0o

Exercice 5

1. En multipliant par la quantité conjuguée, on obtient

(Vn2+3—+vn2+1)(vVn2+3+vn2+1) n*+3—(n*+1) 2
u?’b = = = .
(V2 +3++vn2+1) (VnZ+3+vn2+1) (Vn2+3+vnZ+1)
Or, lim (Vn2+3++vn2+1)=+ocodonc lim wu, =0".
n—-+oo n—-+oo
1
2.0n a lim — = 0 et limcos(x) = 1 donc par composition de limites, on obtient
n—+oo N x—0

. 1
lim cos (—) =1.
n——+oo n

1
Par produit, on en déduit que lim ncos (—) = +00.

n—-4o0o n
: , .1 A . cos(n)
3. Puisque (cos(n))nen est bornée et lim — =0, on en déduit que lim = 0.
n—+oo n n—-+oo n
, , .1 s (="
4. Puisque ((—1)")nen est bornée et lim — = 0, on en déduit que lim = 0 donc
n—+oo N n—-+oo n

n—-+4o0o n

lim exp (1 - (—1)”) —e



Exercice 6

1. Soit n € N*.

1 1
Pour tout k € [1,n], on a n+ k < 2n donc > . En sommant pour & allant

Vn+k T Von

de 1 a n, on obtient pour tout n € N*,

m=Y Y e s

n—-+o0o n—-+o00

n
Or, lim \/; = 400 donc par comparaison, on obtient lim wu, = +oo.

2. Soit n € N*. On a pour tout k € [1,n],n+1<n+k < 2n donc

1 1 1
<

< .
4n? T (4 k)2 T (n+1)2

En sommant pour k£ allant de 1 a n, on obtient pour tout n € N*,

n

"1 - 1 1
;W<;<n+k)2 <;(nﬂy

d’ou
1 <o < n
- \Un X 7 N0
4n (n+1)2
n n 1
Or, pour tout n € N*, = = ——— — 0. De méme,

(n+1)2 n?+2n+1 n+2+ L notoo

1
lim — = 0 donc d’apres le théoreme des gendarmes, on en déduit que lim v, = 0.
n—+o0 4n, n—+o00

Exercice 7

2
n°x
1. Soit « € R. On a pour tout n € N*,n’*z — 1 < [n*z] < n’z donc nx — £ < [nz] < nx
n
e Si x = 0, alors pour tout n € N*, u,, = 0.
: . 1 . 1
e Si x > 0, alors lim nx — — = 400 donc par comparaison, on en déduit que
n—-+o0o n
2
n°x
lim L = +00.
n——+oo n
e Siz < 0,alors lim nx = —oo donc par comparaison, on en déduit que lim =
n—-+oo n—-+oo n

—0Q.

2. Soit x € R. Soit n € N*. On a pour tout k € [l,n],kx — 1 < |kx| < kz donc
kx —1 [k:xj o kx

2 2 Y 27
n n n
En sommant pour k allant de 1 a n, on trouve

Zx—l ZL \zn:kx

k=1 k=1
d’out
nn+ 1z 1 (n+1)
- 45 o Un X
2n? n 2n?
1 1+ 1)z 1 1
Or, nn + )z = ( w7 — 2 De meéme, lim (n+1) — — =< donc d’apres
2n? 2 n—+oo 2 n—too  2n? n 2

le théoreme des gendarmes, on en déduit que lim v, = 5
n—+o0o



Exercice 8

Montrons par récurrence que pour tout n € N*, |u,| < k™|ug].

e Initialisation : Pour n = 0, on a k°ug| = |ug| > |ug| donc la propriété est vraie au rang
n = 0.

e Hérédité : Soit n € N fixé tel que |u,| < k"|ug|. Montrons que |u, 1] < k" |ug).

Par propriété de la suite, on a |u,41| < k|u,| donc en utilisant I'hypothese de récurrence (et
puisque k£ > 0), on en déduit que

|Uuns1| < kX E"uo| = K" Hug,

ce qui prouve la propriété au rang n + 1 et acheve la récurrence.

Ainsi, on a pour tout n € N, 0 < |u,| < k" |ug|.

Or, puisque k €]0,1[, on sait que lirf k"|up| = 0 donc par comparaison, on en déduit que
n—-+0o0o

lim |u,| =0,ie lim w,=0.
n——+00 n——+00

Exercice 9

On a pour tout n € N, 0 < v, < 1 donc en multipliant par w,, (qui est positif), on obtient pour
tout n € N,0 < u,v, < u, <1.

Puisque lim wu,v, = 1, par hypothese, on déduit du théoreme des gendarmes que lim u, = 1.
n—-+o0o n—-+o0o

En échangeant u,, et v, (qui jouent des roles symétriques), on trouve de méme que lim v, = 1.
n—+0o0o

Exercice 10

1. Montrons par récurrence que pour tout n € N, u,, > 0.
elnitialisation : Pour n = 0, on a ug = 2 > 0 donc la propriété est vraie au rang n = 0.

eHérédité : Soit n € N fixé tel que u,, > 0. Montrons que u,,; > 0.
U 1
Par définition de la suite, on a u,.1 = 7" + —.
Up

U, 1 Uy 1 .
Or, par hypothese de récurrence, u,, > 0 donc > > 0 et — dou > + — >0, ce qui
Up Up,

assure que u,y1 > 0 et acheve la récurrence.

2. On a pour tout n € N

u? + 2 u? — 2v/2u, + 2 U — V2)?
un+1_\/§: n _\/§: n \/_ :( \/_>

2u,, 2u,, 2u,,

=0

car pour tout n € N,u, > 0. Ceci prouve que pour tout n > 1,u, > V2. Or, on a
également 1y = 2 > /2 donc on a bien montré que pour tout n € N, u, > /2.

3. Pour tout n € N, on a

_ n

Unp4+1 — Un = Up = =
2u,, 2u,, 2u,

u? + 2 ui +2—2ul  2—u

Or, on sait que pour tout n € N, u, > v/2 donc u2 > 2 d’ott 2 — u2 < 0. Puisque pour
2

- Un

tout n € N, 2u,, > 0, on en déduit que

< 0, i.e. pour tout n € Ny u, 1 — u, <0,
n
ce qui assure que la suite (u,)nen est décroissante.



4. La suite (uy)nen est décroissante et minorée par V2. D’aprés le théoreme de la limite
monotone, elle est convergente de limite [ > V2.

Puisque lim wu, = [, on a également lim wu,,; = [, et en passant a la limite dans
—+00

I'égalité up,,q =

n—-+o0o n
u? + 2

, on obtient
n

P+2

: 21

donl?=2ie. l = +/2. Puisque [ > V2, on en déduit que | = V2, ie. lim w, = V2.

n—-4o0o

Exercice 11

1 Ug = 37
| w1 = Jun + 2.

Expression de u,,. Point fixe [ vérifiant = %l + 2, donc = 4. On pose v,, = u,, — [ : alors

Un4+1 =

Limite. Comme (l)n — 0,on a| lim u, =4|

%’Un, Vo = Up — |=3—-—4=—1. Ainsi Up = _(l)n et

2
_ )"

2 n—o0

Somme. Pour tout n € N,

n

n n 1— 1yn+1
ukzz<4_2—k>:4(n+1)— 2_k:4(n+1)—1(_—2)l:4n—|—2+2_”.
k=0 k=0 2

k=0

Donc

Zuk:4n+2+2_” s 400l

n—r00
k=0

9. {UQ:E), Uy :2,

Upto = 4Upt1 — Uy,

Expression de u,. Equation caractéristique r2 — 4r +3 = 0 d’ott (r — 1)(r — 3) = 0,

racines 1 et 3. Donc u,, = A+ B3™ Avecug=5et uy =2 :

A+ B =05, L p__3 g_1
A+3B=2 27 2
Ainsi
13 3., 13—3nf!
un:———S —
2 2 2
Limite. Le terme —% 3" domine : | lim u,, = —o0|.
n—0o0

Somme. Pour tout n € N,

n

- 13 3 31 13 3nt2 3
k=0

Donc

k=0

2": 13( ) 3"+2+3
U = —(Nn — — > —0OQ|.
i 4 1




{'LLO = 4,
3.
Upt1 = Uy — 3.

Expression de u,,. Suite arithmétique de raison —3 :

u, =4 —3n |

Limite. | lim u,, = —oc0|.
n—oo

Somme. Pour tout n € N,

iuk:i(ll—?)k)24(n+1)—3ik:4(n+1)—3.@:(n+1)<4_gn>'

k=0 k=0 k=0

n—00

Ainsi Zuk =n+1)(4-3n) — —o0|
k=0

Exercice 12

1. Montrons par récurrence que pour tout n € N, u,, < v,.
elnitialisation : Pour n =0, on a up = 1 < 5 = vy, ce qui prouve la propriété au rang

n = 0.
eHérédité : Soit n € N fixé tel que u,, < v,. Montrons que u,+1 < Vpy1.
1 .
On a vpy1 — Upy1 = =(v, — u,) = 0 par hypotheése de récurrence, ce qui prouve la

propriété au rang n + 1 et acheéve la récurrence.

2. e Pour tout n € N, on a up11 —u, = g(vn —u,) = 0 d’apres la question précédente donc

la suite (u,)nen est croissante.

e Pour tout n € N,ona v, 1 —v, = §(u" —v,) < 0 d’apres la question précédente donc

la suite (v, )nen est décroissante.

1
e Enfin, on a pour tout n € N, v, 11 — Uy = g(vn — uy,) donc la suite (v, — Uy )nen est

1
géométrique de raison 3

Vo — Ug

d’ou lim v, —u, =0.
n—-+oo

On a donc bien montré que les suites (uy)nen €t (v, )nen sont adjacentes.

Ainsi, pour tout n € N,v,, — u,, =

3. D’apres le théoreme sur les suites adjacentes, les suites (u,)nen €t (v, )nen sont conver-
gentes de méme limite [.

En particulier, on a lim u, + v, = 2.
n—+00

Or, pour tout n € N, tuy4q + vpr1 = Uy + v, donc la suite (u, + v,)nen est constante
égale a ug + vy = 6.
Ainsi, lim u, +v,=6=2[doul=3.

n—-+0o

Finalement, on a lim wu, = lim v, = 3.
n—-+o0o n—-+0o

Exercice 13

1. e Pour tout n € N*,

1 1
- <0
m+2 2m+1

LZ(n—i—l) — Loy = L2n+2 — Loy, =



donc la suite (Lg,)nens est décroissante.
e Pour tout n € N*,

1 1
P
2n—|—3+2n+2

Lotni1y+1 — Lony1 = Longz — Lont1 = —

donc la suite (Lo,y1)nen+ €st croissante.
e Enfin, pour tout n € N*,

b = L = =57

Les suites (Lo )nens €t (Lopt1)nen+ sont donc bien adjacentes.
2. D’apres le théoreme des suites adjacentes, ceci implique que les suites (Loy)nen+ €t
(Lon+1)nen+ sont convergentes et de méme limite /.

On en conclut que la suite (L, ),en+ est convergente de limite [. (On peut en fait montrer
que [ = —In(2).)

Exercice 14

1. Montrons par récurrence que pour tout n € N, u,, > 0 et v, > 0.
elnitialisation : Pour n =0, on a ug = a > 0 et vg = b > 0 donc la propriété est vraie
au rang n = 0.
eHérédité : Soit n € N tel que u,, > 0 et v,, > 0. Montrons que u,+; > 0 et v,4,1 > 0.
Onaun+1:\/m>()etvn+1:un—+vn
prouve la propriété au rang n + 1 et acheve la récurrence.

> ( par hypothese de récurrence, ce qui

2. Pour tout n € N, on a

Up + U Up, + Uy, — 24/Un0 VUn — /Un)?
UnJrl_unJrl:%_\/unvn: o n2 nn:( ?’L2 n) =0
donc pour tout n € N, u, 11 < v,11, ce qui implique que pour tout n > 1, u,, < v,.

3. e Pour tout n > 1, on a

U1 — Up = /UpUp — Uy = /Up(/Un — /Un).

On sait que pour tout n € N, u,, > 0 donc /u,, > 0. D’autre part, on sait que pour tout
n > 1,0 < u, < v, donc par croissance de la racine carrée sur R, on en déduit que

pour tout n = 1, /u, < \/vn, i.e. /U, — /ty, = 0.

Il en découle que pour tout n > 1, u,+1 —u, = 0, ce qui prouve la croissance de la suite
(un)n>l-

e Pour tout n > 1, on a

_un+vn _un_vn
Unt1 — Up = —Up = \O

2

d’apres la question précédente donc la suite (v,),>1 est décroissante.

4. ¢ On a pour tout n > 1, u, < v,.
Puisque la suite (vy,),>1 est décroissante, alors pour tout n > 1,v, < v; donc pour tout
n=1u, <v, <.
Ainsi, la suite (u,),>1 est croissante et majorée par v;. D’apres le théoreme de la limite
monotone, elle est donc convergente de limite [ € R.



e De méme, la suite (u,),>1 est croissante donc pour tout n > 1,u; < u, < v,.

Ainsi, la suite (v,,)n>1 est décroissante et minorée par u;. D’apres le théoreme de la limite
monotone, elle est donc convergente de limite I’ € R.

T s Uy, + v L+
e En passant & la limite dans 1'égalité v, = %, on trouve I’ = 5 doul=1.
Finalement, les suites (uy,)nen €t (vn)nen sont donc bien convergentes de méme limite

leR.
5. On a déja vu que la suite (u,),>1 est croissante et que la suite (vy,),>1 est décroissante.

Enfin, d’apres la question précédente, lir+n Up— U, =1—1=0.
n—-+0o0

Les suites (u,)n>1 €t (vp)n>1 sont donc bien adjacentes.

Remarque : on pouvait montrer des la question 3 que les suites (uy)n>1 €t (v,)n>1 sont
adjacentes car pour tout n > 1,

Up — Up
2 )

ce qui implique que liril v, — u, = 0 en utilisant le résultat de I’exercice 8.
n—-+00

Un4+1 — Un+1 < Un4+1 — Un =

Exercice 15

1. Montrons par récurrence que pour tout n € N, u,, > 0 et v, > 0.
e Initialisation : pourn =0,onauy =1 > 0 et vy = 2 > 0 donc la propriété est vraie
au rang n = 0.
eHérédité : Soit n € N fixé. On suppose que u,, > 0 et v, > 0. Montrons que u,+; >0

et vpe1 > 0.
1 1 L
Alors — + — > 0 donc > 0, ce qui implique que w1 > 0.
Up, Un Up+1
N Uy + U
De méme, % > 0 donc v, > 0.
Ainsi, la propriété est vraie au rang n + 1, ce qui acheve la récurrence.
2 Uy + U 2,0
2. Pour tout n € N, on a =-"—"donc up4; = ———.
Un+1 UnUp, Unp, + Un
Ainsi, pour tout n € N,
Up + Uy 22UV, (Up +v0)? — duyv, w2 —2uyv, + 02 (uy — vy)?
Unt1—Uny1 = - = = = )
2 Uy + Up, 2(up + vp) 2(upn + vy) 2(upn + vy)

Or, (u, — v,)?> > 0 et d’apres la question précédente, u, + v, > 0 donc pour tout
n € N,v,11 —upy1 = 0, ce qui implique que pour tout n > 1, u, < v,.

Puisque ug =1 < 2 = vy, on en déduit que ‘pour toutn € Ny u,, < vn.‘
3. Soit n € N. On a

n
Uppl = Up = ————— — Up = = =

U, Uy, 22Uy — U2 — Upv,  UpUp — u? U (U — )

Or, pour tout n € N, u,, > 0,u, +v, > 0 et v, —u, > 0 d’apres la question précédente
donc pour tout n € N, u, 1 —u, = 0, ce qui implique que | la suite (u,),en st croissante.

De méme, pour tout n € N, on a

_un+vn _un_vn
Upnt1 — Up = —Up = \O

2

d’apres la question précédente, donc |la suite (v, )nen est décroissante.




4. Puisque la suite (v,),en est décroissante, on a pour tout n € N, v, < vy et d’apres la
question 2), u, < v, < vp.
Ainsi, la suite (u,)nen est croissante et majorée par vy. D’apres le théoreme de la limite
monotone, elle est donc convergente de limite [ € R.
De méme, puisque la suite (u,)nen est croissante, on a pour tout n € N u, > ug et
d’apres la question 2), v, = u, > u.
Ainsi, la suite (v,)nen est décroissante et minorée par wuy. D’apres le théoreme de la
limite monotone, elle est donc convergente de limite " € R.

N . . Up, + Up
En passant a la limite dans la relation v, = —5 o trouve
[+
I'= 5 s2'=l+l's1=1.

On en déduit que |les suites (U, )nen €t (v, )nen sont convergentes et de méme limite.

5. Pour tout n € N, on a

2U, Uy, Up + Uy,

Upg1Unge1 = X = UpUp.
n+1Un+1 U, ‘l"Un 2 nn
On en déduit que la suite (u, vy, ),en est constante donc pour tout n € N, u, v, = upvy = 2.
Soit [ = lim wu, = lim wv,.
n——+oo n—-+00
On a alors par unicité de la limite lir+n Upvy =12 =2doul=+v2o0ul=—2.
n—-+0o00
Or, on a prouvé en question 1) que pour tout n € N u, > 0 et v, > 0 et si on avait
lim u, = —V2 < 0, il existerait un rang ng € N tel que pour tout n > ng,u, < 0, ce
n—-+o0o

qui est absurde.

Nécessairement, | lim u, = lim v, = V2.
n—-4o0o n—+o00

Exercice 16

20+ 3
Pour tout n € N, u,11 = f(u,) ou f est la fonction définie sur R\ {—2} par f(z) = 1:_:_2 :
x
e On sait que la limite éventuelle de (u,)nen est & chercher parmi les points fixes de f.
21+3
Or,onaf(l)zl@H_;Q:l@2l+3:l2+2l<:>12:3<:>l::|:\/§.
2 2)—(2 3 1
e On a pour tout x # —2, f'(x) = (z +(:7c)—|— 2()2$ +3) = @12 > (0 donc f est strictement
croissante sur | — 2, +o00[ (on s’intéresse a cet intervalle-la car ug = 1).

Ainsi, f est croissante sur [1, 400 et f([1,400[) = [2, +00[C [1,400], ce qui montre que pour
tout n € Ny u,, > 1.

5
On a up = f(ug) = 3 > 1 = ug et puisque f est croissante sur [1,+oc[, on en déduit que la
suite (u,)nen est croissante.
e Montrons par récurrence que pour tout n € N, u,, € [1, \/§]
Initialisation : Pour n =0, on a ug = 1 < v/3 donc la propriété est vraie au rang n = 0.
Hérédité : Soit n € N. On suppose que u, € [1,/3]. Montrons que u,1 € [1,v/3].
Puisque 1 < u,, < v/3, par croissance de f sur 1, \/3], on en déduit que

5

L<S(1) = 5 S = ) < (V)= V3

donc u,+1 € [1,v/3], ce qui prouve la propriété au rang n + 1 et acheve la récurrence.



On a donc bien montré par récurrence que pour tout n € N, u,, € [1, \/§]

e La suite (up)ney est croissante et majorée par v/3 donc d’aprés le théoreme de la limite
monotone, la suite (u,),en converge vers [ € [1, \/3]

Puisque les limites éventuelles de (uy,),en sont V3 ou —\/g, on en déduit que lim wu, = V3.

n—-+o0o

Exercice 17

On a pour tout n € N, uy41 = f(u,) ol f est la fonction définie sur [—32, +-00[ par

f(z) =2z + 35.

e La fonction f est croissante sur [—%, +o00].

Cherchons les points fixes de f.

Ona f()=1V2A+35=1=2+35=072=12-21-35=0.

Les racines de ce trinome du second degré sont 7 et —5. Parmi ces deux racines, seule 7 est
réellement un point fixe de f.

e Etudions le signe de f(z) — z.

-Size[-%£,0[ona f(z) > 0et —z >0 donc f(z) —x > 0.

-Siz >0, on a (par croissance de la fonction carrée sur R, ) les équivalences

f@)—2<0eV2r+35<re2r+35< - 20-35200> 7.

Finalement, f(z) —z > 0 pour z € [-22,7] et f(z) — 2 < 0 pour z € [7,+00].

35
e Pour que la suite soit bien définie, il faut que pour tout n € N, 2u,, + 35 > 0 < u,, > -5

35
Pour cela, il suffit que ug > — car f est a valeurs positives donc pour tout n > 1,

U, = 0> 5
e Siug > 7, alors u; = f(ug) < uy et puisque f est croissante sur son domaine de définition,
on en déduit que la suite (u,)nen est décroissante.
Puisque la suite (u,),en est décroissante et minorée par 0, on déduit du théoreme de la limite
monotone que la suite (u,),en converge vers 7 qui est le seul point fixe de f.
o Si —% < ug < 7, alors u; = f(ug) = up et puisque f est est croissante sur son domaine de
définition, on en déduit que la suite (u,),en est croissante.
Montrons alors par récurrence que pour tout n € N, u,, < 7.
Pour n =0, on a up < 7, donc la propriété est vraie au rang n = 0.
Soit n € N tel que u,, < 7. Par croissance de f, on en déduit que u,41 = f(u,) < f(7) =7
donc la propriété est vraie au rang n + 1.
Ainsi, pour tout n € N, u,, < 7. La suite (u,)nen est donc croissante et majorée par 7.
D’apres le théoreme de la limite monotone, on en déduit que la suite (uy,)nen converge vers 7
qui est le seul point fixe de f.

Exercice 18

On a pour tout n € Ny u,1 = f(u,) ou f est la fonction définie sur | — 0o, 12] par

flz) =v12 —x.

e La fonction f est décroissante sur | — oo, 12]. De plus, on a f(0) = V12 < 12 et f(12) = 0
donc £([0,12]) = [0,+/12] C [0, 12].



Cherchons les points fixes de f. On a
f@)=reVR2-—o=r=12—z=2"=2"+2-12=0.

Les racines de ce trinome sont 3 et —4, mais seul 3 est un point fixe de f.

e Pour que la suite soit bien définie, il faut que pour tout n € Nju, €] — 00,12]. Or, f est a
valeurs positives donc pour tout n > 1, on aura u,, € [0, 12].

Il faut donc que uy € [—132,12] car f([—132,12]) = [0, 12].

Ensuite, pour tout n € N, on a

— VIZ—u, - 3)(VI2—u, 12 — u, — — u,
oy — 3 = 12_un_3:( un — 3)( U, + 3) Up — 9 3 Un

V12 —u, + 3 T J12—u,+3 3

: Up — 3 .
On en déduit que pour tout n € N, |u,1 — 3| < | n3 | et on montre alors aisément par
|uo — 3|

donc lim wu, —3=0,ie. lim u, =3.

récurrence que pour tout n € N, |u, — 3| <
n—-+00 n—-+00

Exercice 19

On a pour tout n € N, u,41 = f(u,) olt f est la fonction définie sur R \ {—1} par

14+x
1 1+1 :
e On a pour tout [ # —é,f(l) =l T 0 < [ = —1 donc —1 est le seul point fixe de f.
1
e On a pour tout  # —3, f(z) —z = 1;L2x donc f(x) —x > 0 si et seulement si x €
x

] — 00, —1JU] — 1, +00[ et f(z) <0 si et seulement si z € [—1, —3].
e Pour tout = # —%, on a

1+2z—-2(1+2) (1+22)*-1 do+42®> da(z+1)

/
fla) =1+ =057 (1+22)2  (1+22)? (1+22)°
On en déduit le tableau de variations suivant pour f :

z —00 —1 —% 0 400

flz) —x + 0 - + +

f'() + 0 - -0+
-1 400 400

—00 —00 1

On a donc plusieurs cas de figure selon le choix de uy :

e Si ug €] — 3, +00[: on remarque que f(] — 3, +oo[) = [1+ oo[C] — L, +00].

La suite (u,)nen est donc bien définie, & valeurs dans | — 3, +oo[ et puisque pour tout z €
] — 1, +o0[, f(z) > z, on en déduit que la suite (u,)nen est croissante donc pour tout n €
N, u, > uy > —%.

Si la suite (u,)nen était majorée, d’apres le théoreme de la limite monotone, elle convergerait
vers une limite [ telle que [ > ugy > —%. Or, la seule limite possible pour la suite (u;,),en est



—1. Ainsi, la suite (u,),eny n’est pas majorée, et puisqu’elle est croissante, on en déduit que

lim u, = +o0.
n—-+o0o

e Si up €] — 00, —1] : on remarque que f(] — oo, —1]) =] — 0o, —1] donc la suite (uy),en est bien
définie et est a valeurs dans | — 0o, —1], donc elle est majorée par —1.

Puisque pour tout z €] — oo, —1], f(z) > x, on en déduit que la suite (u,)nen est croissante.
D’apres le théoreme de la limite monotone, on en déduit que lim w, = —1 (qui est le seul

n—+o0o
point fixe de f).
e Siug€]—1,—3[, onau = f(u) € — 0o, —1[ et on est donc ramenés au cas précédent.

. . —1 siug < —5
Conclusion : lim wu, = . £
n—+00 +00 sluy > —3.

Exercice 20
1 a
On a pour tout n € N, u,1 = f(u,) ou f est la fonction définie sur R* par f(z) = 3 <Z‘ + —> :
x
e Déterminons les points fixes de f. On a les équivalences suivantes :

f(x):x<:>x+g:2x<:>w2:a<:>x:\/a ou z=—+a.
T

Puisque a > 0, —/a < 0 < y/a donc f admet deux points fixes distincts.
1 2
e On a pour tout = # 0, f(x) —x = 5 (2 - x) = 5 T donc f(z) — 2 > 0 si et seulement si
T x
x €] — 00, —/a]U]0, /a] et f(x) — 2z <0 si et seulement si z € [—+/a, 0[U[\/a, +00].

1 2 _
e On a pour tout = # 0, f'(z) = 5 (1 — %) = x2_2a donc f'(xz) > 0 si et seulement si
x T
x €] — 00, —v/a] U [a,+oo[ et f'(x) < 0 si et seulement si z € [—y/a, 0[U]0, \/a].

On en déduit le tableau de variations suivant pour f :

x —00 —va 0 Va +o0

flz) —x + 0 - + 0 -
f'(z) + 0 - — 0 +
—Va +00 +00

—00 —00 va

On a donc plusieurs cas de figure selon le choix de ug :

e Si ug € [v/a,+oo], puisque f([\/a,+o0[) = [y/a,+0o0], alors pour tout n € N, u,, > y/a donc
la suite (u,)nen est minorée par /a.

D’autre part, pour tout z € [\/a,4oo[, f(z) < x donc la suite (uy)men est décroissante et
minorée. D’apres le théoreme de la limite monotone, elle est convergente.

Puisque pour tout n € N u, > +/a, la suite (u,),eny ne peut pas tendre vers —y/a donc

lim wu, = a.

n—+oo

e Siuy €]0,+/a], on a u; = f(ug) € [/a,+00[ et on est ramenés au cas précédent.

e Si ug €] — 00, —/a], puisque f(] — oo, —/a]) =] — oo, —+/al, alors pour tout n € N, u,, < —/a
donc la suite (u,),en est majorée par —y/a.

D’autre part, pour tout x €] — 0o, —/a], f(x) > x donc la suite (u,),en est croissante et
majorée. D’apres le théoreme de la limite monotone, elle est convergente.



Puisque pour tout n € Nju, < —/a, la suite (u,),en ne peut pas tendre vers y/a donc

lim w, = —/a.

n—-+o0o
e Si ug € [—+/a,0[, alors u; = f(ug) €] — 00, —y/a] et on est ramenés au cas précédent.

) . a siug>0
Conclusion : lim wu, = va )
n—+00 —va siug < 0.

Exercice 21
2

Données : f est définie sur R par f(z) =14 — et (u,) est définie par
T

=1 et wu,1 = f(u).

1. Etude des variations de f et stabilité de [1,3].
On a pour tout z > 0 :

2
f/(.’lf) = —? <0
Donc f est strictement décroissante sur R .
Calculons f(1) et f(3) :
2 2 5
H)=1+-=3 =14-=-.

Comme f est décroissante, pour tout = € [1,3] :

F)=32 f2) 2 13) = 3.

Donc f(z) € [2,3] C [1,3]. Ainsi, |[1,3] est stable par f.

2. Définition et bornes de la suite (u,).
Onawuy=1¢€][1,3]. Siu,€[l,3], alors u,11 = f(u,) € [1,3] d’apres la stabilité.
Par récurrence, on a donc :

VneN, u,€ll,3].
Ainsi la suite est bien définie et reste dans [1, 3].

3. Montrons que (us,) est croissante.
On remarque que :

Unyo = f(Uni1) = f(f(un))-
Posons g(z) = f(f(z)).

Comme f est décroissante, la composée de deux fonctions décroissantes est croissante :

g est croissante sur R’ .

Onauzzf(ul):f(3):§>1:u0.

Comme g est croissante sur R* et uy, € [1,3], et que pour tout n

Ugpto = g(U2n) €t ugy = g(Un—2).

une récurrence immédiate permet de justifier que pour tout n

Up42 = Uop.

Donc | (ug,) est croissante.




4. Montrons que (us,.1) est décroissante et déduisons sa limite.

On a aussi Ugyy1 = f(u2n) €t uspirsz = f(Uzni2).
Comme f est décroissante et que (ugn) est croissante :

Ugpto > Uy = fugni2) < flugn),

c’est-a-dire :
U2pt3 < Uzpt1-

Donc | (ugny1) est décroissante.

Comme (us,) est croissante et bornée dans [1, 3], elle converge vers une limite ¢;. Comme
(ugn11) est décroissante et bornée, elle converge vers une limite ¢5.

Or, d’apres la relation de récurrence :
Ugny1 = f(uzn) €t ugnio = f(Ugny1).
En passant a la limite, on obtient :
ly=f(lr) et b= f(l).

Donc :
0= f(J(6)) ouencore g(ty) = by,
Les points fixes de f vérifient f(z) = z, soit :

2
l+Z=2 = 22—-2-2=0 = zx=2o0uz=—1.
T

Comme on travaille sur R? , seul z = 2 convient.
Ainsi, on a {; = {5 = 2.

lim ug, = lim ug,y 1 = 2.
n—oo n—oo

5. Convergence de (u,).
Comme les sous-suites (ug,) et (ug,41) convergent vers la méme limite 2, on en déduit

que :
lim u, = 2.
n—oo
Exercice 22
1. On a pour tout n € N*,
U, = enln(1+%).

1
O i lim — =0 In(1+21) ~ 14 In(1+ %) ~ 1.
r, puisque lim - ,on a In( —|—n)+oo =~ donc nln(1+ =) o

1
Ainsi, lim nln (1 + —) = 1.
n

n—-+0o

Par composition de limites, on trouve finalement lim wu, = e.
n—-+oo

. 1 . (1 1
2. Puisque lim — =0, alorssin|{ — ) ~ —.
n—+oo N n +oo N

D’autre part, pour tout n € N*,

/ 1 1 1
vn?—1—n= l—-—=—-1|~ - | =—=
n n n( > ) nx( 2n2> o™



Finalement, par produit, on obtient

sin (%) (Vn2—1-n) ~ _ L

+o0o 2n2 ’

1
d’ott lim sin <—) (Vn?2—1—-n)=0.

n—-+00 n
—1)" —1)" —1)"
3. Puisque hr+noo ( n2> =0, on a tan (( n2) ) ~ ( nz) .
D’autre part, on a 1/008(%) —1= \/1 + cos(%) 11,
1 cos() —1
On a lim COS(—)—l_Odonc \/1+COS(1>—1—1 ~ (n) N
e n " +oo 2 +oo

cos(+) —1 (—1)n+!
Par quotient, on en déduit que ~

tan <<_12)n> el

10 5 16
U, =-—n3(—n"6+1—-n"3).

3

4. On a pour tout n € N*|

. . _5 _16 P 10 N
Puisque lim —n " 6+1—n"3 =1, on en déduit que v,, ~ —n3,d’ou lim
n—4o0o —+00 n—-4o0o

Exercice 23

1 2 2 1
1. PourtoutnGN,un:n<n+ ):n—l—n:n_ 14+—.
2 2 2 n

2

1 n
Puisque lim 1+ — =1, on en déduit que u,, ~ — d’ou lim wu, = +o0.
n—-+4oo n —+o0o 2 n—-+oo

2. OnapourtoutneN,\/n+2—\/_:\/ﬁ<w/1+%—1> ~A/T— = —— car
0.

1

an?’

Uy = —O0.

1
Puisque lim —= =0, on en déduit que hm Vn +2—+/n =0, d’olt par composition

n—-+4o0o n

de limites, lim wu, = 1. En particulier, u,, ~ 1.
n—+00 “+00

3. On a pour tout n € N*,

n®—1+n? n¥(1—5+1) 11— +1
5 = 5 - =nx —r—"
n? +1 n?(1+ -3) 1+ .5
1___|__ 3_1 2
Puisque lim —3 = 1, on en déduit que o ltn

21l e
D’autre part, In(1+nt) = In(nd(1+ 4)) = In(n?) + In(1+ &) = 41n(n) (1 +

n—+oo 1 + = )

In(14 )
41n(n) ) )

1
On a lim In(1+ ) =0et lim 4In(n) = +oo donc par somme et quotient, on en

n—-+o0o n—-+o0o

In(1+ %
déduit que ngmoo 1+ néiT()) 1, d’ott In(1 + n*) ~ 41n(n).

Par produit, on en déduit que u,, ~ 4nln(n) donc lim wu, = +oo.
+oo n—-+oo

4. Pour tout n > 1, onaun—n<,/1—|—%—n—12—1).

1 1 1 1
P lim — — —= =0, déduit JI+E-L5 -1~ — - —.
uisque . _1&100” 2 on en dedult que T T2 o o2



1 1 1 1 1 1 1 1
Or, — — — 1- = lim 1— = =1donc — — —— ~
Yo w2 ( n> W e T N on T 2 e

1 1 1
Ainsi,\/1+——— 1 ~ —,doncu, ~ —,ie. lim u, =-.
400 21 +o0 2’ n—+o0 2

1 1
. Puisque llm — =0 et lim cos(x) = 1, on en déduit que lim cos ( ') = 1.
n

—400 n‘ z—0 n—+o0o

Ainsi, pour tout n € N,In (cos (£)) =In(1+ cos (&) — 1) avec lim cos <;') —1=0.

n—+400
1
On en déduit que In (cos (%)) oy cos (%) -1 e opl2
Il en découle que Un 7~ % (nﬁ)
1
Puisane I =5t — e~ on en deduit ane Jan_un =0.

. Pour tout n € N, on a

" :(\/n+1—\/n—1)(\/n+1+\/n—1)
" (Vn+1+vn—1) (\/H +¢1__>'

1 1 1
Or, lim \/1+—+\/1——:2d0nc\/1+1+\/1—l~2d’of1un~—.
n—-+00 n n n " too +oo /1

On en déduit que lim wu, = 0.
n—-+4oo
Exercice 24
On considere la fonction f :] — 00, 2] — R définie par
fle)=v2—=x

1. Etude de f et points fixes.

(a) f est continue sur | — oo, 2] comme composition de fonctions continues. Sur | — oo, 2,
la fonction z + 2 — x est dérivable, et la racine carrée est dérivable sur R ; pour
tout © < 2, on a 2 —x > 0, donc f est dérivable sur | — oo, 2[ et

Ainsi, f est strictement décroissante sur | — oo, 2].

(b) Résolvons f(x) =x :

2= 2 2 —92=0
\/2—3::95(:){ =% @{x;;j ’
x> 0.

x>0,

Le discriminant vaut A = 1 + 8 = 9, d’ou les racines —2 et 1. La seule racine
compatible avec x > 0 est 1.

L’unique point fixe de f est 1.‘

2. Suite définie par itération. On pose uy = 0 et w1 = f(uy).



(a)

(b)

Hérédité. Supposons u,, €

A Tlaide de la représentation graphique (méthode de I'escargot), on conjecture que

(U2n)nen est croissante et que (Ug,i1)nen est décroissante.
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Montrons par récurrence la propriété P(n) : < u, est défini et u, € [0,2] .

Initialisation. up = 0 € [0, 2].
[0,2]. Alors u, < 2, donc u, est dans le domaine de f, et

Un+1 = f(uy,) est bien défini. Comme f est décroissante sur | — 00, 2], on a
FO) 2 flua) > f(2) = V22w 20,
Or /2 < 2, donc u,41 € [0,2].

Conclusion. Pour tout n € N, u,, est bien défini et u,, € [0, 2].

3. Etude de h = fo f. Pour z € [0,2], on a f([0,2]) = [f(2), £(0)] = [0,v2] C] — o0,2],
donc h(z) = f(f(z)) est bien définie sur [0, 2]. Comme f est décroissante, h est croissante
sur [0, 2] (composition de deux fonctions décroissantes). On peut aussi écrire

h(z) =

4. Sous-suites paires et impaires.
(a) Pour tout n € N,

h(ugn) = f(f(u2n)) =

Donc

f(Uzny1) = Uzpyo,

2—-V2—-=x.

h(uzni1) = f(f(uans1)) = f(ugniz) = vanys.

U2(n+1) = h(uzn)

et Us(niny41 = M(Uzng1).

Monotonie. On calcule

ulz\/ﬁ, ugz\/2—\/§.

U():O,

En particulier ug < us.

Montrons par récurrence que Vn € N, us, < Ugyio. Si ug, < Ugpio, alors, comme h

est croissante sur [0, 2] et que uy, € [0, 2],

h(uzn) < h(ugny2)

Donc (us,) est croissante.

= Upt2 < Ugpqd.

Ensuite, si ug, < ug,i2, en composant par f (décroissante sur [0,2]), on obtient

U2n41 = f(u2n) > f(u2n+2> = U2n+3,

donc (ug,41) est décroissante.

Les deux suites (ug,) et (u2,11) sont monotones et bornées (entre 0 et 2), donc elles

convergent.



(c) Points fixes de h. On résout h(x) = x :

— 2 V27 =a?
2—\/2—x:$<:>{ -0 =%
x— )

puis
(2—2?)?=2—uz,
2—2?=V2—1 = {z>0,
2 —a22>0.

En développant :
2—2*)l=4—d’+2"=2—-1 & ' —42®+2+2=0.

Ainsi

h(z) =2 < (2" —42°+24+2=0etx>0et 2—2>>0).

(d) On vérifie que 1 et —2 sont racines de z* — 42 + x + 2, donc ce polynome se factorise
sous la forme
vt =4+ +2=(x—1D(z+2)(2* -z —1).

Les racines de 22 — z — 1 sont %5 <0et %5 Or

2_(1+¢5>2: _<1+2¢5+1):1—¢3<0’

2 2

donc 15 e vérifie pas 2 — 22 > 0. Le seul point fixe admissible de h est donc

2

(e) Soient ¢; = limug, et ¢ = lim ug, ;. La fonction h est continue sur [0,2] et {1, ¢y €
[0,2]. En passant a la limite dans ug, 12 = h(ug,) et ug,13 = h(uz,.1), on obtient

0o=h(6), o= h(ls).
Comme h a un unique point fixe sur [0, 2], on a {; = ¢, = 1. Donc
U, — 1.

5. Comportement selon wuy. D’apres la représentation graphique, la suite (u,) est bien
définie si et seulement si ug € [—2,2]. Dans ce cas, elle converge toujours vers 1.




