
MÉCANIQUE

2 – Grandeurs cinématiques et référentiels

La cinématique est la description du mouvement des objets, indépendamment de la cause de ce mouvement,
qui relève de la dynamique étudiée dans les chapitres suivants. Historiquement, la cinématique a précédé

la dynamique, qui n’a pu se construire qu’à partir de l’observation précise des mouvements.
On peut dire que l’astronomie a été la première science moderne, avec les travaux de Nicolas Copernic (en

polonais Mikolaj Kopernik) sur les mouvements des planètes, qui a permis de mettre en évidence l’importance
de la situation de l’observateur, autrement dit de la notion de référentiel d’étude. Ainsi Mars se déplace selon une
orbite quasi-circulaire autour du Soleil ; un observateur sur le Soleil la verrait donc décrire un cercle autour de lui.
En revanche, pour un observateur sur la Terre, qui est elle-même en rotation autour du Soleil, le mouvement de
Mars présente des boucles qui donnent l’impression d’un retour en arrière. Même si d’autres astronomes avaient
déjà réalisé de telles observations et posé la question de la pertinence du modèle géocentrique de Ptolémé, il
revient à Copernic d’avoir explicitement proposé, dans son ouvrage de 1542, une théorie héliocentrique qui
permettait une description plus simple du système solaire. Notons que, en 1600, Giordano Bruno a été brûlé vif
à Rome pour avoir défendu le point de vue de Copernic. Ces travaux ont été complétés par ceux de Galilée
(1564 - 1642), qui a énoncé la loi de composition de vitesses.

Les observations d’une grande précision de l’astronome danois Tycho Brahe (1546 - 1601) permirent à l’as-
tronome allemand Johannes Kepler d’énoncer les lois qui portent son nom : mouvement elliptique des planètes,
loi des aires et relations entre période orbitale et taille de l’ellipse. C’est à partir des ces lois expérimentales
qu’Isaac Newton a pu énoncer les lois théoriques de la dynamique et de la gravitation.
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Vidéo sur les grandeurs cinematiques : https://go.screenpal.com/watch/cYhe67Bg8V
Vidéo sur les référentiels : https://go.screenpal.com/watch/cYhe2YBkvk
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1 Cinématique en coordonnées cartésiennes
1.1 Repérage d’un point

Le repérage d’un point, c’est-à-dire la définition de sa position, nécessite de munir l’espace d’une base ou
repère, qui est la donnée :

• d’un point O, centre du repère,
• de trois vecteurs linéairement indépendants, qu’on notera ~ux, ~uy et ~uz.

Le repère (O, ~ux, ~uy, ~uz) est dit cartésien s’il est orthonormé direct. Les vecteurs de base sont alors :
• orthogonaux deux à deux (ortho) : ~ux · ~uy = ~ux · ~uz = ~uy · ~uz = 0,
• de norme unité (normé) : ‖~ux‖ = ‖~uy‖ = ‖~uz‖ = 1,
• orientés par la règle des trois doigts ou la règle du tire-bouchon (direct) 1.

~uy

~uz

~ux
•

O

•M

z

x

y

Figure 1 – Vecteur position.

Un point M quelconque dans l’espace muni de la base
cartésienne (O, ~ux, ~uy, ~uz) est repéré par le vecteur po-
sition :

−−→
OM = x~ux + y ~uy + z ~uz =

∣∣∣∣∣∣∣
x

y

z

(1)

Le triplet (x, y, z) constitue les coordonnées carté-
siennes de M. Il s’agit de la donnée des trois compo-
santes du vecteur position. Les coordonnées du centre du
repère sont évidemment (0, 0, 0).

La distance du point M de coordonnées (x, y, z) au
centre du repère O est : ∥∥∥−−→OM

∥∥∥ =

»−−→
OM ·

−−→
OM =

√
x2 + y2 + z2

D’une façon générale, si deux points M1 et M2, ont pour coordonnées (x1, y1, z1) et (x2, y2, z2) dans un
repère orthonormé, la distance qui les sépare est donnée par :∥∥∥−−→OM

∥∥∥ =

»−−→
OM ·

−−→
OM =

√
x2 + y2 + z2

1.2 Mouvement d’un système
Lorsqu’un point se déplace, l’ensemble des positions successives qu’il prend au cours du temps constitue une

courbe appelée la trajectoire de ce point.

•M(t1)

•
M(t2)

•
M(t3)

•M(t4)

Figure 2 – Trajectoire d’un point.

Le système des trois équations (x(t), y(t), z(t)) constitue le système d’équation paramétrique de la tra-
jectoire. C’est la description la plus complète du mouvement du point M, puisqu’il donne la position spatiale

1. On rappelle la règle des trois doigts : ~ux étant donné par la direction du pouce et ~uy par celle de l’index, la direction de ~uz

est donnée par le majeur tendu du côté de la paume, l’ensemble de l’opération étant réalisée avec la main droite. La règle du tire
bouchon s’applique de la façon suivante : un tire-bouchon tournant dans le sens amenant ~ux sur ~uy avance dans la direction de ~uz .
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(x, y, z) à chaque date. Cependant la forme de la trajectoire (droite, circulaire, parabolique, etc), est plus ai-
sément identifiée en éliminant le temps dans le système déquations paramétriques, pour obtenir l’équation
cartésienne de la trajectoire, qui relie seulement les coordonnées spatiale de M x, y et z, sous forme d’une
équation f(x, y, z) = 0.

Le mouvement de translation d’un système solide non ponctuel, peut être décrit par le mouvement de son
centre de masse G 2. Dans toute la suite du cours, on étudiera exclusivement des systèmes dont le mouvement
peut être assimilé à celui de son centre de masse.

•O

•
M(t) •

M(t+dt)

d~̀

Figure 3 – Vecteur déplacement.

Considérons un mobile M qui se déplace sur sa trajec-
toire. À l’instant t, il occupe la position M(t) ; à l’instant
t+dt, avec dt infiniment petit, il occupe une position très
voisine M(t+dt). On appelle vecteur déplacement élé-
mentaire d~̀ le vecteur qui relie deux positions séparées
d’un intervalle de temps infinitésimal dt.

Comme ces deux positions sont très proches, le dé-
placement du mobile durant l’intervalle de temps dt est
quasiment linéaire, donc confondu avec le d~̀. Autrement
dit, si dt est assez petit, d~̀ est localement quasiment
confondu avec la trajectoire :

• sa direction et son sens donnent la direction et le sens du mouvement pendant dt,
• sa norme ‖d~̀‖ donne la distance parcourue pendant dt.

Il est plus aisé d’exprimer d~̀ à l’aide de la variation du vecteur position. Soit O l’origine du repère. Par la
relation de Châsles on a :

−−−−−−→
OM(t+dt) =

−−−−→
OM(t) + d~̀⇒ ~d` =

−−−−−−→
OM(t+dt) −

−−−−→
OM(t) = d

−−→
OM

ce qui montrer que le vecteur déplacement élémentaire correspond à l’évolution du vecteur position pendant
l’intervalle de temps infinitésimal dt : ~d` = d

−−→
OM.

Soit (x, y, z) les coordonnées de M(t) ; à l’instant t + dt, les coordonnées ont évolué d’une quantité infinité-
simale, c’est-à-dire que les coordonnées de M(t+dt) sont (x + dx , y + dy , z + dz). Les composantes du vecteur
déplacement élémentaire s’en déduisent :

~d` =
−−−−−−→
OM(t+dt) −

−−−−→
OM(t) =

∣∣∣∣∣∣∣
x+ dx)
y + dy
z + dz

−

∣∣∣∣∣∣∣
x

y

z

⇒ ~d` =

∣∣∣∣∣∣∣
dx
dy
dz

(2)

ce qui correspond logiquement aux composantes de d
−−→
OM.

1.3 Vitesse
1.3.1 Vecteur vitesse instantanée

Par définition, le vecteur vitesse instantanée au point M à la date t est le taux de variation du vecteur
position :

~v =
d~̀
dt

=
d
−−→
OM
dt

(3)

2. Attention ! Le mouvement de G ne décrit pas tout le mouvement si le système tourne sur lui-même (hors programme). En
effet, un système peut avoir un centre de masse immobile, et cependant être en mouvement : c’est le cas par exemple d’un manège,
de l’ensemble constitué par les pâles d’un moulin ou d’une éolienne.

Nicolas Clatin | septembre 2021 | mCC BY NC SA | Mécanique chapitre 2 : grandeurs cinématiques et référentiels | page 4



Strictement réservé aux élèves de BCPST du lycée Fénelon (Paris).
Toute utilisation commerciale est interdite.

~ux

~uy

•O

•
M(t)

•
M(t+dt)

~v

Sa direction est selon la tangente à la trajectoire
en tout point, et son sens est celui du mouvement. Les
coordonnées du vecteur vitesse se déduisent de celle du
vecteur déplacement élémentaire :

~v =

∣∣∣∣∣∣∣
vx = dx /dt = ẋ

vy = dy /dt = ẏ

vz = dz /dt = ż

(4)

système dans lequel les termes peuvent s’interpréter de
deux façon. Physiquement, dx /dt est le quotient de la

petite variation de x sur le petit intervalle de temps durant lequel cette variation a lieu. Mathématiquement, il
s’agit de la dérivée de la fonction x(t). Il est possible, mais pas obligatoire, d’utiliser la notation de Newton, dans
laquelle une grandeur surmontée d’un point correspond à la dérivée de cette grandeur par rapport au temps.

1.3.2 Vitesse d’un point

La valeur numérique de la vitesse en un point, qui est la « vitesse » du langage courant, est la norme du
vecteur vitesse en ce point. Elle s’exprime en m · s−1.

v = ‖~v‖ =

√(
dx
dt

)2

+

(
dy
dt

)2

+

(
dz
dt

)2

=
√

ẋ2 + ẏ2 + ż2 =
√
~v · ~v (5)

Ainsi définie, la vitesse correspond à la vitesse instantanée, c’est-à-dire celle qui est mesurée à une date t
pendant dt. C’est celle qu’on lit sur le compteur de vitesse d’une voiture, et qui a priori évolue sans cesse. Elle
ne doit pas être confondue avec la vitesse moyenne qui correspond au quotient entre la distance totale parcourue
et le temps de parcours : vmoy = d/t, et qui est beaucoup moins informative 3.

Un mouvement est dit uniforme lorsque la norme de la vitesse est la même en tout point de sa trajectoire.

mouvement uniforme ⇐⇒ v = ‖~v‖ = cte

La vitesse étant la dérivée de la position, il est possible de trouver la position à partir de la vitesse, en
effecutant l’opération inverse, à savoir une primitivation, en n’oubliant pas qu’il apparait alors une constante
d’intégration :

~v =
d
−−→
OM
dt

⇐⇒
−−→
OM =

∫
~v dt+ ~k

où ~k est un vecteur constant. Il est la plupart du temps plus simple de faire le calcul en primitivant chacune
des composantes séparément. Soit par un mouvement de vitesse : ~v = 3 ~ux + 2 ~uy, et qui passe par l’origine du
repère à t = 0. Les coordonnées cartésiennes s’obtiennent par primitivation des composantes du vecteur vitesse :

~v =
d
−−→
OM
dt

=

∣∣∣∣∣ vx = dx /dt = 3

vy = dy /dt = 2
⇒

−−→
OM =

∣∣∣∣∣ x = 3t+ k1

y = 2t+ k2

Le point passe par l’origine (x = 0, y = 0) à t = 0. En introduisant cette condition dans les expressions des
coordonnées, on obtient les valeurs de deux constantes : x(t=0) = 0 = 3× 0+ k1 et y(t=0) = 0 = 2× 0+ k2, donc
k1 = k2 = 0. On en déduit le système d’équations paramétriques de la trajectoire, puis l’équation cartésienne :

3. La vitesse moyenne sur un trajet entre Paris et Tombouctou peut être calculée, mais ne dira rien de la vitesse réelle du véhicule,
car elle ne prend pas en compte les arrêts pendant la nuit, pendant les repas, les bouchons, les excès de vitesse, la poursuite du
lapin qui s’est échappé sur l’aire d’autoroute, et le petit dernier qui a vomi.
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∣∣∣∣∣ x = 3t

y = 2t
⇒

y

x
=

3

2
⇒ y =

3

2
× x

La trajectoire est donc une droite. Le mouvement est par ailleurs uniforme puisque la vitesse est constante :
v =

√
22 + 32 =

√
13 = 3,6 m · s−1.

Considérons maintenant un point en mouvement avec un vecteur vitesse : ~v = 3t ~ux + 2 ~uy, et qui passe
à l’origine à t = 0. Les coordonnées cartésiennes s’obtiennent par primitivation des composantes du vecteur
vitesse :

~v =
d
−−→
OM
dt

=

∣∣∣∣∣ vx = dx /dt = 3t

vy = dy /dt = 2
⇒

−−→
OM =

∣∣∣∣∣ x = 3/2t2 + k1

y = 2t+ k2

Le point passe par l’origine (x = 0, y = 0) à t = 0, ce qui conduit encore à k1 = k2 = 0. On en déduit le
système d’équations paramétriques de la trajectoire, puis l’équation cartésienne :∣∣∣∣∣ x = 3/2t2

y = 2t
⇒ x =

3

2
×

(
y

2

)
=

3

8
× y2

Il s’agit d’un mouvement de type parabolique d’axe (Ox). Le mouvement n’est pas uniforme car la vitesse
dépend de la date : v =

√
4 + 9t2.

1.4 Accélération
Le vecteur accélération quantifie la variation du vecteur vitesse. Le vecteur accélération peut mesurer :
• la variation de la direction de ~v,
• la variation du sens de ~v,
• la variation de la norme de ~v.

Comme on le verra en dynamique, c’est par le vecteur accélération que les forces agissent sur le mouvement
d’un système.

Le vecteur accélération au point M à la date t est le taux de variation du vecteur vitesse, autrement dit sa
dérivée temporelle :

~a =
d~v
dt

=

∣∣∣∣∣∣∣
ax = dvx /dt = v̇x

ay = dvy /dt = v̇y

az = dvz /dt = v̇z

expressions qu’on peut aussi écrire avec la notation de Newton. C’est donc la dérivée seconde du vecteur position
(la dérivée seconde par rapport au temps est notée avec 2 points en notation de Newton) :

~a =
d2−−→OM

dt2
=

∣∣∣∣∣∣∣∣
ax = d2x /dt2 = ẍ

ay = d2y /dt2 = ÿ

az = d2z /dt2 = z̈

L’accélération physique est une grandeur vectorielle. Elle différe donc de l’« accélération » du langage courant,
qui signifie une augmentation de la vitesse au cours du temps (par opposition à la « décélération » ou freinage).
En physique, le mobile en mouvement est accéléré si son vecteur vitesse varie au cours du temps, cette variation
pouvant correspondre à une modification de sa valeur numérique (augmentation ou diminution de ‖~v‖), et/ou
à une modification de la direction du vecteur vitesse ~v.

L’accélération étant une vitesse divisée par un temps, son unité est le m · s−2.
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1.5 Mouvements rectiligne et parabolique
1.5.1 Contraintes imposées par un mouvement rectiligne

On dit qu’un point a un mouvement rectiligne lorsque sa trajectoire est une droite. Il arrive que la nature du
système étudié implique que le mouvement soit nécessairement rectiligne. C’est le cas d’un anneau qui coulisse
sur une tige, ou d’un wagon qui se déplace sur un rail droit.

O ~ux

~uz

⊗~uy •
M0 (t0)

x0 ~v0
•

M (t)

x ~v

Figure 4 – Mouvement rectiligne.

Le fait que le mouvement soit recti-
ligne entraine des simplifications de calcul,
à condition de choisir un repère adapté à la
géométrie du problème. La droite support
de la trajectoire joue un rôle particulier ;
choisissons donc un repère cartésien dont
l’origine O est situé sur la droite, et dont un
vecteur de base, par exemple ~ux, est selon la
direction de celle-ci. On peut se convaincre
qu’on ne réduit pas la généralité du problème en choisissant un tel repère.

Dans ce repère, supposons que le mobile M soit à la position M0 d’abscisse x0 à l’instant initial t = 0, et que
sa vitesse à cet instant soit ~v0. À une date t, il se trouve à l’abscisse x et sa vitesse est ~v. Comme le mouvement
est rectiligne suivant la droite (O, ~ux), les coordonnées y et z sont nulles à tout instant. Le vecteur position à
une date quelconque est donc de la forme :

−−→
OM = x~ux ⇒

−−→
OM =

∣∣∣∣∣∣∣
x

y = 0

z = 0

Par dérivation temporelle, on constate que la vitesse et l’accélération sont nécessairement suivant (O, ~ux) à
tout instant :

~v =
d
−−→
OM
dt

= ẋ ~ux ⇒ ~v =

∣∣∣∣∣∣∣
vx = ẋ

vy = 0

vz = 0

et ~a =
d~v
dt

= ẍ ~ux ⇒ ~a =

∣∣∣∣∣∣∣
ax = ẍ

ay = 0

az = 0

En conséquence, si le mouvement est rectiligne, les vecteurs position, vitesse et accélération n’ont de compo-
sante non nulle que suivant la direction du mouvement. Notons que cela implique nécessairement que le vecteur
vitesse initiale est de la forme ~v0 = v0 ~ux.

1.5.2 Mouvement rectiligne uniforme

Un mouvement est dit uniforme si la valeur de la vitesse, c’est-à-dire la norme du vecteur vitesse, est
constante au cours du temps. Un mouvement rectiligne uniforme correspond donc à un mouvement tel que :

• la direction de ~v est constante (rectiligne),
• la norme de ~v est constante (uniforme).

Ces deux conditions correspondent à un vecteur vitesse constant : ~v =
−→cte, autrement dit une accélération

nulle à tout instant. Il est évident que la réciproque est vraie : ~a étant la dérivée de ~v, si ~a = ~0, alors sa primitive
est un vecteur constant.

�
�

�



Le mouvement est rectiligne uniforme
si et seulement si ~a = 0 à tout instant.
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1.5.3 Mouvement à vecteur accélération constant

Si le mouvement est rectiligne, alors ~a est un vecteur ayant toujours la même direction (celle du mouvement).
C’est une condition nécessaire : si ~a n’est pas de direction constante, le mouvement n’est pas rectiligne. Est-ce
une condition suffisante, autrement dit, si ~a est de direction constante, que dire du mouvement ?

Considérons un mobile soumis à une accélération de direction constante : ~a = a~ux, telle que, à t = 0
l’accélération et la vitesse soient ~a0 et ~v0. Il est évident que si ces deux vecteurs ne sont pas colinéaires,
l’accélération va modifier la direction de la vitesse et donc celle du mouvement 4. Une accélération de direction
constante est donc une condition nécessaire mais pas suffisante pour que le mouvement soit rectiligne.

Analysons les choses de façon quantitative, et en supposant le mouvement en deux dimensions pour simplifier
les équations. Supposons que le vecteur accélération soit de la forme ~a = a~ux, avec a constante (mouvement
uniformément accéléré), et que la vitesse initiale soit ~v0 = vx0 vecux+vy0 vecux au point (0, 0). Par primitivation
du vecteur accélération, on obtient le vecteur vitesse, puis le vecteur position :

~a =

∣∣∣∣∣a0 ⇒ ~v =

∣∣∣∣∣vx = at+ vx0

vy = vy0
⇒

−−→
OM =

∣∣∣∣∣x = at2/2 + vx0t+ 0

y = vy0t+ 0

Si vy0 = 0, autrement dit si la vitesse initiale est colinéaire à l’accélération, alors ~v et
−−→
OM sont uniquement

suivant la direction ~ux, dont le mouvement est rectiligne. Dans le cas contraire, les composantes du vecteur
position permettent d’obtenir l’équation cartésienne de la trajectoire : t = y/vy0 et :

x =
a

2v2y0
× y2 +

vx0

vy0
× t

ce qui correspond à un mouvement parabolique.

�

�

�

�
Un mouvement uniformément accéléré (à vecteur accélération constant) :

• est rectiligne s’il est colinéaire à la vitesse initiale,
• est parabolique dans le cas général.

2 Référentiels
2.1 Référentiel en mécanique classique

Un référentiel est l’association :
• d’un solide indéformable, sur lequel on peut définir un repère de l’espace, constitué d’une origine et de

trois vecteurs indépendants (O, ~ux, ~uy, ~uz),
• et d’un repère du temps, c’est-à-dire une horloge.

Dans un référentiel donné, le point M est donc repéré par trois coordonnées spatiales (x, y, z) et une coordonnée
temporelle t, soit quatre coordonnées spatio-temporelles (x, y, z, t).

Considérons deux observateurs dans deux référentiels différents, chacun muni de son repère d’espace et de
son horloge :

(R)

®
(O, ~ux, ~uy, ~uz)

t
(R′)

®
(O′, ~u′

x, ~u′
y, ~u′

z)

t′

4. C’est le cas du mouvement d’un projectile lancé selon une direction non verticale dans le champ de pesanteur, qui sera étudié
dans le chapitre suivant.
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La première hypothèse de la mécanique classique est que les deux observateurs voient un même événement à la
même date t. Ceci implique que la transmission de l’information de l’événément à l’observateur est instantanée 5.
Dans cette première hypothèse, le temps est absolu, c’est-à-dire indépendant des paramètres d’espace : t = t′.
La seconde hypothèse consiste à considérer que les deux observateurs voient le même événement au même point
de l’espace 6.

Tant que les distances et les vitesses mises en jeu dans le problème sont petites, ces deux hypothèses sont
totalement valables. Ainsi, des événements se produisant sur Terre, voire dans le système solaire, et ayant lieu à
des vitesses très inférieures à celle de la lumière, peuvent être traités par la mécanique classique. Les coordonnées
d’espace et de temps sont alors indépendantes. En revanche, dès que les distances mises en jeu sont grandes
(phénomènes à l’échelle galactique ou extragalactique), que les vitesses des systèmes sont proches de celle de la
lumière (accélérateurs de particules), ou que la précision requise est très grande (repérage par satellite comme le
GPS), on doit impérativement raisonner dans le cadre de la théorie de la relativité restreinte. Les coordonnées
spatiales et temporelle sont alors interdépendantes.

2.2 Référentiels galiléens
2.2.1 Définition d’un référentiel galiléen

Les observations de Galilée lui ont permis de mettre en évidence qu’un système mécaniquement isolé,
c’est-à-dire qui n’est soumis à aucune « action mécanique » autrement dit aucune force, se déplace selon un
mouvement rectiligne uniforme. En réalité, Galilée n’a pas étudié des systèmes mécaniquement isolés, mais
des systèmes pseudo-isolés soumis à des forces dont la résultante est nulle. Cette loi est connue sous le nom
de principe d’inertie ou première loi de Newton :

�

�

�

�
un objet mécaniquement isolé ou pseudo-isolé,
donc soumis à une résultante de force nulle, est
animé d’un mouvement rectiligne uniforme.

Si on considère un objet lancé sur la surface très lisse de la glace d’une patinoire, les frottements qu’il subit
sont quasiment nul, et on est dans le cas d’un système pseudo-isolé. Pour un observateur sur le bord de la
patinoire, qui regarde donc le mouvement en référence à la Terre, l’objet semble se déplace selon un mouvement
rectiligne uniforme. Cependant, pour un observateur extraterrestre, cet objet tourne avec la Terre dans un
mouvement de double rotation (sur elle-même et autour du Soleil), et l’objet ne parait pas suivre une trajectoire
rectiligne. Le principe de Galilée est donc intimement lié à un référentiel bien choisi.

�

�

�

�
On appelle référentiel galiléen un référentiel
dans lequel un objet mécaniquement isolé est en
mouvement de translation rectiligne uniforme.

On peut montrer que les référentiels galiléens sont en mouvement rectiligne uniformes les uns par rapport
aus autres, au moins durant le temps du mouvement étudié. Autrement, si un référentiel (R) est galiléen pour
un mouvement donné, alors tout référentiel en translation rectiligne uniforme par rapport à (R) est également
galiléen pour mouvement.

Pour observer le mouvement d’une vache, un observateur choisit un référentiel local lié au sol du champ ; ce
référentiel est galiléen pour le mouvement de la vache. Un autre observateur est dans un train qui roule à vitesse
constante sur une portion de voie rectiligne. Son référentiel est en translation rectiligne uniforme par rapport à
celui du premier observateur, et est donc galiléen.

5. La transmission de l’information est en réalité limitée par la vitesse de la lumière. Sur des grandes distances, cette hypothèse
est manifestement fausse. Par exemple, la lumière solaire parvient à la Terre en 8 minutes, à l’étoile la plus proche en environ 3
ans, et à la Galaxie d’Andromède en quelques 2 millions d’années. Trois observateurs positionnés dans ces trois systèmes ne voient
donc pas les éruptions solaires à la même date.

6. Cette hypothèse est également fausse si les référentiels liés aux deux observateurssont en mouvement l’un par rapport à l’autre.
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2.2.2 Référentiels galiléens usuels

Il y a une certaine ironie à vouloir définir un référentiel galiléen dans un univers n’ayant aucun point fixe.
La définition d’un point fixe est totalement arbitraire dans un univers en expansion et de dimensions indéfinies.

Le référentiel galiléen de référence est le référentiel de Copernic (RC) :
• son origine est le centre de masse du système solaire,
• ses axes sont dans la direction de trois étoiles « fixes » (des étoiles très lointaines).

Ce référentiel est adapté aux études astronomiques, du moins tant que le mouvement de rotation du système
solaire autour du centre de la Voie Lactée est négligeable.

Soleil

(RH)

vers une étoile fixe

vers une étoile fixe

vers une étoile fixe

(RC)

plan de l’écliptique

Terre
(RG)

Figure 5 – Référentiels galiléens usuels.

Le référentiel héliocentrique (RH) est suffisant pour les études limitées au système solaire. Il est quasiment
confondu avec le référentiel de Copernic :

• son origine est le centre de masse du Soleil,
• ses axes sont parallèles à ceux du référentiel de Copernic.

Le référentiel héliocentrique est en translation (non rectiligne) par rapport au référentiel de Copernic. La diffé-
rence entre les deux est ténue ; en effet, le centre de masse du système solaire est quasiment le centre de masse
du Soleil, dans la mesure où la quasi-totalité de la masse du système solaire est concentrée dans le Soleil. Pour
des applications limitées au système solaire, il est donc possible de le considérer galiléen.

Le référentiel géocentrique (RG) est en translation elliptique (quasiment circulaire) par rapport au référentiel
héliocentrique :

• son origine est le centre de masse de la Terre,
• ses axes sont parallèles à ceux du référentiel de Copernic.

Il peut être considéré galiléen pour toute étude au niveau de la Terre, dans laquelle l’influence des autres astres
est négligeable. Il permet ainsi d’étudier le mouvement d’un train, mais pas le phénomène des marées, dû aux
influences conjuguées du Soleil et de la Lune 7.

Dans énormément de cas, il est largement suffisant de considérer comme galiléen le référentiel terrestre local,
lié au lieu d’étude :

• son origine est un point fixe à l’échelle locale,
• ses axes sont définis arbitrairement ; généralement l’axe z est donné par la verticale du lieu d’étude.

Ce référentiel est en rotation complexe par rapport au référentiel héliocentrique, puisqu’il faut considérer le
mouvement de rotation de la Terre sur elle-même et celui de la Terre autour du Soleil. Il est suffisant pour
les études locales, dans lesquelles le mouvement de rotation de la Terre sur elle-même est négligeable. Ainsi, il
pourra permettre l’étude d’un mouvement de chute libre pas trop longue, d’une particule dans un laboratoire,
d’un véhicule sur une route, etc. En revanche, il ne peut permettre d’étudier les phénomènes météorologiques
de grande ampleur (cyclones), influencés par la rotation terrestre.

7. Sur ces schémas, on a choisi des axes quelconques par rapport au plan de l’écliptique. On peut néanmoins s’arranger pour
que deux d’entre eux soient dans le plan de l’écliptique.
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Figure 6 – Référentiel terrestre local.

Dans tous les exemples au programme en BCPST, le référentiel terrestre local est normalement suffisant
pour l’étude du mouvement.
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3 Annexes
3.1 Loi de composition des vitesses
3.1.1 Position du problème

Considérons deux observateurs en mouvement l’un par rapport à l’autre ; l’exemple typique est celui de la
vache regardant passer un train. Celle-ci joue le rôle du premier observateur ; elle observe un événement qu’elle
interprète par rapport à un référentiel « fixe » lié à la Terre. Un-e passager-ère dans le train joue le rôle du
second observateur ; il-elle observe le même événement, mais l’interprète par rapport à un référentiel « mobile »
lié au train. Supposons que l’événement observé soit le déplacement d’une tierce personne dans le train. Le
problème est de relier le mouvement observé par les deux observateurs, en restant dans le cadre de la mécanique
classique 8.

Le premier est lié à un référentiel (R) supposé fixe.

O
~uy

~uz

~ux

Le premier observateur voit le référentiel (R′) se
déplacer. Pour lui :

• O est un point fixe,
• ~ux, ~uy et ~uz sont des vecteurs constants,
• O′ est un point mobile,
• ~u′

x, ~u′
y et ~u′

z sont des vecteurs variables.

Le premier observateur, lié au référentiel fixe (R),
observe un mouvement dit absolu.

Le second est lié à un référentiel (R′) mobile par
rapport à (R).

O′

~u′
y

~u′
z

~u′
x

Le second observateur est immobile dans le référen-
tiel (R′). Pour lui :

• O′ est un point fixe,
• ~u′

x, ~u′
y et ~u′

z sont des vecteurs constants.

Le second observateur, lié au référentiel mobile
(R′), observe un mouvement dit relatif.

3.1.2 Référentiels en translation

O
~uy

~uz

~ux

(R) O′

~u′
y

~u′
z

~u′
x

(R′)

trajectoire de O′ dans (R)

~vO′ (R)

Figure 7 – Référentiels en translation.

On se place dans le cas particulier où les
deux observateurs sont liés à des référentiels
en translation l’un par rapport à l’autre. Le
référentiel (R′) est en translation par rap-
port à (R) si les vecteurs ~u′

x, ~u′
y et ~u′

z du
repère associé à (R′) sont invariants dans
(R). En pratique, il est commode de définir :

~u′
x = ~ux

~u′
y = ~uy

~u′
z = ~uz

Pour passer de (O, ~ux, ~uy, ~uz) à (O′, ~u′
x, ~u′

y, ~u′
z), il suffit alors de faire une translation

−−→
OO′. Attention ! le

mouvement du point O′ n’est pas nécessairement rectiligne 9.

8. C’est-à-dire en supposant que l’événement a lieu au même point de l’espace et à la même date pour les deux observateurs.
9. Il y a translation si on peut passer du repère (O′, ~u′

x, ~u′
y , ~u′

z) à une date t1 au repère (O′, ~u′
x, ~u′

y , ~u′
z) à une date t2 par

une translation d’un vecteur
−−−−−−−→
O′

(t1)
O′

(t2)
. Cela n’implique aucune contrainte sur la trajectoire du point O′.
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3.1.3 Composition des vitesses dans le cas de référentiels en translation

Considérons un point matériel M. Le deuxième observateur mesure la position de M par rapport au référentiel
mobile (R′). Pour lui, la position de M s’écrit :

−−→
O′M = x′ ~u′

x + y′ ~u′
y + z′ ~u′

z. Les vecteurs ~u′
x, ~u′

y et ~u′
z étant

des vecteurs fixes pour le second observateur, il mesure une vitesse dans le reférentiel mobile appelée la vitesse
relative ~vr :

~vM (R′) = ~vr =

(
d
−−→
O′M
dt

)
(R′)

= ẋ′ ~u′
x + ẏ′ ~u′

y + ż′ ~u′
z

Dans le cas particulier des référentiels en translation, et en ayant eu soin de choisir les vecteurs des deux
repères égaux, ceci s’écrit 10 : ~vr = ẋ′ ~ux + ẏ′ ~uy + ż′ ~uz. Par ailleurs, le premier observateur, lié au référentiel
fixe, repère le point M à l’aide du vecteur position :

−−→
OM = x~ux+y ~uy+z ~uz. La vitesse qu’il mesure par rapport

au référentiel fixe est appelée la vitesse absolue ~va :

~va = ~vM (R) =
d
−−→
OM
dt

Cependant, il peut également utiliser le référentiel (R′). En se souvenant que les vecteurs de base des deux
référentiels ont été choisis égaux, cela donne :

−−→
OM =

−−→
OO′ +

−−→
O′M =

−−→
OO′ + x′ ~u′

x + y′ ~u′
y + z′ ~u′

z =
−−→
OO′ + x′ ~ux + y′ ~uy + z′ ~uz

La vitesse absolue s’obtient par dérivation ; les vecteurs de base étant constants, on obtient :

~va =

(
d
−−→
OO′

dt

)
(R)

+ ẋ′ ~ux + ẏ′ ~uy + ż′ ~uz︸ ︷︷ ︸
~vr

Le premier terme est la vitesse du point O′ dans le référentiel (R) ~vO′ (R) ; c’est la vitesse d’entrainement 11

~ve. En définitive, on obtient la relation de composition des vitesses 12.

'

&

$

%

La vitesse absolue mesurée dans un référentiel fixe (R) et la vitesse
relative mesurée dans un référentiel mobile (R′) en translation par
rapport à (R) sont reliées par :

~va = ~ve + ~vr avec ~ve = ~vO′ (R)

3.1.4 Composition des accélérations pour les référentiels en translation rectiligne uniforme

On veut maintenant comparer les accélérations mesurées par les deux observateurs, dans le cas très particulier
de deux référentiels en translation rectiligne uniforme. Le premier observateur, dans le référentiel (R) fixe,
mesure l’accélération absolue du point M : ~aa = d~va /dt. Le second observateur, dans le référentiel (R′)
mobile, mesure l’accélération relative du point M : ~ar = d~vr /dt.

Or, si les deux référentiels sont en translation rectiligne uniforme l’un par rapport à l’autre, la vitesse du
point O′ dans le référentiel (R) est un vecteur constant, soit ~ve =

−→cte. En dérivant la loi de composition des
vitesses, on obtient immédiatement :

10. Le fait que les vecteurs des deux repères soient égaux n’est pas indispensable pour arriver à la conclusion qu’on énoncera ;
cependant, cela simplifie les calculs.

11. Dans le cas général où les deux référentiels ne sont pas en translation, la vitesse d’entrainement a une expression nettement
plus compliquée : à la vitesse de O′ s’ajoute un terme décrivant la rotation des vecteurs ~u′

x, ~u′
y et ~u′

z dans le référentiel fixe.
12. La composition des vitesse est hors programme. Cela dit, la formule obtenue relève du bon sens !
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~va = ~ve + ~vr ⇒ d~va
dt

=
d~ve
dt

+
d~vr
dt

= ~aa = 0 + ~ar

Autrement dit, l’accélération perçue par deux observateurs est la même, s’ils sont liés à des référentiels en
translation rectiligne uniforme l’un par rapport à l’autre 13. Cela implique que le principe fondamental de la
dynamique s’écrit de la même façon dans deux référentiels en translation rectiligne uniforme l’un par rapport
à l’autre, et justifie ainsi le fait que des référentiels galiliéens sont en translation rectiligne uniforme les uns par
rapport aux autres.

3.2 Quelques rappels de culture générale sur le système solaire
On rappelle que le système solaire est constitué de planètes, actuellement au nombre de 8 (Mercure, Vénus,

la Terre, Mars, Jupiter, Saturne, Uranus et Neptune) en rotation elliptique quasi-circulaire autour du Soleil
dans un plan appelé plan de l’écliptique (le plan de l’écliptique est strictement défini par l’orbite terrestre). La
période de révolution sidérale est variable (de 88 jours pour Mercure à 60200 jours pour Neptune). Le rayon
de l’orbite varie de 58 · 106 km pour Mercure à 4500 · 106 km pour Neptune. Certaines de ces planètes (en fait
toutes sauf Mercure et Vénus), possèdent un ou plusieurs satellites, corps en rotation autour d’elle.

Toutes les planètes sont en rotation sur elles-mêmes autour d’un axe de direction variable (perpendiculaire
au plan de l’écliptique pour Mercure, incliné de 23° par rapport à la normale au plan de l’écliptique pour la
Terre, et presque confondu avec lui pour Uranus). La période de rotation est très variable (presque 24 heures
pour la Terre, et 243 jours pour Vénus), et se fait dans le même sens que la révolution sidérale (sauf pour Vénus
et Uranus).

D’autres corps sphériques, tels Cérès, Pluton ou des objets transplutoniens, sont appelés planètes naines, et
n’orbitent pas dans le plan de l’écliptique et/ou pas selon une orbite presque circulaire (ni l’un ni l’autre pour
ce qui est de Pluton). Enfin, il existe des petits corps qui circulent autour du Soleil.

On peut noter que les sondes américaines Voyager 1 et Voyager 2, lancées en 1977 sont toutes les deux
sorties de l’héliosphère, la zone d’influence magnétique du Soleil, respectivement en 2011 et 2018. Au 29 janvier
2025, Voyager 1 et Voyager 2 étaient respectivement à 25 et 21 milliards de kilomètres de la Terre. Certains de
leurs instruments sont toujours fonctionnels et envoient encore des données à la Terre, mais ces contacts seront
probablement interrompus en 2025 faute d’énergie restante. Les sondes Pioneer 10 et Pioneer 11 ont également
quitté le système solaire, mais le contact avec elles est perdu depuis 2013 et 1995 respectivement. Enfin entre
2015 et 2025, la sonde New Horizon, après avoir survolé Pluton, a exploré la ceinture de Kuyper, où gravitent
de nombreux petits corps et planètes naines, et est maintenant lancé en ligne droite pour sortir du système
solaire. Elle devrait émettre au moins jusqu’en 2032.

13. Tout ce paragraphe est valable exclusivement dans le cas de référentiels en translation rectiligne uniforme l’un par rapport
à l’autre. Dans le cas général, la relation entre les accélérations absolue et relative fait intervenir deux termes supplémentaires :
~aa = ~ar + ~ae + ~ac, où ~ae est l’accélération d’entrainement, liée uniquement au mouvement de (R′) par rapport à (R), et ~ac
l’accélération de Coriolis, terme complexe faisant intervenir la rotation de (R′) par rapport à (R) et la vitesse relative de M.
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