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18.1 Généralités

18.1.1 Variable aléatoire

Définition 1: Variable aléatoire sur un univers fini

Soit €2 un univers fini.
Une variable aléatoire sur €2 est une application X : Q@ — R.

Remarque 1. Si Q est fini, X (£2) est nécessairement fini également.

Exemple 1. e Soit 2 un univers fini. Soit A C €.
1 A Q — R
1 siw€ A est une variable aléatoire.

— Lalw) = { 0 siw¢gA
Rappelons ses propriétés vues dans le TD < Applications > :

La fonction indicatrice

17=1-1a; lanp=1lalp; laup=1a+1p—14lp.

e On lance deux dés & 6 faces. On consideére I'univers Q = [1,6].
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BCPST1 Lycée Fénelon

Q — R
(a,b) — a-+b.
L’application X est une variable aléatoire qui renvoie la somme des deux dés. On a alors
X(Q) =[2,12].

Définition 2
Soit X une variable aléatoire définie sur un univers fini ).

Soit A C R.
On note (X € A) I’événement

Soit X :

(XeA)={weQ X(w) € A}.

En particulier pour tout réel x, on note
(X = :c) Iévénement (X € {:c}) ={we N, X(w) € {z}}.

< x) Pévénement (X €] — 00,z]) = {w € Q, X(w) €] — 00, z]}.
X < x) Pévénement (X €] — 00, z[) = {w € Q, X(w) €] — 00, z[}.
X > z) 'événement (X € [z + oo[) ={we QX (w) € [z+ o[}
X > x) I'événement (X €]z + oo]) = {w € Q, X (w) €]z + oo[}.
et pour tout couple (z,y) de réels avec = < y, on note

(X
(
(
(

e e N

(<X <y ={we N, X(w) € z,y]}.

Exemple 2. Reprenons ’exemple précédent. On a
(X - 7) - {(17 6)7 (2, 5)7 (37 4)7 (47 3)7 (57 2)7 (67 1)}7

(X <13)=Q

et
(10 < X < 12) = {(4,6), (5,5), (6,4), (5,6), (6,5), (6, 6)}.

Proposition 1: Systeme complet d’événements associé a une variable aléatoire

Soit X une variable aléatoire définie sur un univers fini 2. Notons X (Q) = {z1,...,z,}
(ol @; # x; sii # j) les valeurs prises par la variable aléatoire X (qui sont nécessairement
en nombre fini).

Alors les événements (X = x;)1<i<n forment un systeme complet d’événements pour €.

Démonstration. e Soient (i,75) € [1,n]? avec i # j.

Soit w € (X = ;) N (X = ;).

Alors X(w) = z; et X(w) = z;. Or z; # ;.

I ne peut donc pas exister d’élément w € (X = z;) N (X = z;), ce qui prouve que

(X =) N (X —2;) =0
et ce pour tout (i,75) € [1,n]? avec i # j.
n

e Montrons que €2 = U(X =1z;).
i=1

On a clairement U(X = x;) C Q. Montrons 'inclusion réciproque.
i=1
Soit w € Q. Alors X (w) € X(Q) = {z1,...,2,} donc il existe ¢ € [1,n] tel que X (w) = ay,
n

ie.we (X =) doncw e U(X = z;).
i=1
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n
On a donc bien prouvé I'inclusion © C U(X = z;) d’ou finalement ’égalité
i=1

Les deux points ci-dessus montrent que les événements (X = z;)1<i<, forment un systéme
complet d’événements pour €. |

n
Remarque 2. En particulier, ceci implique que Z P(X =xz;) =1
i=1

Exemple 3. Dans 'exemple précédent, les événements (X = k)ocp<i2 forment un systéme
complet d’événements pour €.

Définition 3: Loi d’une variable aléatoire

Soit (€2, P(€2),P) un espace probabilisé fini.
Soit X une variable aléatoire discrete sur (€2, P(£2),P).
On appelle loi (de probabilité) de la variable aléatoire X l’application

fx:X(Q) — [0,1]
r — PX =u2).

Remarque 3. On représente graphiquement cette fonction par un diagramme en batons.

Exemple 4. On lance un dé a 6 faces équilibré. Si on obtient 1 ou 2, on perd 1 point; si on
obtient 3,4 ou 5, il ne se passe rien. Si on obtient 6, on gagne 3 points.

Pour modéliser cette expérience, on pose Q2 = [1, 6].

Puisqu’on est face a une situation d’équiprobabilité, on définit la probabilité P sur (2, P(2))
par

1
Vk € [1,6],P({k}) = 5
Par ailleurs, on définit la variable aléatoire X : [1,6] — {—1,0,3} définie par

-1 siwe{1,2}

X(w)=< 0 siwe{3,4,5}
3 siw = 6.
On a alors )
fx({=1}) =P(X = -1) =P({1,2}) = 3
F({0}) = P(X =0) =P({3,4,5}) = 5
et

.&H%%=HX=3%:mmD:é.
D’autre part, on a

P(X <0)=P(X = —1) + P(X = 0) = ~.

La probabilité d’avoir un gain négatif est donc grande, mais pourtant, on a tout intérét a jouer
a ce jeu (calculer l'espérance...).
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Voici le diagramme en batons de cette variable aléatoire X :

1
1| 2
2
— 1
8 1 3
3
X
o 1
1] 6
6
0 : : :
-1 0 3

X

Proposition 2

Soit n € N*. On consideére (z;)1<i<n, une famille de réels distincts et (p;)1<i<n une famille
n
de réels positifs vérifiant Z p; = 1.

i=1
Alors il existe une variable aléatoire X sur un espace probabilisé fini vérifiant

Vi € [1,n],P(X = x;) = p;.

Démonstration. Soit Q = [1,n]. On définit une application

X:Q=[1,n] — R
7 — X

et une application
P:P(Q) — [0,1]

A — > i

i€[1,n]
i€A

Vérifions que P définit bien une probabilité sur (2, P(Q2)).

e On a P(Q2) = Z pi:Zpizl.
i=1

i€[1,n]
1€Q
e Soient (Ay,...,A,) des événements de (2 deux a deux incompatibles. On a alors
p p n
P(Ua)= ¥ n=3 3 n-3ruo
k=1 ie[[l,n]]A k=1ie[1,n] k=1
ieb_ 7k i€Ag

ce qui prouve que P définit bien une probabilité sur (2, P(Q2)).
L’application X est alors une variable aléatoire sur ’espace probabilisé fini (2, P(Q2), P) qui
vérifie les conditions demandées puisque pour tout ¢ € [1,n], on a

P(X =)= Z Dk = Di-
ke[1,n]
kE(X:$i)
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Remarque 4. Ce théoreme nous permettra de définir les lois classiques : en effet, une loi sera
donnée par I’ensemble des valeurs atteintes {z;|1 < i < n} et les probabilités P(X = z;).

18.1.2 Fonction de répartition d’une variable aléatoire réelle

Définition 4: Fonction de répartition d’une variable aléatoire

Soit (2, P(2),P) un espace probabilisé fini.
Soit X une variable aléatoire définie sur (2, P(2)).
On définit sa fonction de répartition F'x comme la fonction

FX:R — [0,1]
x — Fx(z)=P(X <uz).

Remarque 5. La fonction de répartition d’une variable aléatoire est donc définie a partir de
la loi de celle-ci.

Proposition 3: Propriétés de la fonction de répartition d’une variable aléatoire

Soit (€2, P(€2),P) un espace probabilisé fini.

Soit X une variable aléatoire définie sur (2, P(2)).

Alors la fonction de répartition Fx de la variable aléatoire X vérifie les propriétés sui-
vantes :

1. F'x est croissante sur R.

2. lim Fx(z)=0.
T—>—00

3. Z‘EI-POOFX(:E) =1.

Démonstration. Dans toute la démonstration, on note
X(Q) ={z1,...,zn}

avec T < -+ < Tp.
1. Soit x < y deux réels.
On a l'inlusion d’événements (X < z) C (X < y). Donc on a bien

Fx(x) =P(X <) <P(X <y) = Fx(y),

ce qui prouve la croissance de la fonction Fx.

2. Pour tout z < z1, on a P(X < z) = P(0) =0, ce qui prouve que lim Fx(z)=0.
Tr—r—00

<
3. Pour tout z > x,, on a P(X < z) =P(2) = 1, ce qui prouve que Er}rq Fx(x) =1.
x o

Exemple 5. Reprenons l’exemple de la variable aléatoire définie sur [1, 6] par

-1 siwed{l,2}
X(w) = 0 siwe{3,4,5}
3 siw = 6.
La fonction de répartition F'x de la variable aléatoire X est définie par
Fx:R — [0,1]
siz < —1
si—1<z<0
si0 <o <3
siz > 3.

8
= olowli— O

Année 2025-2026 5/ 18 WASSFI



BCPST1 Lycée Fénelon

Proposition 4: Lien entre loi de la variable aléatoire et fonction de répartition

Soit X une variable aléatoire définie sur un espace probabilisé fini (2, P(Q2), P).
Notons X () = {x1,...,x,} avec 1 < -+ < Tp.

On note fx la loi de la variable aléatoire X et F'x sa fonction de répartition.
Alors

P(X = Il) = Fx(a?l) et Vk e [[2,n]],P(X = l’k) = Fx(ﬂfk) — FX(l‘k—l)-

Démonstration. ¢ On a Fx(z1) = P(X < z1).

Or, (X <z)=(X=21)U (X <z1) = (X = x1) puisque (X < z1) = 0. On a donc bien
Fx(l‘l) = P(X < .%'1) = P(X = 1‘1).

e Soit k € [2,n].

Ona (X <zp) = (X =) U(X <zg) = (X =a) U(X < xg_1). Puisque les événements,
(X = xp) et (X < xp_1) sont incompatibles, on en déduit que

d’ou P(X = l‘k) = Fx(.%'k) — Fx(.fk,l). |

Remarque 6. Ainsi, on peut retrouver la loi d’une variable aléatoire & partir de sa fonction de
répartition.

Exemple 6. Soit X une variable aléatoire dont la fonction de répartition est

FxtR — [0,1]
0 siz < —2
; si—2<z<1
t — g sil<z<4
1 siz > 4.

On en déduit que la loi de la variable aléatoire X est donnée par

P(X = —2) = Fy(—2) = % P(X = 1) = Fy(1)—Fx(~2) = g ot P(X = 4) = Fx(4)—Fx(1) = g

18.2 [Espérance et variance

18.2.1 Espérance

Définition 5: Espérance d’une variable aléatoire

Soit (€2, P(€2),P) un espace probabilisé fini.

Soit X une variable aléatoire définie sur (£2, P(£2)).
On note X(Q) = {z1,...,x,}, avec x; # x; si i # j.
On appelle espérance de X, noté E(X), le réel

E(X) =) aP(X = ).
k=1

On dit que la variable aléatoire X est centrée si E(X) = 0.

Remarque 7. Moralement, ’espérance d’une variable aléatoire représente la moyenne des va-
leurs prises par cette variable aléatoire pondérées par leurs probabilités.
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Exemple 7. Si la variable aléatoire X est constante, i.e. il existe a € R tel que P(X =a) =1,
alors E(X) = a.
Exemple 8. Reprenons ’exemple 4.
1
OnaE(X):—1><P(X:—1)+0><P(X:O)—|—3P(X:3):—§~|—3><f:

L’espérance est positive donc le jeu est favorable au joueur.

Proposition 5: Espérance d’une indicatrice

Soit (€2, P(€2),P) un espace probabilisé fini.
Soit A € P(Q2).
Alors
E(14) = P(A).

Démonstration. On a 14(Q) = {0, 1} et par définition de 14, on a les événements
ly=0)=A4 e (1a=1)=A

donc

Proposition 6: Positivité de ’espérance

Soit (€2, P(€2),P) un espace probabilisé fini.
Soit X une variable aléatoire définie sur (2, P(f2)) a valeurs positives.
Alors E(X) > 0.

Démonstration. Notons X () = {1, ..., 2z, }. Par hypothese, pour tout k € [1,n],xx =0

donc
= Zka(X = a:k) = 0.
k=1

Théoréme 1: Théoréme de transfert

Soit (22, P(2),P) un espace probabilisé fini.

Soit X une variable aléatoire définie sur (2, P(Q2)). On note X () = {z1,...,z,} avec
x; # xjsiiF# J.

Soit f : R — R une application.

Alors la variable aléatoire f o X, notée f(X), a pour espérance

=Y f@)P(X = ).

k=1

Démonstration. La variable aléatoire fo X a pour image (fo X)(Q) = {f(x1),..., f(xn)}
ou les (f(zi))1<i<n ne sont pas nécessairement distincts.

Notons alors (f o X)(2) = {y1,...,yp} avec p < n et pour tout (i, ) € [1,p], vi # yj;-
Posons pour tout i € [1,p], 4i = {w € Q,(fo X)(w) =y} = (f(X) = ui).
P

P
Par définition de l'espérance, E(f(X)) = ZyiP(f( Z
‘ =1
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Or, pour tout i € [1,p], 4; = |_| {we, X(w) =z} = |_| (X = z) donc

kel,n] kel,n]
f(@r)=y; f(@r)=y:

kel,n]
flzr)=yi
Finalement,
p P n
EGX) =D w > PX=z)=Y > Ffla)PX=a)=> flax)P(X =)
=1 ke[ln] i=1 ke[l,n] k=1
fzr)=y: fzr)=y:

Exemple 9. Reprenons ’exemple des dés.
On a

E(X?)=P(X =-1)+9P(X =3) =

Proposition 7: Linéarité de 1’espérance

Soient X et Y deux variables aléatoires définies sur un espace probabilisé fini (2, P(£2), P).
Alors pour tout (), 1) € R?, I'espérance de la variable aléatoire AX + pY vérifie

EOAX 4 pY) = AE(X) + pE(Y).

Démonstration. ¢ Commencons par montrer que E(X +Y) = E(X) + E(Y).

Soit X(Q) ={z1,...,zn} et Y(Q) = {y1,...,yp} ol les (z;)1<i<n sont distincts deux a deux,
ainsi que les (y;)1<j<p-

Alors (X +Y)(Q) = {z; +y;,i € [1,n],j € [1,p]} ol les x; + y; ne sont pas nécessairement
distincts.

Notons alors (X +Y)(Q) = {z1,...,2} ot pour tout (i, ) € [1,7]?, 2 # z;.

Par définition de I'espérance,

k=1
Or, pour tout k € [1,7], on a
X+Y=a)= || X=z)n¥=y)
(i,4)E[1,n] x[1,p]
ity =2k
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donc P(X +Y = z,) = > P(X =z;) N (Y =y;)) d’ott

(i,3)€[1,n] x[1,p]
Tityj=2k

T

EX+Y) = Ya Y P(X=a)n(¥ =)

k=1 (i.5)€ll,n]x1,p]
Ii—l-yj:Zk

— Y Y @HmPX —a)n (Y =)

k=1 (i,5)€[1,n] x [1,p]

Ti+Yj =2k
= D> D (@+y)P(X =z)n(Y =y))
i=1 j=1
n p p n
= > wiy P(X=a)n (Y =y))+D y ) P(X=2)n(Y =y))
i=1  j=1 Jj=1 =1
= > wP || |[X=z)n (¥ =y —I—ZyjP(U(X—CL’Z)ﬂ(Y—y]))
i=1 J=1 j=1 =1
= > aP|X=z)n |||V =y) [ |+DuP|V=y)n || |X=2)
=1 j=1 j=1 i=1
=0 =Q
= ZxZP(X—xi)—i—Zy]P(Y—yJ)
i=1 j=1
= E(X)+E®Y).

e Soient (A, ) € R?. D’apres le théoréme de transfert, on a
EOX) =) AP(X =23) = A ) 2xP(X = ) = AE(X).
k=1 k=1
De méme, on a E(uY) = pE(Y).
Ainsi, d’apres le premier point, on a
E(AX + pY) = EMNX) + E(uY) = AE(X) + pE(Y).
|

Remarque 8. Soit X une variable aléatoire définie sur un espace probabilisé fini. On considere
la variable aléatoire Y = X — E(X).
Par linéarité de ’espérance, on a

E(Y) = E(X — E(X)) = E(X) — E(E(X)) = E(X) - E(X) =0,

ou on a utilisé que E(E(X)) = E(X) car E(X) est une variable aléatoire constante.
Ainsi, pour toute variable aléatoire X, la variable aléatoire X — E(X) est centrée.

Corollaire 1: Croissance de 1’espérance

Soient X et Y deux variables aléatoires définies sur un espace probabilisé fini (2, P(2), P).
On suppose que X <Y, i.e. pour tout w € Q, X (w) < Y(w).
Alors E(X) < E(Y).
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Démonstration. Par hypothese, on a Y — X > 0. Par positivité de ’espérance, on a
EY —X)=>0.

Or, par linéarité de I’espérance, on a E(Y — X) = E(Y) — E(X), donc E(Y) — E(X) > 0 d’on
E(X) < E(Y). n

18.2.2 Variance

Définition 6: Moments d’une variable aléatoire

Soit X une variable aléatoire définie sur un espace probabilisé fini (2, P(Q2),P). Notons
X(Q) ={z1,...,zp}, o0y # x5 sii #J.

Pour tout » € N*, on appelle moment d’ordre r de la variable aléatoire X le nombre réel
E(X"), i.e. d’apres le théoreme de transfert :

E(X™) =) 2iP(X = ap).
k=1

Remarque 9. e Le moment d’ordre 1 de la variable aléatoire X est E(X).
e On appelle moment centré d’ordre r de X le moment d’ordre r de la variable aléatoire
centrée X — E(X), i.e.

Définition 7: Variance d’une variable aléatoire

Soit X une variable aléatoire définie sur un espace probabilisé fini (2, P(Q2),P).
On appelle variance de X et on note V(X)) le réel

V(X) = E(X — E(X))?).

Remarque 10. e La variance est le moment d’ordre 2 de la variable aléatoire centrée X —E(X).
e Puisque (X — E(X))? > 0, on en déduit que V(X) > 0 par positivité de Pespérance.
e Moralement, la variance mesure la moyenne des carrés des écarts entre les valeurs prises
par la variable aléatoire X et sa moyenne (son espérance).

En pratique, on calcule la variance d’une variable aléatoire grace a la formule suivante :

Proposition 8: Formule de Konig-Huygens

Soit X une variable aléatoire définie sur un espace probabilisé fini (Q2, P(Q2),P).
Alors
V(X) = E(X?) — E(X)>.

Démonstration. On a bien d’apres la linéarité de ’espérance
E((X —E(X))?) = E(X? - 2XE(X) + E(X)?) = E(X?) — 2E(X)? + E(X)? = E(X?) — E(X)2.
(On a utilisé que si X = a est une variable aléatoire constante, alors E(X) = a). [ |

Remarque 11. Puisque V(X) > 0, on en déduit que E(X)? < E(X?), i.e. [E(X)| < VE(X?).
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1
Exemple 10. Reprenons 'exemple 4. On a calculé E(X) = 5
1 1 11
On calcule E(X?) = (=12 xP(X = -1)+ 02 xP(X =0) +3*P(X = 3) = 3 +9 x Pl
11 1 65
Ainsi, V(X) =E(X?) —EX)?=—> — —~ = —.

Définition 8: Ecart-type

Soit X une variable aléatoire définie sur un espace probabilisé fini (€2, P(€2), P).
On appelle écart-type de X, et on note o(X), le réel

Remarque 12. e Cette définition est légitime puisque V' (X) > 0.

e Moralement, I'écart-type mesure ’écart moyen par rapport a I’espérance. Si la variable
aléatoire X s’exprime dans une unité, V' (X) s’exprime dans le carré de cette unité donc o(X)
s’exprime dans la méme unité que X.

V65

Exemple 11. Dans l'exemple précédent, V(X) = -5

Proposition 9: Caractérisation des variables aléatoires de variance nulle

Soit X une variable aléatoire définie sur un espace probabilisé fini (£2, P(€2), P).
Alors
V(X)=0& P(X =E(X)) =1.

Autrement dit, une variable aléatoire est de variance nulle si et seulement si elle est
presque surement égale & son espérance.

Remarque 13. On dit qu’une égalité est vraie presque stirement si elle est vraie sur un ensemble
de probabilité 1.

Démonstration. Par définition de la variance, on a
V(X) =04 E(X —-E(X))?) =0.
Notons X (2) = {x1,...,xn}, o0 z; # z;sii # j. On a alors d’apres le théoréme de transfert :
n
V(X) =0 (2 — E(X))’P(X = ;) =0.
k=1

Or, une somme de termes positifs est nulle si et seulement si tous les termes sont nuls donc on
a

V(X)=0eVEke[1,n], (zx—EX))*P(X =x3) =0 < Vk € [1,n], 2, = E(X)ouP(X = z3) = 0.

Or, les événements (X = x)1<n<pn forment un systéme complet d’événements donc
n
> P(X =) =1.
k=1

Nécessairement, il existe i € [1,n] tel que P(X = z;) # 0 et dans ce cas x; = E(X). On a alors
pour tout k # i,z # E(X) donc P(X = z%) = 0.
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n
Puisque Z P(X = zx) = 1, nécessairement P(X = z;) = 1. On a donc bien I’équivalence
k=1

V(X)=0&PX =E(X)) =1.
|

1
Exemple 12. Soit X une variable aléatoire telle que P(X = —-1) =P(X =1) = 5 et soit Y la

variable aléatoire nulle.

Ces deux variables aléatoires sont d’espérance nulle mais leurs variances different.

En effet, on a V(X) =E(X?) =1 xP(X =-1)+1xP(X =1)=1et V(Y)=0.

La variance de X ne peut pas étre nulle puisque X n’est pas presque stirement égale a son
espérance, contrairement a Y.

Proposition 10

Soit X une variable aléatoire réelle définie sur un espace probabilisé fini.
Alors pour tout (a,b) € R?, on a

V(aX +b) = a*V(X).

Démonstration. C’est un simple calcul. On utilise la linéarité de I’espérance :

V(aX +b) = E((aX +b)?) — (E(aX +b))?

a?E(X?) + 2abE(X) + b* — (aE(X) + b)?

a*E(X?) + 2abE(X) + b* — a’E(X)? — 2abE(X) — b?
a*(E(X?) —E(X)?)

= d*V(X).

Remarque 14. 1. En particulier, on a o(aX + b) = |alo(X).

Moralement, une translation par b ne change pas I’écart par rapport & la moyenne (c’est &
dire 'espérance), alors que multiplier la variable aléatoire par a multiplie par |a| également
cet écart.

En particulier, une variable aléatoire constante est de variance nulle.

2. On en déduit que la variance, contrairement a l’espérance, n’est pas linéaire.
En effet, V(2X) =4V (X) #2V(X) si V(X) # 0.
Ainsi, on n’a pas forcément V(X +Y) = V(X)+V(Y) (en Poccurence, c’est faux si Y = X
et V(X) #0).

18.3 Indépendance de variables aléatoires

18.3.1 Variables aléatoires indépendantes

Définition 9: Variables aléatoires indépendantes

Deux variables aléatoires X et Y discretes définies sur un espace probabilisé fini
(Q,P(92),P) sont dites indépendantes si pour tout (z,y) € X(Q) x Y (Q),
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Remarque 15. Les variables aléatoires X et Y sont indépendantes si et seulement si pour tout
(z,y) € X(Q) x Y(Q), les événements (X = x) et (Y = y) sont indépendants.

Exemple 13. Alice et Bob passent un examen et répondent a une question ou deux réponses

sont proposées. On note X la variable aléatoire qui & la réponse d’Alice associe 0 si elle est

fausse, 1 si elle est correcte. On considere Y la variable aléatoire similaire pour Bob.
Intéressons-nous aux trois situations suivantes :

1. Alice et Bob répondent au hasard et indépendamment.
2. Alice répond au hasard et Bob copie sur Alice.
3. Alice répond au hasard et Bob décide systématiquement de prendre la réponse opposée.

Dans la premiere des situations, les variables aléatoires X et Y sont indépendantes, mais
pas dans les deux suivantes.

En effet, dans les trois cas, on aP(X =0)=P(X =1)=PY =0)=P(Y =1) =

N | —

Dans la deuxiéme situation, P(X =0)N (Y =0)) =P(X =0) =

N
Dans la troisieme situation, P((X =0)N(Y =0)) =0 # P(X =0)P(Y =0).

Définition 10: Variables aléatoires mutuellement indépendantes

Soit (2, P(2),P) un espace probabilisé fini.
Soit (Xj)1<k<n une famille finie de variables aléatoires définies sur (2, P(Q2), P).

1. On dit que les variables aléatoires (Xj)1<k<n sont deux a deux indépendantes si pour
tout (i,4) € [1,n]? avec i # j, les variables aléatoires X; et X; sont indépendantes.

2. On dit que les variables aléatoires sont mutuellement indépendantes si pour tout
k € [1,n] et tout (z1,...,2;) €RF, on a

k k
1<i1<i2<---<ik<n=>P ﬂ(Xij:xj) :HP(Xij:xj)'
=1 i1

Remarque 16. Il découle directement de la définition que si les variables aléatoires (X)1<k<n
sont mutuellement indépendantes, alors toute sous-famille de (X )1<r<n est également constituée
de variables aléatoires mutuellement indépendantes.

Enfin, mentionnons le résultat suivant, qu’on ne démontrera pas, mais qui peut étre tres
utile en pratique :

Proposition 11

Si X et Y sont des variables aléatoires indépendantes, alors pour toutes fonctions f et g,
les variables aléatoires f(X) et g(Y') sont également indépendantes.

Remarque 17. En pratique, cela signifie que si les variables aléatoires X et Y sont indépendantes,
alors les variables aléatoires X2 et —Y aussi, ou encore exp(X) et 4Y3 +Y — 1...

18.3.2 Propriétés de 'indépendance de variables aléatoires

Lemme 1: Lemme des coalitions

Soient X1,..., Xy, Xyq1,. .., X,y des variables aléatoires mutuellement indépendantes.
Alors pour tout couple de fonctions (u,v), les variables aléatoires u(Xi,...,X,) et
U(Xn41, - ., Xntp) sont indépendantes.
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Démonstration. Démonstration admise. |
Remarque 18. En particulier, si uq,...,u, sont n fonctions, alors les variables aléatoires
u1(Xq), ..., up(X,) sont mutuellement indépendantes.

Proposition 12: Espérance du produit de deux variables aléatoires

indépendantes

Soient X et Y deux variables aléatoires indépendantes définies sur un espace probabilisé
fini (2,P(Q2),P).
Alors

E(XY)=E(X)E(Y).

Démonstration. Notons X () = {z1,..., 2z} et Y(Q) = {y1,...,yp} ot les (x;)1<i<n sont
deux & deux distincts, ainsi que les (y;)1<j<p-
Alors XY (Q) = {;y;, (,7) € [1,n] x [1,p]} ou les z;y; ne sont pas nécessairement deux a
deux distincts.
Posons XY (Q) = {z1,..., 2} avec pour tout (i,j) € [1,7]?, avec i # j,2 # z;. On a par
T

définition de l'espérance E(XY') = Z zkP(XY = z).

k=1
Or, pour tout k € [1,7], on a (XY = z) = |_| (X =x;) N (Y =y;) donc
(1.)E€[Ln] x [1.p]
TiYj=Zk
P(XY = z) = Y. P((X=z)n(Y =y
(i,j)G[[;JZ]] iﬂlyp]]
TiYj=2

do
E(XY) = >z >, P(X=z)n(Y =y))
k=1 (i,5)€[1,n]x[1,p]
TiYj=Zk
= > Y ayP(X=z)n(Y =y))

k=1 (i,5)€[1,n] x[1,p]

TiY; =2k
np
= D> > wyP(X =z)n (Y =y)))
i=1 j=1
n_p
= Z z;y;P(X = z;)P(Y =y;) par indépendance de X etY
i=1 j=1
n p
= (Z P(X = :ci)> > yPly =1y
i=1 j=1
= E(X)E(Y).

Remarque 19. La réciproque est fausse! On peut avoir E(XY) = E(X)E(Y) sans que X et YV
soient indépendantes.
Soit X une variable aléatoire suivant une loi uniforme sur {—1,0,1}, i.e.

PX=-1)=P(X=0)=P(X=1)=-.
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Soit Y = X2
Alors E(XY) =E(X3) =E(X) =0
Mais X et Y ne sont pas indépendantes car

P((X =0)N(Y =1)) =0 £P(X =0)P(Y = 1) = ..

Remarque 20. Soient (A, B) € P(2)? telles que X =14 et Y = 1p.

Tout d’abord, vérifions que X et Y sont indépendantes si et seulement si les événements A
et B sont indépendants.

e Si X et Y sont indépendantes, les événements (X = 1) et (Y = 1) sont indépendants, i.e.
A et B sont indépendants.

eSiA= (X =1)et B=(Y =1) sont indépendants, on a vu dans le chapitre précédent que
ceci impliquait 'indépendance des couples d’événements (A, B) = (X = 1),(Y =0)),(4,B) =
(X =0),(Y =1) et (A,B) = ((X =0),(Y =0), ce qui prouve que les variables aléatoires X
et Y sont indépendantes.

D’apres la proposition précédente, on a alors

P(ANB) =E(1anp) = E(141p) = E(14)E(1p) = P(A)P(B),

ce qui n’est rien d’autre que la définition de I'indépendance des événements A et B!

Proposition 13: Variance de la somme de deux variables aléatoires

indépendantes

Soient X et Y deux variables aléatoires indépendantes définies sur un espace probabilisé
fini (Q,P(22),P).
Alors

VIX+Y)=V(X)+ V().

Démonstration. Par indépendance de X et Y, on a E(XY) = E(X)E(Y) donc en utilisant
la linéarité de ’espérance :

VIX+Y) = E(X+Y)?) - (E(X +Y))?
= E(X%242XY +Y?) - (E(X)+E(Y))?
= E(X?) +2E(XY)+E(Y?) —EX
= (E(X?) —E(X)*) + (E(Y*) —E(V)?)
= V(X)+V(Y).

S~—
[\
|
[\~
AL
>
m
—~
).<
S~—
|
m
—
>
[\

Remarque 21. Par récurrence, on en déduit que si (Xi,...,X,) sont des variables mutuelle-
ment indépendantes, alors

n

E(HXZ) =J[Ex:) et Vv (Z Xk> = V(Xp).
=1 =1 k=1

k=1
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18.4 Lois usuelles
Dans cette section, nous appliquerons implicitement la proposition 18.1.1 qui nous permet

de définir des lois pourvu que toutes les probabilités soient des nombres positifs et que leur
somme fasse 1.

18.4.1 Loi certaine

Définition 11: Loi certaine

Soit X une variable aléatoire définie sur un espace probabilisé fini (2, P(Q2), P).
On dit que X suit une loi certaine si X est constante, i.e.

Jda € R,Vw € Q, X (w) = a.

Remarque 22. Cette loi modélise un phénomene dont I’issue est certaine.

On a déja vu 'espérance et la variance d’une loi certaine : rappelons-les.

Proposition 14: Espérance et variance d’une loi certaine

Soit X une variable aléatoire définie sur un espace probabilisé fini (2, P(Q2), P).
On suppose que X est constante égale a a € R.
Alors

E(X)=a e V(X)=0.

18.4.2 Loi uniforme

Définition 12: Loi uniforme

Soit X une variable aléatoire définie sur un espace probabilisé fini (2, P(Q2), P). Notons
X(Q) ={z1,...,zn} avec n € N*.
On dit que X suit une loi uniforme si

1
Vk € [1,n],P(X = zx) = -

n
Remarque 23. On remarque qu’on a bien Z P(X =x)=—=1.
n
k=1

Exemple 14. La loi uniforme modélise classiquement le résultat d’un lancer de dé équilibré.

Proposition 15: Espérance d’une loi uniforme

Soit X une variable aléatoire suivant une loi uniforme sur X (Q) = [1,n].

On note X < U(n). Alors

E(X) = n+1'

Démonstration. On a
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18.4.3 Loi de Bernoulli

Définition 13: Loi de Bernoulli

Soit X une variable aléatoire a valeurs dans {0,1}. Soit p € [0, 1].
On dit que la variable aléatoire X suit une loi de Bernoulli de parametre p, et on note
X < B(p), si

PX=1)=p et PX=0)=1-p.

On note souvent ¢ =1 — p.

Remarque 24. ¢ On remarque qu’on a bien P(X =0)+P(X =1) = 1.

e Une variable aléatoire X qui suit une loi de Bernoulli peut en fait étre vue comme ’indi-
catrice de I’événement (X =1).

Réciproquement, l'indicatrice d’'un événement A est une variable aléatoire qui suit une loi
de Bernoulli de parametre p = P(A).

Exemple 15. La loi de Bernoulli modélise un lancer de piece dont la probabilité d’obtenir pile
serait égale a p.

Plus généralement, elle modélise une expérience dont le résultat est binaire (échec ou succes)
et dont la probabilité du succes est p.

Proposition 16: Espérance et variance d’une loi de Bernoulli

Soit X <— B(p), avec p € [0, 1]. Alors

E(X)=p et V(X)=p(l-Dp).

Démonstration.

1. On a
E(X)=0P(X =0)+1P(X =1) =p.

2. On a d’aprés le théoreme du transfert
E(X?) =0P(X =0)+1*P(X =1)=p

donc
V(X)=E(X*)—E(X)*=p—p° =p(l—p).

18.4.4 Loi binomiale

Définition 14: Loi binomiale

Soit n € N*, soit p € [0, 1]. Soit X une variable aléatoire & valeurs dans [0, n].
On dit que X suit une loi binomiale de parametres n et p, et on note X — B(n,p), si
pour tout k € [0,n],

n

P(X = ) = (k)pku —pt

Remarque 25. On a bien d’apres la formule du bindme de Newton

D PX=k)=) (Z)pk(l )" F=pr1-pt=1
k=0

k=0
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Exemple 16. La loi binomiale B(n,p) modélise le nombre de succes lors de la réalisation
successive de n expériences de Bernoulli indépendantes de parametre p (par exemple n lancers
de piece de monnaie).

En effet, 'événement (X = k) signifie qu’on a obtenu k succes (par exemple k pile). Il y
a (Z) fagons de placer ces succes dans les n expériences. Pour calculer la probabilité de cet
événement, il faut ensuite multiplier k£ fois par la probabilité d’obtenir un succes, ce qui donne
p¥, et n — k fois par la probabilité d’échouer, ce qui donne (1-— p)”*k.

On peut donner cette définition alternative, confirmée par 'interprétation de la loi binomiale,
et qui est tres utile en pratique.

Définition 15: Somme de variables aléatoires de Bernoulli indépendantes et

de méme parametre

Soit n € N*, soit p € [0, 1].
On dit que la variable aléatoire X suit une loi binomiale de parametre n et p si

X = iXk
k=1

ou les variables aléatoires X sont mutuellement indépendantes et suivent toutes une loi
de Bernoulli de parametre p.

Proposition 17: Espérance et variance d’une loi binomiale

Soit X < B(n,p) avec n € N* et p € [0, 1]. Alors

E(X)=np et V(X)=np(l-—p).

Démonstration.
n

Dans toute cette preuve, nous écrirons X = ZXk ou les variables aléatoires X} suivent
k=1
toutes une loi de Bernoulli de parametre p et sont mutuellement indépendantes.

1. Par linéarité de ’espérance, on a

E(X) =) E(X})=mnp.

n

k=1
2. Puisque les variables aléatoires X7, ..., X, sont mutuellement indépendantes, on a
n
V(X)=) V(Xy)=np(l-p).

k=1
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