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18.1 Généralités

18.1.1 Variable aléatoire

Définition 1: Variable aléatoire sur un univers fini

Soit Ω un univers fini.
Une variable aléatoire sur Ω est une application X : Ω −→ R.

Remarque 1. Si Ω est fini, X(Ω) est nécessairement fini également.

Exemple 1. • Soit Ω un univers fini. Soit A ⊂ Ω.

La fonction indicatrice
1A : Ω −→ R

ω 7−→ 1A(ω) =

{
1 siω ∈ A
0 si, ω /∈ A

est une variable aléatoire.

Rappelons ses propriétés vues dans le TD ≪ Applications ≫ :

1A = 1− 1A; 1A∩B = 1A1B; 1A∪B = 1A + 1B − 1A1B.

• On lance deux dés à 6 faces. On considère l’univers Ω = J1, 6K2.

1



BCPST1 Lycée Fénelon

Soit X :
Ω −→ R

(a, b) 7−→ a+ b.
L’application X est une variable aléatoire qui renvoie la somme des deux dés. On a alors

X(Ω) = J2, 12K.

Définition 2

Soit X une variable aléatoire définie sur un univers fini Ω.
Soit A ⊂ R.
On note (X ∈ A) l’événement

(X ∈ A) = {ω ∈ Ω, X(ω) ∈ A}.

En particulier pour tout réel x, on note
• (X = x) l’événement (X ∈ {x}) = {ω ∈ Ω, X(ω) ∈ {x}}.
• (X ⩽ x) l’événement (X ∈]−∞, x]) = {ω ∈ Ω, X(ω) ∈]−∞, x]}.
• (X < x) l’événement (X ∈]−∞, x[) = {ω ∈ Ω, X(ω) ∈]−∞, x[}.
• (X ⩾ x) l’événement (X ∈ [x+∞[) = {ω ∈ Ω, X(ω) ∈ [x+∞[}.
• (X > x) l’événement (X ∈]x+∞[) = {ω ∈ Ω, X(ω) ∈]x+∞[}.
et pour tout couple (x, y) de réels avec x ⩽ y, on note

(x ⩽ X ⩽ y) = {ω ∈ Ω, X(ω) ∈ [x, y]}.

Exemple 2. Reprenons l’exemple précédent. On a

(X = 7) = {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)},

(X < 13) = Ω

et
(10 ⩽ X ⩽ 12) = {(4, 6), (5, 5), (6, 4), (5, 6), (6, 5), (6, 6)}.

Proposition 1: Système complet d’événements associé à une variable aléatoire

Soit X une variable aléatoire définie sur un univers fini Ω. Notons X(Ω) = {x1, . . . , xn}
(où xi ̸= xj si i ̸= j) les valeurs prises par la variable aléatoire X (qui sont nécessairement
en nombre fini).
Alors les événements (X = xi)1⩽i⩽n forment un système complet d’événements pour Ω.

Démonstration. • Soient (i, j) ∈ J1, nK2 avec i ̸= j.
Soit ω ∈ (X = xi) ∩ (X = xj).
Alors X(ω) = xi et X(ω) = xj . Or xi ̸= xj .
Il ne peut donc pas exister d’élément ω ∈ (X = xi) ∩ (X = xj), ce qui prouve que

(X = xi) ∩ (X = xj) = ∅

et ce pour tout (i, j) ∈ J1, nK2 avec i ̸= j.

• Montrons que Ω =
n⋃

i=1

(X = xi).

On a clairement

n⋃
i=1

(X = xi) ⊂ Ω. Montrons l’inclusion réciproque.

Soit ω ∈ Ω. Alors X(ω) ∈ X(Ω) = {x1, . . . , xn} donc il existe i ∈ J1, nK tel que X(ω) = xi,

i.e. ω ∈ (X = xi) donc ω ∈
n⋃

i=1

(X = xi).
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On a donc bien prouvé l’inclusion Ω ⊂
n⋃

i=1

(X = xi) d’où finalement l’égalité

Ω =
n⋃

i=1

(X = xi).

Les deux points ci-dessus montrent que les événements (X = xi)1⩽i⩽n forment un système
complet d’événements pour Ω. ■

Remarque 2. En particulier, ceci implique que
n∑

i=1

P(X = xi) = 1.

Exemple 3. Dans l’exemple précédent, les événements (X = k)2⩽k⩽12 forment un système
complet d’événements pour Ω.

Définition 3: Loi d’une variable aléatoire

Soit (Ω,P(Ω),P) un espace probabilisé fini.
Soit X une variable aléatoire discrète sur (Ω,P(Ω),P).
On appelle loi (de probabilité) de la variable aléatoire X l’application

fX : X(Ω) −→ [0, 1]

x 7−→ P(X = x).

Remarque 3. On représente graphiquement cette fonction par un diagramme en bâtons.

Exemple 4. On lance un dé à 6 faces équilibré. Si on obtient 1 ou 2, on perd 1 point ; si on
obtient 3, 4 ou 5, il ne se passe rien. Si on obtient 6, on gagne 3 points.

Pour modéliser cette expérience, on pose Ω = J1, 6K.
Puisqu’on est face à une situation d’équiprobabilité, on définit la probabilité P sur (Ω,P(Ω))

par

∀k ∈ J1, 6K,P({k}) = 1

6
.

Par ailleurs, on définit la variable aléatoire X : J1, 6K → {−1, 0, 3} définie par

X(ω) =


−1 si ω ∈ {1, 2}
0 si ω ∈ {3, 4, 5}
3 si ω = 6.

On a alors

fX({−1}) = P(X = −1) = P({1, 2}) = 1

3
;

fX({0}) = P(X = 0) = P({3, 4, 5}) = 1

2
;

et

fX({3}) = P(X = 3) = P({6}) = 1

6
.

D’autre part, on a

P(X ⩽ 0) = P(X = −1) + P(X = 0) =
5

6
.

La probabilité d’avoir un gain négatif est donc grande, mais pourtant, on a tout intérêt à jouer
à ce jeu (calculer l’espérance...).
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Voici le diagramme en bâtons de cette variable aléatoire X :

−1 0 3
0

1
6

1
3

1
2

1
3

1
2

1
6

x

P
(X

=
x
)

Proposition 2

Soit n ∈ N∗. On considère (xi)1⩽i⩽n une famille de réels distincts et (pi)1⩽i⩽n une famille

de réels positifs vérifiant
n∑

i=1

pi = 1.

Alors il existe une variable aléatoire X sur un espace probabilisé fini vérifiant

∀i ∈ J1, nK,P(X = xi) = pi.

Démonstration. Soit Ω = J1, nK. On définit une application

X : Ω = J1, nK −→ R
i 7−→ xi

et une application
P : P(Ω) −→ [0, 1]

A 7−→
∑

i∈J1,nK
i∈A

pi .

Vérifions que P définit bien une probabilité sur (Ω,P(Ω)).

• On a P(Ω) =
∑

i∈J1,nK
i∈Ω

pi =
n∑

i=1

pi = 1.

• Soient (A1, . . . , Ap) des événements de Ω deux à deux incompatibles. On a alors

P

(
p⋃

k=1

Ak

)
=

∑
i∈J1,nK
i∈

⋃p
k=1

Ak

pi =

p∑
k=1

∑
i∈J1,nK
i∈Ak

pi =
n∑

k=1

P(Ak),

ce qui prouve que P définit bien une probabilité sur (Ω,P(Ω)).
L’application X est alors une variable aléatoire sur l’espace probabilisé fini (Ω,P(Ω),P) qui

vérifie les conditions demandées puisque pour tout i ∈ J1, nK, on a

P(X = xi) =
∑

k∈J1,nK
k∈(X=xi)

pk = pi.

■
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Remarque 4. Ce théorème nous permettra de définir les lois classiques : en effet, une loi sera
donnée par l’ensemble des valeurs atteintes {xi|1 ⩽ i ⩽ n} et les probabilités P(X = xi).

18.1.2 Fonction de répartition d’une variable aléatoire réelle

Définition 4: Fonction de répartition d’une variable aléatoire

Soit (Ω,P(Ω),P) un espace probabilisé fini.
Soit X une variable aléatoire définie sur (Ω,P(Ω)).
On définit sa fonction de répartition FX comme la fonction

FX : R −→ [0, 1]

x 7−→ FX(x) = P(X ≤ x).

Remarque 5. La fonction de répartition d’une variable aléatoire est donc définie à partir de
la loi de celle-ci.

Proposition 3: Propriétés de la fonction de répartition d’une variable aléatoire

Soit (Ω,P(Ω),P) un espace probabilisé fini.
Soit X une variable aléatoire définie sur (Ω,P(Ω)).
Alors la fonction de répartition FX de la variable aléatoire X vérifie les propriétés sui-
vantes :

1. FX est croissante sur R.

2. lim
x→−∞

FX(x) = 0.

3. lim
x→+∞

FX(x) = 1.

Démonstration. Dans toute la démonstration, on note

X(Ω) = {x1, . . . , xn}

avec x1 < · · · < xn.

1. Soit x ≤ y deux réels.

On a l’inlusion d’événements (X ≤ x) ⊂ (X ≤ y). Donc on a bien

FX(x) = P(X ≤ x) ≤ P(X ≤ y) = FX(y),

ce qui prouve la croissance de la fonction FX .

2. Pour tout x < x1, on a P (X ⩽ x) = P(∅) = 0, ce qui prouve que lim
x→−∞

FX(x) = 0.

3. Pour tout x ⩾ xn, on a P (X ⩽ x) = P(Ω) = 1, ce qui prouve que lim
x→+∞

FX(x) = 1.

■

Exemple 5. Reprenons l’exemple de la variable aléatoire définie sur J1, 6K par

X(ω) =


−1 si ω ∈ {1, 2}
0 si ω ∈ {3, 4, 5}
3 si ω = 6.

La fonction de répartition FX de la variable aléatoire X est définie par

FX : R −→ [0, 1]

x 7−→


0 six < −1
1
3 si − 1 ⩽ x < 0
5
6 si 0 ⩽ x < 3
1 six ⩾ 3.
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Proposition 4: Lien entre loi de la variable aléatoire et fonction de répartition

Soit X une variable aléatoire définie sur un espace probabilisé fini (Ω,P(Ω),P).
Notons X(Ω) = {x1, . . . , xn} avec x1 < · · · < xn.
On note fX la loi de la variable aléatoire X et FX sa fonction de répartition.
Alors

P(X = x1) = FX(x1) et ∀k ∈ J2, nK,P(X = xk) = FX(xk)− FX(xk−1).

Démonstration. • On a FX(x1) = P(X ⩽ x1).
Or, (X ⩽ x1) = (X = x1) ∪ (X < x1) = (X = x1) puisque (X < x1) = ∅. On a donc bien

FX(x1) = P(X ⩽ x1) = P(X = x1).
• Soit k ∈ J2, nK.
On a (X ⩽ xk) = (X = xk) ∪ (X < xk) = (X = xk) ∪ (X ⩽ xk−1). Puisque les événements,

(X = xk) et (X ⩽ xk−1) sont incompatibles, on en déduit que

FX(xk) = P(X ⩽ xk) = P(X = xk) + P(X ⩽ xk−1) = P(X = xk) + FX(xk−1)

d’où P(X = xk) = FX(xk)− FX(xk−1). ■

Remarque 6. Ainsi, on peut retrouver la loi d’une variable aléatoire à partir de sa fonction de
répartition.

Exemple 6. Soit X une variable aléatoire dont la fonction de répartition est

FX : R −→ [0, 1]

x 7−→


0 six < −2
1
4 si − 2 ⩽ x < 1
5
8 si 1 ⩽ x < 4
1 six ⩾ 4.

On en déduit que la loi de la variable aléatoire X est donnée par

P(X = −2) = FX(−2) =
1

4
, P(X = 1) = FX(1)−FX(−2) =

3

8
et P(X = 4) = FX(4)−FX(1) =

3

8
.

18.2 Espérance et variance

18.2.1 Espérance

Définition 5: Espérance d’une variable aléatoire

Soit (Ω,P(Ω),P) un espace probabilisé fini.
Soit X une variable aléatoire définie sur (Ω,P(Ω)).
On note X(Ω) = {x1, . . . , xn}, avec xi ̸= xj si i ̸= j.
On appelle espérance de X, noté E(X), le réel

E(X) =

n∑
k=1

xkP(X = xk).

On dit que la variable aléatoire X est centrée si E(X) = 0.

Remarque 7. Moralement, l’espérance d’une variable aléatoire représente la moyenne des va-
leurs prises par cette variable aléatoire pondérées par leurs probabilités.
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Exemple 7. Si la variable aléatoire X est constante, i.e. il existe a ∈ R tel que P(X = a) = 1,
alors E(X) = a.

Exemple 8. Reprenons l’exemple 4.

On a E(X) = −1× P(X = −1) + 0× P(X = 0) + 3P(X = 3) = −1

3
+ 3× 1

6
=

1

6
.

L’espérance est positive donc le jeu est favorable au joueur.

Proposition 5: Espérance d’une indicatrice

Soit (Ω,P(Ω),P) un espace probabilisé fini.
Soit A ∈ P(Ω).
Alors

E(1A) = P(A).

Démonstration. On a 1A(Ω) = {0, 1} et par définition de 1A, on a les événements

(1A = 0) = A et (1A = 1) = A

donc

E(1A) = 0× P(1A = 0) + 1× P(1A = 1) = P(A).

■

Proposition 6: Positivité de l’espérance

Soit (Ω,P(Ω),P) un espace probabilisé fini.
Soit X une variable aléatoire définie sur (Ω,P(Ω)) à valeurs positives.
Alors E(X) ⩾ 0.

Démonstration. Notons X(Ω) = {x1, . . . , xn}. Par hypothèse, pour tout k ∈ J1, nK, xk ⩾ 0
donc

E(X) =
n∑

k=1

xkP(X = xk) ⩾ 0.

■

Théorème 1: Théorème de transfert

Soit (Ω,P(Ω),P) un espace probabilisé fini.
Soit X une variable aléatoire définie sur (Ω,P(Ω)). On note X(Ω) = {x1, . . . , xn} avec
xi ̸= xj si i ̸= j.
Soit f : R −→ R une application.
Alors la variable aléatoire f ◦X, notée f(X), a pour espérance

E(f(X)) =
n∑

k=1

f(xk)P(X = xk).

Démonstration. La variable aléatoire f ◦X a pour image (f ◦X)(Ω) = {f(x1), . . . , f(xn)}
où les (f(xi))1⩽i⩽n ne sont pas nécessairement distincts.

Notons alors (f ◦X)(Ω) = {y1, . . . , yp} avec p ⩽ n et pour tout (i, j) ∈ J1, pK, yi ̸= yj .

Posons pour tout i ∈ J1, pK, Ai = {ω ∈ Ω, (f ◦X)(ω) = yi} = (f(X) = yi).

Par définition de l’espérance, E(f(X)) =

p∑
i=1

yiP(f(X) = yi) =

p∑
i=1

yiP(Ai).
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Or, pour tout i ∈ J1, pK, Ai =
⊔

k∈J1,nK
f(xk)=yi

{ω ∈ Ω, X(ω) = xk} =
⊔

k∈J1,nK
f(xk)=yi

(X = xk) donc

P(Ai) =
∑

k∈J1,nK
f(xk)=yi

P(X = xk).

Finalement,

E(f(X)) =

p∑
i=1

yi
∑

k∈J1,nK
f(xk)=yi

P(X = xk) =

p∑
i=1

∑
k∈J1,nK
f(xk)=yi

f(xk)P(X = xk) =
n∑

k=1

f(xk)P(X = xk).

■

Exemple 9. Reprenons l’exemple des dés.

On a

E(X2) = P(X = −1) + 9P(X = 3) =
1

3
+

9

6
=

11

6
.

Proposition 7: Linéarité de l’espérance

SoientX et Y deux variables aléatoires définies sur un espace probabilisé fini (Ω,P(Ω),P).
Alors pour tout (λ, µ) ∈ R2, l’espérance de la variable aléatoire λX + µY vérifie

E(λX + µY ) = λE(X) + µE(Y ).

Démonstration. • Commençons par montrer que E(X + Y ) = E(X) + E(Y ).

Soit X(Ω) = {x1, . . . , xn} et Y (Ω) = {y1, . . . , yp} où les (xi)1⩽i⩽n sont distincts deux à deux,
ainsi que les (yj)1⩽j⩽p.

Alors (X + Y )(Ω) = {xi + yj , i ∈ J1, nK, j ∈ J1, pK} où les xi + yj ne sont pas nécessairement
distincts.

Notons alors (X + Y )(Ω) = {z1, . . . , zr} où pour tout (i, j) ∈ J1, rK2, zi ̸= zj .

Par définition de l’espérance,

E(X + Y ) =
r∑

k=1

zkP(X + Y = zk).

Or, pour tout k ∈ J1, rK, on a

(X + Y = zk) =
⊔

(i,j)∈J1,nK×J1,pK
xi+yj=zk

(X = xi) ∩ (Y = yj)
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donc P(X + Y = zk) =
∑

(i,j)∈J1,nK×J1,pK
xi+yj=zk

P((X = xi) ∩ (Y = yj)) d’où

E(X + Y ) =

r∑
k=1

zk
∑

(i,j)∈J1,nK×J1,pK
xi+yj=zk

P((X = xi) ∩ (Y = yj))

=
r∑

k=1

∑
(i,j)∈J1,nK×J1,pK

xi+yj=zk

(xi + yj)P((X = xi) ∩ (Y = yj))

=
n∑

i=1

p∑
j=1

(xi + yj)P((X = xi) ∩ (Y = yj))

=
n∑

i=1

xi

p∑
j=1

P((X = xi) ∩ (Y = yj)) +

p∑
j=1

yj

n∑
i=1

P((X = xi) ∩ (Y = yj))

=
n∑

i=1

xiP

 p⊔
j=1

(X = xi) ∩ (Y = yj)

+

p∑
j=1

yjP

(
n⊔

i=1

(X = xi) ∩ (Y = yj)

)

=
n∑

i=1

xiP

(X = xi) ∩


p⊔

j=1

(Y = yj)︸ ︷︷ ︸
=Ω


+

p∑
j=1

yjP

(Y = yj) ∩


n⊔

i=1

(X = xi)︸ ︷︷ ︸
=Ω




=

n∑
i=1

xiP(X = xi) +

p∑
j=1

yjP(Y = yj)

= E(X) + E(Y ).

• Soient (λ, µ) ∈ R2. D’après le théorème de transfert, on a

E(λX) =
n∑

k=1

λxkP(X = xk) = λ
n∑

k=1

xkP(X = xk) = λE(X).

De même, on a E(µY ) = µE(Y ).
Ainsi, d’après le premier point, on a

E(λX + µY ) = E(λX) + E(µY ) = λE(X) + µE(Y ).

■

Remarque 8. Soit X une variable aléatoire définie sur un espace probabilisé fini. On considère
la variable aléatoire Y = X − E(X).

Par linéarité de l’espérance, on a

E(Y ) = E(X − E(X)) = E(X)− E(E(X)) = E(X)− E(X) = 0,

où on a utilisé que E(E(X)) = E(X) car E(X) est une variable aléatoire constante.
Ainsi, pour toute variable aléatoire X, la variable aléatoire X − E(X) est centrée.

Corollaire 1: Croissance de l’espérance

SoientX et Y deux variables aléatoires définies sur un espace probabilisé fini (Ω,P(Ω),P).
On suppose que X ⩽ Y, i.e. pour tout ω ∈ Ω, X(ω) ⩽ Y (ω).
Alors E(X) ⩽ E(Y ).
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Démonstration. Par hypothèse, on a Y −X ⩾ 0. Par positivité de l’espérance, on a

E(Y −X) ⩾ 0.

Or, par linéarité de l’espérance, on a E(Y − X) = E(Y ) − E(X), donc E(Y ) − E(X) ⩾ 0 d’où
E(X) ⩽ E(Y ). ■

18.2.2 Variance

Définition 6: Moments d’une variable aléatoire

Soit X une variable aléatoire définie sur un espace probabilisé fini (Ω,P(Ω),P). Notons
X(Ω) = {x1, . . . , xn}, où xi ̸= xj si i ̸= j.
Pour tout r ∈ N∗, on appelle moment d’ordre r de la variable aléatoire X le nombre réel
E(Xr), i.e. d’après le théorème de transfert :

E(Xr) =
n∑

k=1

xrkP(X = xk).

Remarque 9. • Le moment d’ordre 1 de la variable aléatoire X est E(X).

• On appelle moment centré d’ordre r de X le moment d’ordre r de la variable aléatoire
centrée X − E(X), i.e.

E((X − E(X))r) =
n∑

k=1

(xk − E(X))rP(X = xk).

Définition 7: Variance d’une variable aléatoire

Soit X une variable aléatoire définie sur un espace probabilisé fini (Ω,P(Ω),P).
On appelle variance de X et on note V (X) le réel

V (X) = E((X − E(X))2).

Remarque 10. • La variance est le moment d’ordre 2 de la variable aléatoire centrée X−E(X).

• Puisque (X − E(X))2 ⩾ 0, on en déduit que V (X) ⩾ 0 par positivité de l’espérance.

• Moralement, la variance mesure la moyenne des carrés des écarts entre les valeurs prises
par la variable aléatoire X et sa moyenne (son espérance).

En pratique, on calcule la variance d’une variable aléatoire grâce à la formule suivante :

Proposition 8: Formule de König-Huygens

Soit X une variable aléatoire définie sur un espace probabilisé fini (Ω,P(Ω),P).
Alors

V (X) = E(X2)− E(X)2.

Démonstration. On a bien d’après la linéarité de l’espérance

E((X − E(X))2) = E(X2 − 2XE(X) + E(X)2) = E(X2)− 2E(X)2 + E(X)2 = E(X2)− E(X)2.

(On a utilisé que si X = a est une variable aléatoire constante, alors E(X) = a). ■

Remarque 11. Puisque V (X) ⩾ 0, on en déduit que E(X)2 ⩽ E(X2), i.e. |E(X)| ⩽
√

E(X2).
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Exemple 10. Reprenons l’exemple 4. On a calculé E(X) =
1

6
.

On calcule E(X2) = (−1)2 × P(X = −1) + 02 × P(X = 0) + 32P(X = 3) =
1

3
+ 9× 1

6
=

11

6
.

Ainsi, V (X) = E(X2)− E(X)2 =
11

6
− 1

36
=

65

36
.

Définition 8: Ecart-type

Soit X une variable aléatoire définie sur un espace probabilisé fini (Ω,P(Ω),P).
On appelle écart-type de X, et on note σ(X), le réel

σ(X) =
√
V (X).

Remarque 12. • Cette définition est légitime puisque V (X) ⩾ 0.

• Moralement, l’écart-type mesure l’écart moyen par rapport à l’espérance. Si la variable
aléatoire X s’exprime dans une unité, V (X) s’exprime dans le carré de cette unité donc σ(X)
s’exprime dans la même unité que X.

Exemple 11. Dans l’exemple précédent, V (X) =

√
65

6
.

Proposition 9: Caractérisation des variables aléatoires de variance nulle

Soit X une variable aléatoire définie sur un espace probabilisé fini (Ω,P(Ω),P).
Alors

V (X) = 0 ⇔ P(X = E(X)) = 1.

Autrement dit, une variable aléatoire est de variance nulle si et seulement si elle est
presque sûrement égale à son espérance.

Remarque 13. On dit qu’une égalité est vraie presque sûrement si elle est vraie sur un ensemble
de probabilité 1.

Démonstration. Par définition de la variance, on a

V (X) = 0 ⇔ E((X − E(X))2) = 0.

NotonsX(Ω) = {x1, . . . , xn}, où xi ̸= xj si i ̸= j. On a alors d’après le théorème de transfert :

V (X) = 0 ⇔
n∑

k=1

(xk − E(X))2P(X = xk) = 0.

Or, une somme de termes positifs est nulle si et seulement si tous les termes sont nuls donc on
a

V (X) = 0 ⇔ ∀k ∈ J1, nK, (xk−E(X))2P(X = xk) = 0 ⇔ ∀k ∈ J1, nK, xk = E(X) ouP(X = xk) = 0.

Or, les événements (X = xk)1⩽n⩽n forment un système complet d’événements donc

n∑
k=1

P(X = xk) = 1.

Nécessairement, il existe i ∈ J1, nK tel que P(X = xi) ̸= 0 et dans ce cas xi = E(X). On a alors
pour tout k ̸= i, xk ̸= E(X) donc P(X = xk) = 0.
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Puisque
n∑

k=1

P(X = xk) = 1, nécessairement P(X = xi) = 1. On a donc bien l’équivalence

V (X) = 0 ⇔ P(X = E(X)) = 1.

■

Exemple 12. Soit X une variable aléatoire telle que P(X = −1) = P(X = 1) =
1

2
et soit Y la

variable aléatoire nulle.
Ces deux variables aléatoires sont d’espérance nulle mais leurs variances diffèrent.
En effet, on a V (X) = E(X2) = 1× P(X = −1) + 1× P(X = 1) = 1 et V (Y ) = 0.
La variance de X ne peut pas être nulle puisque X n’est pas presque sûrement égale à son

espérance, contrairement à Y.

Proposition 10

Soit X une variable aléatoire réelle définie sur un espace probabilisé fini.
Alors pour tout (a, b) ∈ R2, on a

V (aX + b) = a2V (X).

Démonstration. C’est un simple calcul. On utilise la linéarité de l’espérance :

V (aX + b) = E((aX + b)2)− (E(aX + b))2

= a2E(X2) + 2abE(X) + b2 − (aE(X) + b)2

= a2E(X2) + 2abE(X) + b2 − a2E(X)2 − 2abE(X)− b2

= a2(E(X2)− E(X)2)

= a2V (X).

■

Remarque 14. 1. En particulier, on a σ(aX + b) = |a|σ(X).

Moralement, une translation par b ne change pas l’écart par rapport à la moyenne (c’est à
dire l’espérance), alors que multiplier la variable aléatoire par a multiplie par |a| également
cet écart.

En particulier, une variable aléatoire constante est de variance nulle.

2. On en déduit que la variance, contrairement à l’espérance, n’est pas linéaire.

En effet, V (2X) = 4V (X) ̸= 2V (X) si V (X) ̸= 0.

Ainsi, on n’a pas forcément V (X+Y ) = V (X)+V (Y ) (en l’occurence, c’est faux si Y = X
et V (X) ̸= 0).

18.3 Indépendance de variables aléatoires

18.3.1 Variables aléatoires indépendantes

Définition 9: Variables aléatoires indépendantes

Deux variables aléatoires X et Y discrètes définies sur un espace probabilisé fini
(Ω,P(Ω),P) sont dites indépendantes si pour tout (x, y) ∈ X(Ω)× Y (Ω),

P((X = x) ∩ (Y = y)) = P(X = x)P(Y = y).
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Remarque 15. Les variables aléatoires X et Y sont indépendantes si et seulement si pour tout
(x, y) ∈ X(Ω)× Y (Ω), les événements (X = x) et (Y = y) sont indépendants.

Exemple 13. Alice et Bob passent un examen et répondent à une question où deux réponses
sont proposées. On note X la variable aléatoire qui à la réponse d’Alice associe 0 si elle est
fausse, 1 si elle est correcte. On considère Y la variable aléatoire similaire pour Bob.

Intéressons-nous aux trois situations suivantes :

1. Alice et Bob répondent au hasard et indépendamment.

2. Alice répond au hasard et Bob copie sur Alice.

3. Alice répond au hasard et Bob décide systématiquement de prendre la réponse opposée.

Dans la première des situations, les variables aléatoires X et Y sont indépendantes, mais
pas dans les deux suivantes.

En effet, dans les trois cas, on a P(X = 0) = P(X = 1) = P(Y = 0) = P(Y = 1) =
1

2
.

Dans la deuxième situation, P((X = 0) ∩ (Y = 0)) = P(X = 0) =
1

2
̸= P(X = 0)P(Y = 0).

Dans la troisième situation, P((X = 0) ∩ (Y = 0)) = 0 ̸= P(X = 0)P(Y = 0).

Définition 10: Variables aléatoires mutuellement indépendantes

Soit (Ω,P(Ω),P) un espace probabilisé fini.
Soit (Xk)1≤k≤n une famille finie de variables aléatoires définies sur (Ω,P(Ω),P).

1. On dit que les variables aléatoires (Xk)1⩽k⩽n sont deux à deux indépendantes si pour
tout (i, j) ∈ J1, nK2 avec i ̸= j, les variables aléatoires Xi et Xj sont indépendantes.

2. On dit que les variables aléatoires sont mutuellement indépendantes si pour tout
k ∈ J1, nK et tout (x1, . . . , xk) ∈ Rk, on a

1 ⩽ i1 < i2 < · · · < ik ⩽ n =⇒ P

 k⋂
j=1

(Xij = xj)

 =
k∏

j=1

P(Xij = xj).

Remarque 16. Il découle directement de la définition que si les variables aléatoires (Xk)1⩽k⩽n

sont mutuellement indépendantes, alors toute sous-famille de (Xk)1⩽k⩽n est également constituée
de variables aléatoires mutuellement indépendantes.

Enfin, mentionnons le résultat suivant, qu’on ne démontrera pas, mais qui peut être très
utile en pratique :

Proposition 11

Si X et Y sont des variables aléatoires indépendantes, alors pour toutes fonctions f et g,
les variables aléatoires f(X) et g(Y ) sont également indépendantes.

Remarque 17. En pratique, cela signifie que si les variables aléatoiresX et Y sont indépendantes,
alors les variables aléatoires X2 et −Y aussi, ou encore exp(X) et 4Y 3 + Y − 1...

18.3.2 Propriétés de l’indépendance de variables aléatoires

Lemme 1: Lemme des coalitions

Soient X1, . . . , Xn, Xn+1, . . . , Xn+p des variables aléatoires mutuellement indépendantes.
Alors pour tout couple de fonctions (u, v), les variables aléatoires u(X1, . . . , Xn) et
v(Xn+1, . . . , Xn+p) sont indépendantes.
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Démonstration. Démonstration admise. ■

Remarque 18. En particulier, si u1, . . . , un sont n fonctions, alors les variables aléatoires
u1(X1), . . . , un(Xn) sont mutuellement indépendantes.

Proposition 12: Espérance du produit de deux variables aléatoires
indépendantes

Soient X et Y deux variables aléatoires indépendantes définies sur un espace probabilisé
fini (Ω,P(Ω),P).
Alors

E(XY ) = E(X)E(Y ).

Démonstration. Notons X(Ω) = {x1, . . . , xn} et Y (Ω) = {y1, . . . , yp} où les (xi)1⩽i⩽n sont
deux à deux distincts, ainsi que les (yj)1⩽j⩽p.

Alors XY (Ω) = {xiyj , (i, j) ∈ J1, nK × J1, pK} où les xiyj ne sont pas nécessairement deux à
deux distincts.

Posons XY (Ω) = {z1, . . . , zr} avec pour tout (i, j) ∈ J1, rK2, avec i ̸= j, zi ̸= zj . On a par

définition de l’espérance E(XY ) =

r∑
k=1

zkP(XY = zk).

Or, pour tout k ∈ J1, rK, on a (XY = zk) =
⊔

(i,j)∈J1,nK×J1,pK
xiyj=zk

(X = xi) ∩ (Y = yj) donc

P(XY = zk) =
∑

(i,j)∈J1,nK×J1,pK
xiyj=zk

P((X = xi) ∩ (Y = yj))

d’où

E(XY ) =
r∑

k=1

zk
∑

(i,j)∈J1,nK×J1,pK
xiyj=zk

P((X = xi) ∩ (Y = yj))

=

r∑
k=1

∑
(i,j)∈J1,nK×J1,pK

xiyj=zk

xiyjP((X = xi) ∩ (Y = yj))

=
n∑

i=1

p∑
j=1

xiyjP((X = xi) ∩ (Y = yj))

=
n∑

i=1

p∑
j=1

xiyjP(X = xi)P(Y = yj) par indépendance deX etY

=

(
n∑

i=1

xiP(X = xi)

) p∑
j=1

yjP(y = yj)


= E(X)E(Y ).

■

Remarque 19. La réciproque est fausse ! On peut avoir E(XY ) = E(X)E(Y ) sans que X et Y
soient indépendantes.

Soit X une variable aléatoire suivant une loi uniforme sur {−1, 0, 1}, i.e.

P(X = −1) = P(X = 0) = P(X = 1) =
1

3
.
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Soit Y = X2.
Alors E(XY ) = E(X3) = E(X) = 0
Mais X et Y ne sont pas indépendantes car

P((X = 0) ∩ (Y = 1)) = 0 ̸= P(X = 0)P(Y = 1) =
2

9
.

Remarque 20. Soient (A,B) ∈ P(Ω)2 telles que X = 1A et Y = 1B.
Tout d’abord, vérifions que X et Y sont indépendantes si et seulement si les événements A

et B sont indépendants.
• Si X et Y sont indépendantes, les événements (X = 1) et (Y = 1) sont indépendants, i.e.

A et B sont indépendants.
• Si A = (X = 1) et B = (Y = 1) sont indépendants, on a vu dans le chapitre précédent que

ceci impliquait l’indépendance des couples d’événements (A,B) = ((X = 1), (Y = 0)), (A,B) =
((X = 0), (Y = 1) et (A,B) = ((X = 0), (Y = 0), ce qui prouve que les variables aléatoires X
et Y sont indépendantes.

D’après la proposition précédente, on a alors

P(A ∩B) = E(1A∩B) = E(1A1B) = E(1A)E(1B) = P(A)P(B),

ce qui n’est rien d’autre que la définition de l’indépendance des événements A et B !

Proposition 13: Variance de la somme de deux variables aléatoires
indépendantes

Soient X et Y deux variables aléatoires indépendantes définies sur un espace probabilisé
fini (Ω,P(Ω),P).
Alors

V (X + Y ) = V (X) + V (Y ).

Démonstration. Par indépendance de X et Y , on a E(XY ) = E(X)E(Y ) donc en utilisant
la linéarité de l’espérance :

V (X + Y ) = E((X + Y )2)− (E(X + Y ))2

= E(X2 + 2XY + Y 2)− (E(X) + E(Y ))2

= E(X2) + 2E(XY ) + E(Y 2)− E(X)2 − 2E(X)E(Y )− E(Y )2

= (E(X2)− E(X)2) + (E(Y 2)− E(Y )2)

= V (X) + V (Y ).

■

Remarque 21. Par récurrence, on en déduit que si (X1, . . . , Xn) sont des variables mutuelle-
ment indépendantes, alors

E

(
n∏

i=1

Xi

)
=

n∏
i=1

E(Xi) et V

(
n∑

k=1

Xk

)
=

n∑
k=1

V (Xk).
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18.4 Lois usuelles

Dans cette section, nous appliquerons implicitement la proposition 18.1.1 qui nous permet
de définir des lois pourvu que toutes les probabilités soient des nombres positifs et que leur
somme fasse 1.

18.4.1 Loi certaine

Définition 11: Loi certaine

Soit X une variable aléatoire définie sur un espace probabilisé fini (Ω,P(Ω),P).
On dit que X suit une loi certaine si X est constante, i.e.

∃a ∈ R,∀ω ∈ Ω, X(ω) = a.

Remarque 22. Cette loi modélise un phénomène dont l’issue est certaine.

On a déjà vu l’espérance et la variance d’une loi certaine : rappelons-les.

Proposition 14: Espérance et variance d’une loi certaine

Soit X une variable aléatoire définie sur un espace probabilisé fini (Ω,P(Ω),P).
On suppose que X est constante égale à a ∈ R.
Alors

E(X) = a et V (X) = 0.

18.4.2 Loi uniforme

Définition 12: Loi uniforme

Soit X une variable aléatoire définie sur un espace probabilisé fini (Ω,P(Ω),P). Notons
X(Ω) = {x1, . . . , xn} avec n ∈ N∗.
On dit que X suit une loi uniforme si

∀k ∈ J1, nK,P(X = xk) =
1

n
.

Remarque 23. On remarque qu’on a bien

n∑
k=1

P(X = xk) =
n

n
= 1.

Exemple 14. La loi uniforme modélise classiquement le résultat d’un lancer de dé équilibré.

Proposition 15: Espérance d’une loi uniforme

Soit X une variable aléatoire suivant une loi uniforme sur X(Ω) = J1, nK.
On note X ↪→ U(n). Alors

E(X) =
n+ 1

2
.

Démonstration. On a

E(X) =

n∑
k=1

kP(X = k) =
1

n

n∑
k=1

k =
n(n+ 1)

2n
=

n+ 1

2
.

■

Année 2025–2026 16 / 18 Wassfi



BCPST1 Lycée Fénelon

18.4.3 Loi de Bernoulli

Définition 13: Loi de Bernoulli

Soit X une variable aléatoire à valeurs dans {0, 1}. Soit p ∈ [0, 1].
On dit que la variable aléatoire X suit une loi de Bernoulli de paramètre p, et on note
X ↪→ B(p), si

P(X = 1) = p et P(X = 0) = 1− p.

On note souvent q = 1− p.

Remarque 24. • On remarque qu’on a bien P(X = 0) + P(X = 1) = 1.
• Une variable aléatoire X qui suit une loi de Bernoulli peut en fait être vue comme l’indi-

catrice de l’événement (X = 1).
Réciproquement, l’indicatrice d’un événement A est une variable aléatoire qui suit une loi

de Bernoulli de paramètre p = P(A).

Exemple 15. La loi de Bernoulli modélise un lancer de pièce dont la probabilité d’obtenir pile
serait égale à p.

Plus généralement, elle modélise une expérience dont le résultat est binaire (échec ou succès)
et dont la probabilité du succès est p.

Proposition 16: Espérance et variance d’une loi de Bernoulli

Soit X ↪→ B(p), avec p ∈ [0, 1]. Alors

E(X) = p et V (X) = p(1− p).

Démonstration.

1. On a
E(X) = 0P(X = 0) + 1P(X = 1) = p.

2. On a d’après le théorème du transfert

E(X2) = 02P(X = 0) + 12P(X = 1) = p

donc
V (X) = E(X2)− E(X)2 = p− p2 = p(1− p).

■

18.4.4 Loi binomiale

Définition 14: Loi binomiale

Soit n ∈ N∗, soit p ∈ [0, 1]. Soit X une variable aléatoire à valeurs dans J0, nK.
On dit que X suit une loi binomiale de paramètres n et p, et on note X ↪→ B(n, p), si
pour tout k ∈ J0, nK,

P(X = k) =

(
n

k

)
pk(1− p)n−k.

Remarque 25. On a bien d’après la formule du binôme de Newton

n∑
k=0

P(X = k) =

n∑
k=0

(
n

k

)
pk(1− p)n−k = (p+ 1− p)n = 1.
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Exemple 16. La loi binomiale B(n, p) modélise le nombre de succès lors de la réalisation
successive de n expériences de Bernoulli indépendantes de paramètre p (par exemple n lancers
de pièce de monnaie).

En effet, l’événement (X = k) signifie qu’on a obtenu k succès (par exemple k pile). Il y
a
(
n
k

)
façons de placer ces succès dans les n expériences. Pour calculer la probabilité de cet

événement, il faut ensuite multiplier k fois par la probabilité d’obtenir un succès, ce qui donne
pk, et n− k fois par la probabilité d’échouer, ce qui donne (1− p)n−k.

On peut donner cette définition alternative, confirmée par l’interprétation de la loi binomiale,
et qui est très utile en pratique.

Définition 15: Somme de variables aléatoires de Bernoulli indépendantes et
de même paramètre

Soit n ∈ N∗, soit p ∈ [0, 1].
On dit que la variable aléatoire X suit une loi binomiale de paramètre n et p si

X =

n∑
k=1

Xk

où les variables aléatoires Xk sont mutuellement indépendantes et suivent toutes une loi
de Bernoulli de paramètre p.

Proposition 17: Espérance et variance d’une loi binomiale

Soit X ↪→ B(n, p) avec n ∈ N∗ et p ∈ [0, 1]. Alors

E(X) = np et V (X) = np(1− p).

Démonstration.

Dans toute cette preuve, nous écrirons X =
n∑

k=1

Xk où les variables aléatoires Xk suivent

toutes une loi de Bernoulli de paramètre p et sont mutuellement indépendantes.

1. Par linéarité de l’espérance, on a

E(X) =
n∑

k=1

E(Xk) = np.

2. Puisque les variables aléatoires X1, . . . , Xn sont mutuellement indépendantes, on a

V (X) =

n∑
k=1

V (Xk) = np(1− p).

■
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