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Exercice 1 : Géométrie
Les parties 1 et 2 de cet exercice sont entièrement indépendantes.

1 Géométrie dans le plan

Dans le plan muni d’un repère orthonormé (O, ı⃗, ȷ⃗), on considère les points

A(0, 0), B(1, 2), C(4, 2), D(3, 0).

La droite ∆ passant par le point A et dirigée par le vecteur u⃗
(

1+
√
5

2
, 1

)
coupe la droite (BC) en E

et la droite (DC) en F . On pose φ =
1 +

√
5

2
.

1. Représenter ces points et la droite ∆ sur le repère en annexe page 7. On donne
1 +

√
5

2
≃ 1,62.

On place les points A(0, 0), B(1, 2), C(4, 2) et D(3, 0) dans le repère orthonormé. (On trace
éventuellement le quadrilatère ABCD et la droite ∆ passant par A de vecteur directeur
u⃗(φ, 1) avec φ = 1+

√
5

2
.)

x

y

ı⃗

ȷ⃗

A(0, 0)

B(1, 2) C(4, 2)

D(3, 0)

∆

E
F

2. Démontrer que le quadrilatère ABCD est un parallélogramme.

On calcule :
−→
AB = (1− 0, 2− 0) = (1, 2),

−−→
DC = (4− 3, 2− 0) = (1, 2),

donc
−→
AB =

−−→
DC. Ainsi, ABCD est un parallélogramme.

3. Donner une équation cartésienne des droites (BC) et (DC).

La droite (BC) passe par B(1, 2) et C(4, 2) : elle est horizontale, donc

(BC) : y = 2 ⇐⇒ y − 2 = 0.
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La droite (DC) passe par D(3, 0) et C(4, 2), donc sa pente vaut
2− 0

4− 3
= 2 :

(DC) : y = 2(x− 3) = 2x− 6 ⇐⇒ 2x− y − 6 = 0.

4. Donner un système d’équations paramétriques de la droite ∆.

∆ passe par A(0, 0) et a pour vecteur directeur (φ, 1), donc

∆ :

{
x = φt,

y = t,
t ∈ R.

5. Déterminer les coordonnées cartésiennes des points E et F .

Pour E = ∆ ∩ (BC), on impose y = 2 dans les équations de ∆ : t = 2, donc

E(2φ, 2) = (1 +
√
5, 2).

Pour F = ∆ ∩ (DC), on impose y = 2x− 6. Avec (x, y) = (φt, t) :

t = 2φt− 6 ⇐⇒ t(2φ− 1) = 6 ⇐⇒ t =
6√
5
.

Ainsi

F
(
φ

6√
5
,

6√
5

)
=

(3(1 +√
5)√

5
,

6√
5

)
=

(
3 +

3
√
5

5
,
6
√
5

5

)
.

6. On définit le cercle C d’équation cartésienne x2 + y2 − 5x− 3y + 6 = 0.
(a) Déterminer le centre et le rayon du cercle C .

On complète les carrés :

x2 − 5x =

(
x− 5

2

)2

− 25

4
, y2 − 3y =

(
y − 3

2

)2

− 9

4
.

Donc (
x− 5

2

)2

+

(
y − 3

2

)2

=
25 + 9

4
− 6 =

34

4
− 24

4
=

10

4
=

5

2
.

Le centre Ω et le rayon r sont donc données par :

Ω

(
5

2
,
3

2

)
et r =

√
5

2
=

√
10

2
.

(b) Montrer que le cercle C est le cercle circonscrit au triangle BCD.

Vérifions que les B,C,D appartiennent à C en substituant leurs coordonnées dans
l’équation du cercle C :

B(1, 2) : 1 + 4− 5− 6 + 6 = 0,

C(4, 2) : 16 + 4− 20− 6 + 6 = 0,

D(3, 0) : 9 + 0− 15− 0 + 6 = 0.

Ainsi C passe par B,C,D : c’est bien le cercle circonscrit à BCD.
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2 Géométrie dans l’espace

On munit l’espace d’un repère orthonormé direct (O, ı⃗, ȷ⃗, k⃗), on considère les points

T (0, 0, 0), U(1,−1,−2), V (1, 2, 1).

On rappelle que le volume d’un tétraèdre vaut
Ah

3
où A est l’aire d’une face et h la hauteur corres-

pondante.

7. Calculer les coordonnées des vecteurs
−→
TU et

−−→
UV . Les points T , U et V sont-ils alignés ?

−→
TU = (1,−1,−2),

−→
TV = (1, 2, 1)

Ces vecteurs ne sont pas colinéaires (car 1
1
̸= −1

2
), donc T, U, V ne sont pas alignés.

8. Calculer l’aire du triangle TUV .

Comme
−→
TU = (1,−1,−2) ,

−→
TV = (1, 2, 1), on a :

∥
−→
TU∥2 = 12 + (−1)2 + (−2)2 = 6, ∥

−→
TV ∥2 = 12 + 22 + 12 = 6

−→
TU ·

−→
TV = 1 · 1 + (−1) · 2 + (−2) · 1 = −3.

Donc l’aire du triangle TUV vaut

ATUV =
1

2

√
∥
−→
TU∥2 ∥

−→
TV ∥2 −

(−→
TU ·

−→
TV

)2
=

1

2

√
6 · 6− (−3)2 =

1

2

√
27 =

3
√
3

2
.

9. Déterminer une équation cartésienne du plan (TUV ).

Une équation du plan (TUV ) est de la forme

ax+ by + cz + d = 0.

Comme T (0, 0, 0) ∈ (TUV ), on a immédiatement d = 0. Donc le plan s’écrit

ax+ by + cz = 0,

et n⃗ = (a, b, c) est un vecteur normal au plan.
Or n⃗ est orthogonal à deux vecteurs directeurs du plan, par exemple

−→
TU = (1,−1,−2),

−→
TV = (1, 2, 1).

Donc
n⃗ ·

−→
TU = 0 et n⃗ ·

−→
TV = 0,

ce qui donne le système {
a · 1 + b · (−1) + c · (−2) = 0,

a · 1 + b · 2 + c · 1 = 0.

Soit {
a− b− 2c = 0,

a+ 2b+ c = 0.

En soustrayant la première équation de la deuxième :

(a+ 2b+ c)− (a− b− 2c) = 0 =⇒ 3b+ 3c = 0 =⇒ b = −c.
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Puis, dans a− b− 2c = 0 :

a− (−c)− 2c = 0 =⇒ a− c = 0 =⇒ a = c.

On peut choisir c = 1, d’où
(a, b, c) = (1,−1, 1).

Ainsi une équation cartésienne du plan (TUV ) est

x− y + z = 0.

10. On considère l’ensemble noté L des points M(x, y, z) de l’espace vérifiant
−−→
TM ·

−−→
UV = 0.

Identifier l’ensemble L et donner une équation cartésienne.

On a
−−→
TM = (x, y, z) (car T est l’origine) et

−−→
UV = (0, 3, 3). La condition

−−→
TM ·

−−→
UV = 0

devient
0 · x+ 3y + 3z = 0 ⇐⇒ y + z = 0.

Ainsi, L est un plan passant par T (donc par l’origine), de vecteur normal
−−→
UV :

L : y + z = 0.

11. On note désormais W (−1,−2, 2).
(a) Justifier que les points T , U , V et W ne sont pas coplanaires.

Les points T, U, V définissent le plan (TUV ) d’équation x− y+ z = 0. On calcule pour
W (−1,−2, 2) :

−1− (−2) + 2 = 3 ̸= 0,

donc W /∈ (TUV ). Ainsi T, U, V,W ne sont pas coplanaires.

(b) Déterminer les coordonnées du projeté orthogonal H du point W sur le plan (TUV ).

Le plan (TUV ) a pour équation x− y + z = 0 et pour vecteur normal n⃗ = (1,−1, 1).
La droite passant par W et dirigée par n⃗ est perpendiculaire au plan :

D : (x, y, z) = (−1,−2, 2) + t(1,−1, 1) t ∈ R

soit
x = −1 + t, y = −2− t, z = 2 + t.

Le point H = D ∩ (TUV ) vérifie l’équation du plan :

x− y + z = 0 =⇒ (−1 + t)− (−2− t) + (2 + t) = 0.

On obtient

−1 + t+ 2 + t+ 2 + t = 0 =⇒ 3 + 3t = 0 =⇒ t = −1.

Donc
H = (−1,−2, 2) + (−1)(1,−1, 1) = (−2,−1, 1).
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(c) Calculer la distance du point W au plan (TUV ).

On a
−−→
WH = (−2 + 1, −1 + 2, 1− 2) = (−1, 1, 1)

La distance cherchée est alors

d
(
W, (TUV )

)
= ∥

−−→
WH∥ = ∥(−1, 1,−1)∥ =

√
(−1)2 + 12 + (−1)2 =

√
3.

soit
d
(
W, (TUV )

)
=

√
3.

(d) En déduire le volume du tétraèdre TUVW .

On prend pour base le triangle TUV dans le plan (TUV ).
La hauteur issue de W sur le plan (TUV ) vaut h =

√
3. Donc le volume est

V =
ATUV h

3
=

1

3
· 3

√
3

2
·
√
3 =

3

2
.

Exercice 2 : Étude d’une suite homographique
Les parties A et B de cet exercice sont entièrement indépendantes. Soit f la fonction définie sur

l’intervalle I = [0 ; 4] par

f(x) =
2 + 3x

4 + x
.

Partie A
On considère la suite (un) définie par :

u0 = 3 et pour tout entier naturel n, un+1 = f (un) .

1. Dans le graphique représenté en annexe page 7, représenter les trois premiers termes de la
suite (un).

−1 1 2 3 4 5

−1

1

2

3

u0u1u2

x

y
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2. Soit v une suite réelle et ℓ un réel.
Donner la définition, avec quantificateurs, de lim

n→+∞
vn = ℓ.

lim
n→+∞

vn = ℓ si ∀ε > 0,∃n0 ∈ N,∀n ≥ n0, |un − l| ≤ ε.

3. Calculer u1 et u2.

u1 = f(u0) =
2 + 9

4 + 3
=

11

7
et u2 = f(u1) =

2 + 3× 11
7

4 + 11
7

=
47
7
39
7

=
47

39

4. Montrer que la fonction f est strictement croissante sur l’intervalle I. En déduire que f(I) ⊂ I
puis que la suite (un) est bien définie.

La fonction f est définie et dérivable sur [0; 4] et pour tout x ∈ [0; 4] :

f ′(x) =
3(4 + x)− 1(2 + 3x)

(4 + x)2
=

12 + 3x− 2− 3x

(4 + x)2
=

10

(4 + x)2

Quotient de nombres strictement positifs, ce nombre dérivé est strictement positif quel que
soit x dans l’intervalle [0; 4]. La fonction f est donc strictement croissante sur [0; 4].

x

f ′(x)

f(x)

0 4

+

1
2
1
2

7
4
7
4

Par continuité de f , on a f(I) = [1
2
; 7
4
] ⊂ I.

Comme f(I) ⊂ I, une récurrence immédiate permet de montrer que pour tout entier naturel
n ∈ N, un ∈ I donc la suite (un) est bien définie.

5. Démontrer par récurrence que pour tout entier naturel n,

1 ⩽ un+1 ⩽ un ⩽ 3.

On pose, pour tout n ∈ N, P (n) : 1 ≤ un+1 ≤ un ≤ 3.

• Initialisation : 1 ≤ u1 ≤ u0 ≤ 3 donc la propriété P0 est vérifiée.
• Hérédité. Supposons la propriété Pn vraie pour une valeur de n quelconque.

(HR) : 1 ≤ un+1 ≤ un ≤ 3

La fonction f est croissante sur [0; 4] donc :

f(1) ≤ f(un+1) ≤ f(un) ≤ f(3)

Or f(1) =
5

3
et f(3) =

11

7
≤ 3.

Il vient alors :
1 ≤ un+2 ≤ un+1 ≤ 3

La propriété est donc alors vérifiée au rang n+ 1.
• Conclusion : la propriété est vraie au rang 0 et si elle est vraie au rang n elle est vraie

au rang n + 1 : d’après la propriété de récurrence on en déduit que pour tout entier
naturel n, 1 ≤ un+1 ≤ un ≤ 3.
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6. En déduire que la suite (un) est convergente et déterminer la valeur de sa limite.

D’après la question précédente la suite (un) est décroissante et minorée par 1. D’après le
théorème de la limite monotone, elle converge vers une limite ℓ ≥ 1 (car ∀n ∈ N, 1 ≤ un).
De plus, ℓ est nécessairement un point fixe de f donc :

ℓ =
2 + 3ℓ

4 + ℓ
⇐⇒ ℓ(4 + ℓ) = 2 + 3ℓ

⇐⇒ ℓ2 + ℓ− 2 = 0

De plus, ∆ = 12 − 4× (−2) = 9 > 0. Il y a donc deux solutions :

ℓ1 =
−1− 3

2
= −2 et ℓ2 =

−1 + 3

2
= 1.

Comme ℓ ∈ [1; 3], la seule solution est ℓ2 = 1.

7. On pose, pour tout entier n ≥ 0, wn =
un − 1

un + 2
.

(a) Montrer que la suite (wn) est géométrique et déterminer son expression.

Soit n ∈ N. On a
un+1 = f(un) =

2 + 3un

4 + un

.

Alors
un+1 − 1 =

2 + 3un

4 + un

− 1 =
2 + 3un − (4 + un)

4 + un

=
2(un − 1)

un + 4
,

et
un+1 + 2 =

2 + 3un

4 + un

+ 2 =
2 + 3un + 2(4 + un)

4 + un

=
5(un + 2)

un + 4
.

Donc

wn+1 =
un+1 − 1

un+1 + 2
=

2(un − 1)

un + 4
5(un + 2)

un + 4

=
2

5

un − 1

un + 2
=

2

5
wn.

La suite (wn) est donc géométrique de raison q =
2

5
et

w0 =
u0 − 1

u0 + 2
=

3− 1

3 + 2
=

2

5
.

Ainsi, pour tout n ≥ 0,

wn = w0

(
2

5

)n

=

(
2

5

)n+1

.

(b) En déduire l’expression de la suite (un) et retrouver la limite obtenue à la question 5.

Soit n ∈ N. On part de

wn =
un − 1

un + 2
.

On exprime un en fonction de wn :

wn(un + 2) = un − 1 ⇐⇒ wnun + 2wn = un − 1 ⇐⇒ un(wn − 1) = −(1 + 2wn)

d’où
un =

1 + 2wn

1− wn

.
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Avec wn =

(
2

5

)n+1

, on obtient

un =
1 + 2

(
2
5

)n+1

1−
(
2
5

)n+1 (n ≥ 0).

Comme
(
2

5

)n+1

−−−−→
n→+∞

0 car |2
5
| < 1, on en déduit

un −−−−→
n→+∞

1 + 0

1− 0
= 1,

ce qui permet de retrouver la limite demandée.

Partie B

On considère la suite (vn) définie par :

v0 = 0, 1 et pour tout entier naturel n, vn+1 = f (vn) .

On admet que cette suite est bien définie.

8. Montrer que pour tout entier naturel n,

1− vn+1 =

(
2

4 + vn

)
(1− vn) .

Soit n ∈ N. On a

1− vn+1 = 1− 2 + 3vn
4 + vn

=
4 + vn − 2− 3vn

4 + vn
=

2− 2vn
4 + vn

=

(
2

4 + vn

)
(1− vn) .

9. Démontrer par récurrence que pour tout entier naturel n,

0 ⩽ 1− vn ⩽

(
1

2

)n

.

On pose pour tout entier naturel n

P (n) : 0 ⩽ 1− vn ⩽

(
1

2

)n

• Initialisation : 1 − v0 = 0, 9. On a bien 0 ≤ 1 − v0 ≤ 1 donc la propriété P (0) est
vérifiée.

• Hérédité. Supposons la propriété P (n) vraie pour une valeur de n quelconque.

(HR) : 0 ⩽ 1− vn ⩽

(
1

2

)n

Comme 1− vn ⩽

(
1

2

)n

, on en déduit que vn ⩾ 1−
(
1

2

)n

⩾ 0

D’après la question précédente, on a 1− vn+1 =

(
2

4 + vn

)
(1− vn) donc d’après l’hy-
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pothèse de récurrence (en multipliant par
2

4 + vn
≥ 0) :

0 ⩽ 1− vn+1 ⩽

(
2

4 + vn

)(
1

2

)n

Comme 0 ⩽ vn, il vient
2

4 + vn
⩽

2

4
=

1

2
. D’où

0 ⩽ 1− vn+1 ⩽
1

2

(
1

2

)n

soit

0 ⩽ 1− vn+1 ⩽

(
1

2

)n+1

La propriété est donc alors vérifiée au rang n+ 1.
• Conclusion : la propriété est vraie au rang 0 et si elle est vraie au rang n elle est vraie

au rang n + 1 : d’après la propriété de récurrence on en déduit que pour tout entier

naturel n, 0 ⩽ 1− vn ⩽

(
1

2

)n

.

10. La suite (vn) converge-t-elle ? Si oui, préciser sa limite en justifiant votre réponse.

On sait que lim
n→+∞

(
1

2

)n

= 0 (car −1 <
1

2
< 1).

On en déduit d’après le théorème des gendarmes que lim
n→+∞

1− vn = 0.

Ainsi lim
n→+∞

vn = 1.

Exercice 3 : Étude de matrices

Les matrices introduites dans le préambule sont utilisées dans les parties 2 et 3.

1 Préambule

On considère les matrices

M =

−6 7 4
−1 2 1
−6 6 4

 , P =

1 1 1
0 1 0
1 0 2

 et T =

−2 0 0
0 1 1
0 0 1

 .

On pose également

Id3 =

1 0 0

0 1 0

0 0 1

 et X1 =

1

1

0

 .

1. Calculer MX1.

MX1 =

−6 7 4
−1 2 1
−6 6 4

1
1
0

 =

−6 + 7
−1 + 2
−6 + 6

 =

1
1
0

 = X1.
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2. Montrer que P est inversible et calculer son inverse.

Méthode 1 : inversion du système

P =

1 1 1
0 1 0
1 0 2

 , PX = A, X =

x
y
z

 , A =

a
b
c

 .

PX = A ⇐⇒

1 1 1
0 1 0
1 0 2

x
y
z

 =

a
b
c

 ⇐⇒


x+ y + z = a
y = b
x+ 2z = c

Donc : 
x+ z = a− b
x+ 2z = c
y = b

⇔


x+ z = a− b
(x+ 2z)− (x+ z) = c− (a− b)
y = b

Ainsi, 
x+ z = a− b
z = b+ c− a
y = b

⇔


x = a− b− (b+ c− a) = 2a− 2b− c
y = b
z = b+ c− a

X =

x
y
z

 =

2a− 2b− c
b

b+ c− a



X = P−1A =⇒ P−1 =

 2 −2 −1
0 1 0
−1 1 1

 .

Méthode 2 : algorithme de Gauss-Jordan 1 1 1 1 0 0
0 1 0 0 1 0
1 0 2 0 0 1

 ⇔
L3←L3−L1

 1 1 1 1 0 0
0 1 0 0 1 0
0 −1 1 −1 0 1


 1 1 1 1 0 0

0 1 0 0 1 0
0 −1 1 −1 0 1

 ⇔
L3←L3+L2

 1 1 1 1 0 0
0 1 0 0 1 0
0 0 1 −1 1 1


 1 1 1 1 0 0

0 1 0 0 1 0
0 0 1 −1 1 1

 ⇔
L1←L1−L3

 1 1 0 2 −1 −1
0 1 0 0 1 0
0 0 1 −1 1 1


 1 1 0 2 −1 −1

0 1 0 0 1 0
0 0 1 −1 1 1

 ⇔
L1←L1−L2

 1 0 0 2 −2 −1
0 1 0 0 1 0
0 0 1 −1 1 1


Ainsi :

P−1 =

 2 −2 −1
0 1 0
−1 1 1

 .
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3. Montrer que la matrice M s’écrit
M = PTP−1.

On calcule d’abord PT :

PT =

1 1 1
0 1 0
1 0 2

−2 0 0
0 1 1
0 0 1

 =

−2 1 2
0 1 1
−2 0 2

 .

PTP−1 =

−2 1 2
0 1 1
−2 0 2

 2 −2 −1
0 1 0
−1 1 1

 =

−6 7 4
−1 2 1
−6 6 4

 = M.

4. Montrer que la matrice T définie précédemment est inversible et calculer son inverse.

On résout le système TX = A où

T =

−2 0 0
0 1 1
0 0 1

 , X =

x
y
z

 , A =

a
b
c

 .

TX = A ⇐⇒


−2x = a
y + z = b
z = c

⇐⇒


−2x = a
y + z = b
z = c

⇔
z=c


−2x = a
y + c = b
z = c

−2x = a
y + c = b
z = c

⇔
y=b−c


−2x = a
y = b− c
z = c

−2x = a
y = b− c
z = c

⇔
x=−a

2


x = −a

2

y = b− c
z = c

X =

x
y
z

 =

 −a
2

b− c
c

 donc T est inversible et T−1 =

−1
2

0 0
0 1 −1
0 0 1

 .

5. Résoudre les équations suivantes d’inconnue X ∈ M3,1(R) :
(a) MX = X1 ;

Méthode 1 :
Comme M est inversible, cette équation a une unique solution (on a un système de
Cramer) et on a prouvé dans la question 1 que X1 était une solution de cette équation
donc X = X1 est l’unique solution.
Méthode 2 :
Comme M est inversible, la solution est unique et on a :

MX = X1 ⇐⇒ X = M−1X1 =

 2 −2 −1
0 1 0
−1 1 1

1
1
0

 =

1
1
0

 = X1

Ainsi X = X1 est l’unique solution et l’ensemble solution est

S = {X1}.
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(b) (T − I3)X = 0.

(T − I3)X = 0 ⇐⇒ T =

−3 0 0
0 0 1
0 0 0

x
y
z

 =

0
0
0


Donc (T − I3)X = 0 ⇐⇒

{
−3x = 0
z = 0

⇐⇒
{

x = 0
z = 0

L’ensemble solution de cette équation est donc

S =


0
y
0

 , y ∈ R



2 Etude d’un système différentiel

Soient x : t 7→ x(t), y : t 7→ y(t), z : t 7→ z(t) trois fonctions dérivables sur R, qui représentent
les coordonnées d’un point mobile au cours du temps.

On pose X =

x(t)
y(t)
z(t)

 et on admet que X suit l’équation différentielle (E) : X ′ = TX.

6. Écrire l’équation différentielle (E) sous la forme d’un système différentiel.

On calcule

TX =

−2 0 0
0 1 1
0 0 1

x
y
z

 =

−2x
y + z
z

 .

Ainsi (E) équivaut au système 
x′(t) = −2x(t),

y′(t) = y(t) + z(t),

z′(t) = z(t).

7. Résoudre ce système différentiel.

Résolution du système.

• De x′(t) = −2x(t), on obtient

x(t) = λe−2t , λ ∈ R.

• De z′(t) = z(t), on obtient
z(t) = γet , γ ∈ R.

• Puis y′(t) = y(t) + z(t) devient

y′(t)− y(t) = γet.

La solution de l’équation homogène y′ − y = 0 est yh(t) = µet. On cherche alors une
solution particulière sous la forme

y(t) = u(t)et (méthode de variation de la constante).
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Alors y′(t) = u′(t)et + u(t)et, et en substituant dans y′ − y = γet, on obtient

u′(t)et = γet =⇒ u′(t) = γ =⇒ u(t) = γt+ µ.

Donc
y(t) = (µ+ γt)et , µ ∈ R.

Finalement, la solution générale du système est

X(t) =

 λe−2t

(µ+ γt)et

γet

 (λ, µ, γ ∈ R).

3 Etude de suites de matrices

8. Montrer que, pour tout entier naturel n,

Mn = PT nP−1.

Pour n = 0, M0 = I3 et PT 0P−1 = PI3P
−1 = PP−1 = I3 donc M0 = PT 0P−1.

Pour n ≥ 1, on écrit la puissance comme un produit de n facteurs :

Mn = M M · · ·M︸ ︷︷ ︸
n facteurs

= (PTP−1)(PTP−1) · · · (PTP−1)︸ ︷︷ ︸
n facteurs

.

En développant ce produit et en utilisant l’associativité du produit matriciel, on obtient

(PTP−1)(PTP−1) · · · (PTP−1) = P T (P−1P )T (P−1P ) · · ·T P−1 = P T n P−1,

car P−1P = I3.
Ainsi

∀n ∈ N, Mn = PT nP−1.

Une récurrence aurait également très bien fonctionnée.

9. Montrer que, pour tout entier naturel n ≥ 0

T n =

(−2)n 0 0
0 1 n
0 0 1

 .

On décompose T sous la forme

T = D +N avec D =

−2 0 0
0 1 0
0 0 1

 , N =

0 0 0
0 0 1
0 0 0

 .

On vérifie :

N2 = 0 et DN = ND = N (donc D et N commutent).

Soit n ∈ N. Comme D et N commutent, on peut appliquer le binôme de Newton :

T n = (D +N)n =
n∑

k=0

(
n

k

)
D n−kNk.
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Or N2 = 0, donc seuls les termes k = 0 et k = 1 subsistent :

T n = Dn + nD n−1N.

On a

Dn =

(−2)n 0 0
0 1 0
0 0 1

 et D n−1N = N,

d’où

T n =

(−2)n 0 0
0 1 0
0 0 1

+ n

0 0 0
0 0 1
0 0 0

 =

(−2)n 0 0
0 1 n
0 0 1

 .

Une récurrence aurait très bien fonctionnée.

10. On définit les suites de matrices (An)n≥0 et (Bn)n≥0 par

An =

(
−M

2

)n

et Bn =

(
−T

2

)n

pour tout n ≥ 0.

(a) Montrer que la suite (Bn)n≥0 admet une limite B que l’on déterminera.

Soit n ∈ N. On a d’après la question précédente :

(
−T

2

)n

=

(
−1

2

)n

T n =

(
−1

2

)n
(−2)n 0 0

0 1 n
0 0 1

 .

Ainsi

Bn =

(
−T

2

)n

=

1 0 0
0

(
−1

2

)n
n
(
−1

2

)n
0 0

(
−1

2

)n
 .

Comme
(
−1

2

)n → 0 (car | − 1
2
| < 1) et n

(
−1

2

)n → 0 (par croissance comparée), on
obtient

Bn −−−−→
n→+∞

B =

1 0 0
0 0 0
0 0 0

 .

(b) Montrer que, pour tout entier naturel n ≥ 0, la matrice Bn est inversible et en déduire
son rang.

La matrice T est inversible donc la matrice T n est aussi inversible (car toute puissance
d’une matrice inversible est inversible), donc Bn =

(
−T

2

)n est inversible pour tout n
(toute matrice inversible multipliée par un nombre non nul est inversible). Ainsi

rg(Bn) = 3 pour tout n.

(c) On note rgB le rang de la matrice B. A-t-on rgB = lim
n→+∞

rgBn ?

On a rg(Bn) = 3 pour tout n, donc lim
n→+∞

rg(Bn) = 3. Or

B =

1 0 0
0 0 0
0 0 0

 ⇒ rg(B) = 1.
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On a donc :
rg(B) ̸= lim

n→∞
rg(Bn).

La limite du rang d’une suite de matrices n’est pas égale au rang de la limite de la suite
de matrices.

(d) Montrer que An = PBnP
−1 pour tout entier n ≥ 0.

Comme M = PTP−1, on a

−M

2
= P

(
−T

2

)
P−1.

En élevant à la puissance n :

An =

(
−M

2

)n

=

(
P

(
−T

2

)
P−1

)n

= P

(
−T

2

)n

P−1 = PBnP
−1.

(e) En déduire la limite de la suite (An)n≥0.

Comme Bn −−−−→
n→+∞

B et An = PBnP
−1, on obtient par continuité :

An −−−−→
n→+∞

A = PBP−1.

Comme

1 0 0
0 0 0
0 0 0

, un calcul direct donne

A = PBP−1 =

2 −2 −1
0 0 0
2 −2 −1

 .

Exercice 4 : Étude d’une suite
On considère la suite (un)n∈N définie par{

un+1 = un + u2
n,

u0 = a, a ∈ R∗+.

1 Convergence de (un)

1. Montrer que cette suite est strictement positive et monotone.

• Positivité. Montrons par récurrence que, pour tout n ∈ N, on a un > 0.
Initialisation : u0 = a > 0.
Hérédité : supposons un > 0. Alors 1 + un > 1 > 0 et

un+1 = un + u2
n = un(1 + un) > 0.

Ainsi, par récurrence, ∀n ∈ N, un > 0.
• Monotonie. Pour tout n ∈ N,

un+1 − un = (un + u2
n)− un = u2

n.
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Or, comme un > 0, on a u2
n > 0, donc un+1 − un > 0 pour tout n. Ainsi, la suite (un)

est strictement croissante (et donc monotone).

2. Montrer que cette suite diverge vers l’infini.

Par l’absurde, si (un) était majorée, elle convergerait vers une limite ℓ ≥ 0. En passant à la
limite dans un+1 = un+u2

n, on obtient ℓ = ℓ+ℓ2, donc ℓ2 = 0 et ℓ = 0. Mais un ≥ u0 = a > 0,
on obtient donc une contradiction. Donc (un) n’est pas majorée.
Ainsi, la suite (un) est strictement croissante et n’est pas majorée, (un) diverge donc vers
+∞ en +∞, d’où lim

n→+∞
un = +∞.

2 Comportement asymptotique

On définit
vn =

1

2n
lnun.

3. Prouver que pour tout entier n :

vn+1 − vn =
1

2n+1
ln

(
1 +

1

un

)
.

En déduire que quels que soient les entiers naturels p et n :

0 < vn+p+1 − vn+p ≤
1

2n+p+1
ln

(
1 +

1

un

)
.

Soit n ∈ N. On a un+1 = un+u2
n = u2

n

(
1 + 1

un

)
, donc, en appliquant la fonction ln (un > 0) :

lnun+1 = 2 lnun + ln

(
1 +

1

un

)
.

En divisant par 2n+1, on obtient :

vn+1 =
1

2n+1
lnun+1 =

1

2n
lnun +

1

2n+1
ln

(
1 +

1

un

)
= vn +

1

2n+1
ln

(
1 +

1

un

)
.

Donc
vn+1 − vn =

1

2n+1
ln

(
1 +

1

un

)
> 0.

Par ailleurs, (un) est croissante, donc pour tout entier naturel p, un+p ≥ un et ainsi
ln
(
1 + 1

un+p

)
≤ ln

(
1 + 1

un

)
. On en déduit

0 < vn+p+1 − vn+p =
1

2n+p+1
ln

(
1 +

1

un+p

)
≤ 1

2n+p+1
ln

(
1 +

1

un

)
.

soit

0 < vn+p+1 − vn+p ≤
1

2n+p+1
ln

(
1 +

1

un

)
.
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4. En considérant la somme
k∑

p=0

vn+p+1 − vn+p, montrer que quels que soient les entiers naturels k

et n :
0 < vn+k+1 − vn ≤ 1

2n
ln

(
1 +

1

un

)
. (∗)

Soient k et n des entiers naturels. Par télescopage :

vn+k+1 − vn =
k∑

p=0

(
vn+p+1 − vn+p

)
.

En utilisant l’inégalité de la question précédente :

0 < vn+k+1 − vn ≤
k∑

p=0

1

2n+p+1
ln

(
1 +

1

un

)
= ln

(
1 +

1

un

) k∑
p=0

1

2n+p+1
.

Or
k∑

p=0

1

2n+p+1
=

1

2n

(
1− 1

2k+1

)
≤ 1

2n
, d’où 0 < vn+k+1 − vn ≤ 1

2n
ln

(
1 +

1

un

)
.

5. Démontrer que la suite (vn)n∈N est majorée, puis qu’elle converge vers une limite notée α.

On sait que pour tout entier naturel n, vn+1 − vn = 1
2n+1 ln

(
1 + 1

un

)
> 0, donc (vn) est

croissante. On applique la relation (∗) avec n = 0 :

0 < vk+1 − v0 ≤ ln

(
1 +

1

u0

)
= ln

(
1 +

1

a

)
.

Donc vk+1 ≤ v0 + ln
(
1 + 1

a

)
= ln(1 + a) : donc la suite (vn) est majorée.

Ainsi, (vn) est une suite croissante et majorée donc elle converge en vertu du théorème de
la limite monotone. On note α sa limite.

6. Montrer que :
∀n ∈ N, un ≤ exp(α2n).

En passant à la limite pour n fixé dans l’encadrement (∗), montrer que :

∀n ∈ N, exp(α2n) ≤ un + 1.

En déduire, lorsque n tend vers l’infini, l’équivalent suivant :

un ∼
n→+∞

exp(α2n).

Soit n un entier naturel. Comme (vn) est croissante et vn → α, on a vn ≤ α et donc

lnun = 2nvn ≤ 2nα ⇒ un ≤ eα2
n

.

Fixons n et faisons tendre k → +∞ dans la relation (∗) :

0 < α− vn ≤ 1

2n
ln

(
1 +

1

un

)
.

On multiplie par 2n :

2nα− lnun ≤ ln

(
1 +

1

un

)
= ln(un + 1)− lnun,
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donc 2nα ≤ ln(un + 1), soit
eα2

n ≤ un + 1.

On a donc, pour tout n,
un ≤ eα2

n ≤ un + 1.

En divisant par eα2
n et en utilisant un −−−−→

n→+∞
+∞, on obtient

un

eα2n
≤ 1 ≤ un + 1

eα2n
=

un

eα2n

(
1 +

1

un

)
,

donc
un

eα2n
−−−−→
n→+∞

1 d’après le théorème des gendarmes. Ainsi

un ∼ eα2
n

.

Cela implique en particulier que lim
n→+∞

eα2
n
= +∞ et donc α > 0.

7. On pose :
βn = exp(α2n)− un.

Montrer que la suite (βn)n∈N est bornée et qu’elle vérifie :

2βn − 1 =
(
βn+1 + β2

n − βn

)
exp(−α2n).

Soit n un entier naturel.
De l’inégalité un ≤ eα2

n ≤ un + 1, on déduit 0 ≤ βn ≤ 1, donc la suite (βn) est bornée.
Posons En = eα2

n . Alors En+1 = E2
n et un = En − βn. La relation un+1 = un + u2

n devient :

En+1 − βn+1 = (En − βn) + (En − βn)
2 = (En − βn) + E2

n − 2Enβn + β2
n.

Or En+1 = E2
n, donc après simplification :

−βn+1 = En − βn − 2Enβn + β2
n,

soit
(2βn − 1)En = βn+1 + β2

n − βn.

En divisant par En = eα2
n , on obtient bien

2βn − 1 =
(
βn+1 + β2

n − βn

)
e−α2

n

.

8. Prouver enfin que βn −−−−→
n→+∞

1

2
.

Comme la suite (βn) est bornée (pour tout n ∈ N, 0 ≤ βn ≤ 1), la suite (βn+1 + β2
n − βn) est

également bornée (pour tout entier n ∈ N, |βn+1 + β2
n − βn| ≤ |βn+1|+ |βn|2 + |βn| ≤ 3).

Donc, pour tout entier naturel n, |(βn+1 + β2
n − βn)e

−α2n| ≤ 3e−α2
n .

Comme e−α2
n −−−−→

n→+∞
0, on en déduit que (βn+1 + β2

n − βn)e
−α2n −−−−→

n→+∞
0.

Donc 2βn − 1 −−−−→
n→+∞

0 et finalement

βn −−−−→
n→+∞

1

2
.
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