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Exercice 1 : étude d’une série statistique à deux variables

Une entreprise utilise de l’acier comme matière première. Afin d’optimiser ses coûts et d’optimiser
l’influence de trop fortes variations des cours de l’acier, elle décide de passer des commandes à ses
fournisseurs à long terme. Le tableau suivant récapitule les consommations yi, exprimées en milliers
de tonnes, pour 10 années (xi est compris entre 1 et 10).

Année i 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Rang xi 1 2 3 4 5 6 7 8 9 10

Consommation yi 0,9 1,03 1,20 1,39 1,61 1,87 2,21 2,40 2,73 3,37

1. Représenter, sur le graphique situé en annexe page 7 (qui est à rendre avec la copie), le nuage
de points associés à la série statistique (xi ; yi).
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2. On donne
∑

yi = 0, 9 + 1, 03 + · · ·+ 3, 37 = 18, 7.

Déterminer les coordonnées du point moyen G du nuage associé à la série statistique (xi ; yi).

xi =
1 + 2 + · · ·+ 10

10
=

10× 11

2
= 5, 5

yi =
0, 9 + 1, 03 + · · ·+ 3, 37

10
≃ 1, 87

G a pour coordonnées (5, 5; 1, 87).

3. On admet que le coefficient de corrélation linéaire de cette série est r ≈ 0, 98 (à 10−2 près).

Interpréter ce résultat.

Ce coefficient de corrélation linéaire r ≈ 0,98 est très proche de 1 : il traduit donc une
forte corrélation linéaire positive entre les deux variables. Autrement dit, lorsque x
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augmente, y a tendance à augmenter et le nuage de points est presque aligné selon une
droite croissante.
Ainsi, un ajustement par une droite (régression linéaire par la méthode des moindres carrés)
semble pertinent.

4. On donne l’équation de la droite de régression de y en x par la méthode des moindres carrés :

y = 0, 26x+ 0, 44.

Représenter cette droite sur le graphique situé en annexe page 7.

Voir graphique ci-dessus.

5. En utilisant cet ajustement affine, quelle consommation, exprimée en milliers de tonnes, peut-on
prévoir en 2028 ?

En 2028, x = 20 donc y = 0, 26× 20 + 0, 44 = 5, 2 + 0, 44 = 5, 64. En 2028, on peut prévoir
une consommation de 5,64 milliers de tonnes.

Exercice 2 : une suite récurrente d’ordre 2

Soit (un) la suite définie par, pour tout entier naturel n :

un =

∫ π

0

cos(nx)
5
4
− cosx

dx.

1. Justifier l’existence de un pour tout n ∈ N (on ne cherchera pas à le calculer).

La fonction x 7→ cos(nx)

5− 4 cosx
est continue sur [0, π] car le dénominateur 5

4
− cosx est stricte-

ment positif : en effet, cosx ∈ [−1, 1], donc

5

4
− cosx ⩾

1

4
> 0.

Ainsi, l’intégrale définissant un existe.

2. On admet que u0 =
4π

3
. Démontrer que u1 =

2π

3
. On pourra utiliser cosx = 5

4
−
(
5
4
− cosx

)
.

Calcul de u1 :

u1 =

∫ π

0

cosx
5
4
− cosx

dx.

On écrit

cosx =
5

4
−
(
5
4
− cosx

)
,

donc
cosx

5
4
− cosx

=
5
4

5
4
− cosx

− 1.

En intégrant sur [0, π] :

u1 =
5

4
u0 −

∫ π

0

1 dx =
5

4
· 4π
3
− π =

5π

3
− π =

2π

3
.
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3. Soit n ∈ N.
(a) Soit (a, b) ∈ R2. Montrer que cos(a) + cos(b) = 2 cos

(
a+b
2

)
cos
(
a−b
2

)
.

D’après le cours, pour tous réels p et q :

cos(p+ q) + cos(p− q) = 2 cos (p) cos (q) .

Donc, en posant p = a+b
2

et q = a−b
2

(et donc a = p+ q et b = p− q), on obtient :

cos(a) + cos(b) = 2 cos

(
a+ b

2

)
cos

(
a− b

2

)
.

(b) Soit x ∈ R. En déduire une expression de cos((n+2)x)+cos(nx) en un produit de cosinus.

On en déduit la formule suivante :

cos((n+ 2)x) + cos(nx) = 2 cos((n+ 1)x) cosx.

(c) Utiliser le résultat précédent pour démontrer que, pour tout n ∈ N :

un+2 + un =
5

2
un+1

En intégrant :

un+2 + un =

∫ π

0

cos((n+ 2)x) + cos(nx)
5
4
− cosx

dx = 2

∫ π

0

cos((n+ 1)x) cosx
5
4
− cosx

dx.

On réécrit cos x = 5
4
−
(
5
4
− cosx

)
. D’où

cosx
5
4
− cosx

=
5
4

5
4
− cosx

− 1.

Ainsi

un+2 + un = 2

(
5

4

∫ π

0

cos((n+ 1)x)
5
4
− cosx

dx−
∫ π

0

cos((n+ 1)x) dx

)
.

Or, pour tout entier k ≥ 1, ∫ π

0

cos(kx) dx = 0.

Donc la seconde intégrale s’annule et il reste

un+2 + un = 2 · 5
4
un+1 =

5

2
un+1,

ce qui est la relation annoncée.

(d) Démontrer enfin que

un =
4π

3

(
1

2

)n

.

Résolution de l’équation récurrente d’ordre 2 : un+2 − 5
2
un+1 + un = 0.

L’équation caractéristique est
r2 − 5

2
r + 1 = 0,

3



dont les racines sont

r =

5
2
±
√

25
4
− 4

2
=

5/2± 3/2

2
=⇒ r1 = 2, r2 =

1
2
.

La solution générale est donc un = A · 2n +B ·
(
1
2

)n
.

Donc u0 =
4π

3
= A+B et u1 =

2π

3
= 2A+

B

2
.

On a alors 2u1 − u0 = 0 = 3A donc A = 0 et donc B =
4π

3
.

Ainsi

un =
4π

3

(
1

2

)n

pour tout n ∈ N .

4. On pose Sn =
n∑

k=0

uk.

(a) Calculer Sn en fonction de n.

Pour tout n ≥ 0,

Sn =
n∑

k=0

uk =
4π

3

n∑
k=0

(
1
2

)k
=

4π

3
·
1−

(
1
2

)n+1

1− 1
2

=
8π

3

(
1− 1

2n+1

)
.

(b) En déduire lim
n→+∞

Sn.

On a lim
n→+∞

Sn =
8π

3
.

Exercice 3 : un calcul d’intégrales

On considère les intégrales

I =

∫ 16

1

1

1 +
√
t
dt et J =

∫ 16

1

√
t

1 +
√
t
dt.

1. Trouver deux réels a et b tels que, pour tout t ∈ [1; 16] :

2t

1 + t
= a+

b

1 + t
.

On cherche a et b tels que, pour tout réel t de l’intervalle [1; 16],

2t

1 + t
= a+

b

1 + t
.

On met tout sur le même dénominateur :

a+
b

1 + t
=

a(1 + t) + b

1 + t
.
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On doit donc avoir, pour tout t,

2t

1 + t
=

a(1 + t) + b

1 + t
=⇒ 2t = a(1 + t) + b = at+ a+ b.

On identifie alors les coefficients : 2 = a,

0 = a+ b.

D’où
a = 2 et b = −a = −2.

Ainsi,

∀t ∈ [1; 16],
2t

1 + t
= 2− 2

1 + t
.

2. À l’aide du changement de variable x =
√
t, montrer que

I = 6 + 2 ln
2

5
.

On pose le changement de variable

x =
√
t =⇒ t = x2 et dt = 2x dx.

Lorsque t varie de 1 à 16, les bornes de x sont :

t = 1⇒ x =
√
1 = 1, t = 16⇒ x =

√
16 = 4.

L’intégrale I devient alors :

I =

∫ 16

1

1

1 +
√
t
dt =

∫ 4

1

1

1 + x
· 2x dx =

∫ 4

1

2x

1 + x
dx.

D’après la question précédente (avec t remplacé par x), on sait que

2x

1 + x
= 2− 2

1 + x
.

Donc

I =

∫ 4

1

(
2− 2

1 + x

)
dx =

∫ 4

1

2 dx− 2

∫ 4

1

1

1 + x
dx.

On calcule chaque intégrale : ∫ 4

1

2 dx = 2[x]41 = 2(4− 1) = 6,

∫ 4

1

1

1 + x
dx = [ln |1 + x|]41 = ln(5)− ln(2) = ln

(
5

2

)
.

Ainsi,

I = 6− 2 ln

(
5

2

)
= 6 + 2 ln

(
2

5

)
.
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3. En déduire la valeur de l’intégrale J .

On remarque d’abord que, pour tout t ≥ 0,

√
t

1 +
√
t
=

(1 +
√
t)− 1

1 +
√
t

= 1− 1

1 +
√
t
.

Ainsi,

J =

∫ 16

1

√
t

1 +
√
t
dt =

∫ 16

1

(
1− 1

1 +
√
t

)
dt =

∫ 16

1

1 dt−
∫ 16

1

1

1 +
√
t
dt.

On reconnâıt l’intégrale I : ∫ 16

1

1 dt = [t]161 = 16− 1 = 15,

donc

J = 15− I = 15−
(
6 + 2 ln

(
2

5

))
= 9− 2 ln

(
2

5

)
= 9 + 2 ln

(
5

2

)
.

Exercice 4 : une puissance de matrices

On définit les matrices réelles suivantes de taille 3× 3 :

M =


2 −3 −3
−3 2 −3
−3 −3 2

 et J =


1 1 1

1 1 1

1 1 1


On rappelle que, par convention,

M0 =


1 0 0

0 1 0

0 0 1

 = I3.

1. (a) Calculer J2 et exprimer le résultat en fonction J .

J2 =


3 3 3

3 3 3

3 3 3

 = 3J

(b) Déterminer le rang de la matrice J .
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Soit X =


x

y

z

. On doit compter le nombre de pivots du système linéaire :

JX = 0⇔


x + y + z = 0

x + y + z = 0

x + y + z = 0

L2←L2−L1L3←L3−L1⇔
{

x + y + z = 0

Le rang de la matrice est donc égal à 1.

2. (a) Calculer M2.

M2 =


22 −3 −3
−3 22 −3
−3 −3 22


(b) Exprimer M et M2 en fonction de I3 et de J .

On a M =


2 −3 −3
−3 2 −3
−3 −3 2

 =


−3 −3 −3
−3 −3 −3
−3 −3 −3

+ 5


1 0 0

0 1 0

0 0 1

 = 5I3 − 3J .

De même, M2 =


22 −3 −3
−3 22 −3
−3 −3 22

 =


−3 −3 −3
−3 −3 −3
−3 −3 −3

+ 25


1 0 0

0 1 0

0 0 1

 = 25I3 − 3J .

(c) Déterminer une expression de M2 en fonction de M et de I3.

On en déduit que −3J = M − 5I3, donc M2 = 25I3 + (M − 5I3) = M + 20I3

(d) En déduire que M est inversible et expliciter les coefficients de la matrice M−1.

On a M2 = M + 20I3 ⇐⇒⇐⇒ M2 − M = 20I3 ⇐⇒ M × 1

20
(M − I3) = I3 =

1

20
(M − I3)×M

Ainsi, M est inversible et on a :

M−1 =
1

20
(M − I3) =


1
20

− 3
20
− 3

20

− 3
20

1
20

− 3
20

− 3
20
− 3

20
1
20

 .

3. (a) Prouver, par récurrence sur n, que pour tout entier n ∈ N, il existe un couple de réels
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(an, bn) tels que

Mn =


an bn bn

bn an bn

bn bn an

 .

En déduire les relations définissant an+1 et bn+1 en fonction de an et bn.

Soit P (n) la proposition : ≪ il existe deux réels an et bn tels que Mn =


an bn bn

bn an bn

bn bn an

 ≫.

Initialisation. Pour n = 0, M0 = I3 est bien de la forme annoncée avec a0 = 1, b0 = 0.
Hérédité. Soit n ∈ N et supposons

Mn =


an bn bn

bn an bn

bn bn an

 .

Alors

Mn+1 = MnM =


an bn bn

bn an bn

bn bn an




2 −3 −3
−3 2 −3
−3 −3 2

 .

Un produit matriciel donne, pour la première ligne :

an+1 = 2an − 6bn,

bn+1 = −3an − bn,

et, par symétrie, Mn+1 a la même structure. La propriété est vraie pour tout n par
récurrence.

(b) À partir de ces relations, vérifier que pour tout n ∈ N :

bn+2 − bn+1 − 20 bn = 0.

Du système {
an+1 = 2an − 6bn,

bn+1 = −3an − bn,

on tire an = −1

3
(bn+1 + bn). Alors

an+1 = 2
(
−1

3
(bn+1 + bn)

)
− 6bn = −2

3
bn+1 − 20

3
bn.

En reportant dans bn+2 = −3an+1 − bn+1, on obtient

bn+2 = −3
(
−2

3
bn+1 − 20

3
bn
)
− bn+1 = bn+1 + 20bn,

d’où
bn+2 − bn+1 − 20 bn = 0.
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(c) En déduire la valeur de bn puis celle de an en fonction de n.

L’équation caractéristique r2 − r − 20 = 0 a pour racines r1 = 5 et r2 = −4. Donc

bn = A · 5n +B · (−4)n.

Avec b0 = 0 et b1 = −3a0 − b0 = −3, on résout{
A+B = 0,

5A− 4B = −3,
=⇒ A = −1

3
, B =

1

3
.

Ainsi

bn =
1

3

(
(−4)n − 5n

)
.

Pour an, on repart de bn+1 = −3an − bn, soit an = −bn+1 + bn
3

:

an = −1

3
· 1
3

[
(−4)n+1 − 5n+1 + (−4)n − 5n

]
=

1

3

(
2 · 5n + (−4)n

)
.

Donc

an =
1

3

(
2 · 5n + (−4)n

)
, bn =

1

3

(
(−4)n − 5n

)
.

4. Retrouver l’expression de Mn, pour tout n ∈ N, à l’aide de la formule du binôme de Newton,
après avoir justifié qu’elle est applicable dans ce cas.

Soit n ∈ N. Comme I et J commutent, on peut appliquer le binôme de Newton :

Mn = (5I − 3J)n =
n∑

k=0

(
n

k

)
5n−k(−3)kJk.

Or J2 = 3J , donc pour tout k ≥ 1,
Jk = 3k−1J.

On obtient alors

Mn = 5nI +
n∑

k=1

(
n

k

)
5n−k(−3)k 3k−1J = 5nI +

1

3

n∑
k=1

(
n

k

)
5n−k(−9)kJ.

Mais
n∑

k=0

(
n

k

)
5n−k(−9)k = (5− 9)n = (−4)n,

d’où
n∑

k=1

(
n

k

)
5n−k(−9)k = (−4)n − 5n.

Finalement,

Mn = 5nI +
(−4)n − 5n

3
J .
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En écriture explicite, on a pour tout n ∈ N :

Mn =


2·5n+(−4)n

3
(−4)n−5n

3
(−4)n−5n

3

(−4)n−5n
3

2·5n+(−4)n
3

(−4)n−5n
3

(−4)n−5n
3

(−4)n−5n
3

2·5n+(−4)n
3


(diagonale 2·5n+(−4)n

3
, hors-diagonale (−4)n−5n

3
).

Exercice 5 : encore des matrices

Préambule

On considère les matrices :

P =


1 1 0

2 0 2

2 2 1

 , A =


−3 −1

2
1

2 −3 0

0 −1 −1

 et T =


−2 1 0

0 −2 0

0 0 −3


1. Montrer que P est inversible et déterminer P−1.

On utilise l’algorithme du pivot de Gauss pour trouver P−1.
1 1 0 1 0 0

2 0 2 0 1 0

2 2 1 0 0 1

 .

Étape 1 : On annule les coefficients sous le pivot de la première colonne.

L2 ← L2 − 2L1, L3 ← L3 − 2L1.

On obtient : 
1 1 0 1 0 0

0 −2 2 −2 1 0

0 0 1 −2 0 1

 .

Étape 2 : On élimine le coefficient en colonne 3 de la ligne 2 à l’aide de la ligne 3 :
L2 ← L2 − 2L3. 

1 1 0 1 0 0

0 −2 0 2 1 −2
0 0 1 −2 0 1

 .

Étape 3 : On met le pivot de la seconde ligne à 1 : L2 ← −1
2
L2.
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
1 1 0 1 0 0

0 1 0 −1 −1
2

1

0 0 1 −2 0 1

 .

Étape 4 : On annule le coefficient en colonne 2 de la ligne 1. L1 ← L1 − L2.
1 0 0 2 1

2
−1

0 1 0 −1 −1
2

1

0 0 1 −2 0 1

 .

On a donc transformé (P | I3) en (I3 | P−1). Ainsi P est inversible et P−1 =
2 1

2
−1

−1 −1
2

1

−2 0 1

 .

2. Montrer que :
P−1AP = T.

On calcule d’abord le produit AP :

AP =


−3 −1

2
1

2 −3 0

0 −1 −1



1 1 0

2 0 2

2 2 1

 =


−2 −1 0

−4 2 −6
−4 −2 −3

 .

Puis on calcule :

P−1(AP ) =


2 1

2
−1

−1 −1
2

1

−2 0 1



−2 −1 0

−4 2 −6
−4 −2 −3

 =


−2 1 0

0 −2 0

0 0 −3

 = T.

Donc on a bien P−1AP = T .

1 Système différentiel

Soient x : t 7→ x(t), y : t 7→ y(t), z : t 7→ z(t) trois fonctions continûment dérivables sur R, qui
représentent les coordonnées d’un point mobile au cours du temps.
Ces fonctions satisfont le système différentiel suivant :

x′(t) = −3x(t)− 1
2
y(t) + z(t)

y′(t) = 2x(t)− 3y(t)

z′(t) = −y(t)− z(t)

,∀t ∈ R.

On pose

X =


x(t)

y(t)

z(t)

 , X ′ =


x′(t)

y′(t)

z′(t)

 .
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Le système différentiel s’écrit naturellement :

X ′ = AX,

où A est la matrice donnée en préambule.

3. Soit

Y =


u(t)

v(t)

w(t)

 tel que X = PY.

Montrer que le système différentiel (S) s’écrit :

Y ′ = TY.

On a par hypothèse X = PY . En dérivant par rapport au temps t,

X ′ = (PY )′ = PY ′,

car P est constante.
Or le système initial s’écrit X ′ = AX. En remplaçant X par PY , on obtient :

PY ′ = AX = A(PY ) = APY.

On multiplie à gauche par P−1 (cela est possible car P est inversible) :

Y ′ = P−1AP Y.

D’après le préambule, on a montré que P−1AP = T . Ainsi,

Y ′ = TY.

4. En déduire que : 
u′(t) = −2u(t) + v(t)

v′(t) = −2v(t)
w′(t) = −3w(t)

,∀t ∈ R.

On a Y ′ = TY avec

T =


−2 1 0

0 −2 0

0 0 −3

 , Y =


u

v

w

 .

Le produit TY vaut

TY =


−2u+ v

−2v
−3w

 .

Comme Y ′ = (u′, v′, w′)T , on obtient le système :
u′(t) = −2u(t) + v(t),

v′(t) = −2v(t),
w′(t) = −3w(t).

12



5. Résoudre ce système différentiel en commençant par le bas et en remontant.

On considère : 
u′(t) = −2u(t) + v(t),

v′(t) = −2v(t),
w′(t) = −3w(t).

1) Résolution pour w.

w′(t) = −3w(t) ⇒ w(t) = w0e
−3t,

où w0 = w(0) est une constante réelle.
2) Résolution pour v.

v′(t) = −2v(t) ⇒ v(t) = v0e
−2t,

avec v0 = v(0).
3) Résolution pour u.
On a

u′(t) + 2u(t) = v(t) = v0e
−2t.

C’est une équation différentielle linéaire du premier ordre. Le facteur intégrant est e2t. On
obtient : (

u(t)e2t
)′
= v0.

En intégrant :
u(t)e2t = v0t+ u0,

où u0 = u(0). Donc
u(t) = (u0 + v0t) e

−2t.

Au final, pour des constantes réelles u0, v0, w0,
u(t) = (u0 + v0t) e

−2t,

v(t) = v0e
−2t,

w(t) = w0e
−3t.

6. En utilisant les questions 1 et 3, en déduire les solutions du système différentiel X ′ = AX.

On a X = PY et Y ′ = TY , dont les solutions générales sont
u(t) = (u0 + v0t) e

−2t,

v(t) = v0e
−2t,

w(t) = w0e
−3t,

avec

Y (0) =


u0

v0

w0

 = P−1X(0).
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Pour tout t, on a

X(t) = PY (t) =


1 1 0

2 0 2

2 2 1



u(t)

v(t)

w(t)

 =


u(t) + v(t)

2u(t) + 2w(t)

2u(t) + 2v(t) + w(t)

 .

On a ainsi :

X(t) =


(u0 + v0(t+ 1))e−2t

2(u0 + v0t)e
−2t + 2w0e

−3t

(2u0 + 2v0(t+ 1))e−2t + w0e
−3t

 .

2 Suite récurrente

On considère les trois suites réelles définies par :
xn+1 = −3xn − 1

2
yn + zn

yn+1 = 2xn − 3yn

zn+1 = −yn − zn

x0 = 10, y0 = −20, z0 = 40

, ∀n ∈ N.

Soit

Xn =


xn

yn

zn

 .

Le problème se traduit sous forme matricielle par la relation :

Xn+1 = AXn,

où A est la matrice donnée en préambule.

7. En déduire que :
∀n ∈ N, Xn = AnX0.

On a pour tout n ∈ N :
Xn+1 = AXn.

Par récurrence, on montre que
Xn = AnX0.

Initialisation : pour n = 0,
X0 = A0X0 = I3X0.

Hérédité : soit n ∈ N et supposons que Xn = AnX0. Alors

Xn+1 = AXn = A(AnX0) = An+1X0.

Donc pour tout n ∈ N, Xn = AnX0.
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8. Montrer que :
∀n ∈ N, An = PT nP−1.

Par récurrence, on montre que
An = PT nP−1

Initialisation : pour n = 0,

A0 = I3 = PI3P
−1 = PT 0P−1

Hérédité : supposons que An = PT nP−1. Alors

An+1 = AAn = (PTP−1)(PT nP−1) = PTT nP−1 = PT n+1P−1.

Ainsi, on a bien pour tout n ∈ N, An = PT nP−1.

9. Montrer que, pour tout entier naturel n, on a :

T n =


(−2)n n(−2)n−1 0

0 (−2)n 0

0 0 (−3)n


On écrit

T =


−2 1 0

0 −2 0

0 0 −3

 =


−2 0 0

0 −2 0

0 0 −3

+


0 1 0

0 0 0

0 0 0

 .

D et N commutent car DN = ND =


0 −2 0

0 0 0

0 0 0

 donc d’après la formule du binôme de

Newton :

T n = (D +N)n =
n∑

k=0

(
n

k

)
Dn−kNk.

Or, pour tout k ≥ 2, Nk = 0 donc :

T n = (D +N)n = Dn +

(
n

1

)
Dn−1N =


(−2)n 0 0

0 (−2)n 0

0 0 (−3)n

+


0 n(−2)n−1 0

0 0 0

0 0 0


Ainsi,

T n =


(−2)n n(−2)n−1 0

0 (−2)n 0

0 0 (−3)n

 , ∀n ∈ N.

10. En déduire l’expression de Xn.
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On a
Xn = AnX0 = PT nP−1X0.

On commence par calculer

Y0 = P−1X0, X0 =


10

−20
40

 .

Avec P−1 =


2 1

2
−1

−1 −1
2

1

−2 0 1

, on obtient Y0 =


u0

v0

w0

 = P−1X0 =


−30
40

20

 .

Pour tout n,
Yn = T nY0.

Avec

T n =


(−2)n n(−2)n−1 0

0 (−2)n 0

0 0 (−3)n

 ,

on obtient

Yn =


un

vn

wn

 =


(−2)nu0 + n(−2)n−1v0

(−2)nv0
(−3)nw0

 .

En remplaçant u0 = −30, v0 = 40, w0 = 20,
un = (−2)n(−30) + n(−2)n−1 · 40 = (−2)n+1(10n+ 15),

vn = 40(−2)n,

wn = 20(−3)n.

Puis

Xn = PYn =


1 1 0

2 0 2

2 2 1



un

vn

wn

 =


un + vn

2un + 2wn

2un + 2vn + wn

 .

En simplifiant, on obtient, pour tout n ∈ N,

xn = un + vn = 5(−2)n+1(2n− 1),

yn = 2un + 2wn = −20(−2)n(2n+ 3) + 40(−3)n,

zn = 2un + 2vn + wn = 20(−2)n(1− 2n) + 20(−3)n.

Ainsi, pour tout n ∈ N,

Xn =


xn

yn

zn

 =


5(−2)n+1(2n− 1)

−20(−2)n(2n+ 3) + 40(−3)n

20(−2)n(1− 2n) + 20(−3)n

 .
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Problème

Si l’on considère qu’un organisme est une population de cellules, le développement doit tenir compte
de l’interaction mutuelle des cellules - ce que les spécialistes nomment les relations d’allométrie. Nous
envisageons ci-dessous deux modèles d’évolution du poids P de cet organisme.

3 Le modèle de von Bertalanffy (1938)

On note T (t), S(t), P (t) la taille, la surface et le poids à l’instant t. On admet qu’il existe un réel
a > 0 tel que S = aT 2 et P = aT 3.

Le modèle suppose que l’accroissement du poids P est proportionnel à la surface S et qu’il y a un
freinage proportionnel au poids :

P ′ = bS − cP, avec b > 0 et c > 0.

1. Montrer que T est solution de l’équation différentielle suivante notée (E) :

y′ +
c

3
y =

b

3
(E)

Dérivons la relation P = aT 3 :

P ′ = 3aT ′T 2 = 3ST ′

donc
bS − cP = 3ST ′

soit, en divisant par 3S(t) > 0 et en remarquant que
P

S
= T ,

T ′ =
b

3
− c

3
T ⇐⇒ T ′ +

c

3
T =

b

3
.

Ainsi, y est bien solution de l’équation y′ +
c

3
y =

b

3
.

2. Exprimer alors T (t) en fonction de t, b et c.

Résolvons cette précédente équation différentielle :

Ainsi, y(t) = Ke−
c
3
t +

b

c
où K ∈ R.

Donc, T (t) = Ke−
c
3
t +

b

c
pour un certain K ∈ R.

3. En déduire que le poids évolue vers un poids maximum Pm (à préciser), et que l’on a :

P ′ = cP

[(
Pm

P

) 1
3

− 1

]
.

Comme c > 0, lim
t→+∞

T (t) =
b

c
.

Donc lim
t→+∞

P (t) = a

(
b

c

)3

= Pm.

17



On a alors :

P ′ = bS − cP (1)

= cP

(
bS

cP
− 1

)
(2)

= cP

(
b

cT
− 1

)
(3)

= cP

(
b

c(P
a
)
1
3

− 1

)
(4)

= cP

(
(b3a)

1
3

(c3P )
1
3

− 1

)
(5)

= cP

[(
Pm

P

) 1
3

− 1

]
(6)

4. Montrer que la surface poids évolue vers un maximum Sm (à préciser) et que l’on a :

S ′ =
2

3
cS

[(
Sm

S

) 1
2

− 1

]
.

De même, on a lim
t→+∞

S(t) = a

(
b

c

)2

= Sm.

On a alors :

S ′ = 2aT ′T (7)

= 2a

(
− c

3
T +

b

3

)
T (8)

=
2

3
caT 2

(
b

cT
− 1

)
(9)

=
2

3
caT 2

 b

c

(
S

a

) 1
2

− 1

 (10)

=
2

3
cS

[(
Sm

S

) 1
2

− 1

]
(11)

4 Le modèle de F.J. Richard (1959)

Si y(t) est une grandeur liée à la croissance d’un organisme (taille, poids . . .), un modèle général est
donnée par l’équation différentielle :

y′ =
c

3

y

1− α

[(
A

y

)1−α

− 1

]
.

où c et A sont des constantes (A > 0), et α un paramètre réel (α ̸= 1).

5. Vérifier qu’il existe trois valeurs particulières de α pour lesquelles on retrouve le modèle de von
Bertalanffy pour la taille, le poids et la surface.
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On retrouve le modèle de von Bertalanffy pour la taille en prenant α = 0 , pour le poids en

prenant α =
2

3
et pour la surface α =

1

2
.

6. Dans cette question, on suppose que α = 2.

(a) En supposant que A = 1, démontrer que l’on obtient l’équation différentielle suivante :

y′ = λy(1− y)

où λ est une constante à déterminer en fonction de c.

y′ =
c

3

y

1− 2

[(
1

y

)1−2

− 1

]
= − c

3
y (y − 1) = λy(1− y).

où λ =
c

3
.

(b) En posant z =
1

y
, montrer que z vérifie l’équation différentielle suivante :

z′ = −λ(z − 1).

On a : z′ = − y′

y2
= −λy(1− y)

y2
= −λ

(
1

y
− 1

)
= −λ(z − 1).

(c) Résoudre cette équation différentielle et en déduire l’expression de y(t).

On obtient, pour tout t > 0, z(t) = Ke−λt + 1.

On en déduit que pour tout t > 0, y(t) =
1

Ke−λt + 1
.

(d) En admettant que y(0) = 0, 001 et que λ > 0, déterminer l’expression de y(t) et déterminer
sa limite en +∞.

On a : y(0) =
1

K + 1
= 0, 001 donc K + 1 = 1000 soit K = 999.

On en déduit que pour tout t > 0, y(t) =
1

999e−λt + 1
.

lim
t→+∞

y(t) = 1.
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