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Corrigé de la liste d’exercices n°18 Variables aléatoires

Exercice 1.

1. Remarquons tout d’abord qu’il y a équiprobabilité des tirages et que le cardinal de l’uni-
vers de l’expérience est card(Ω) =

(
26
5

)
. Remarquons ensuite que X(Ω) = J0, 5K.

Soit k ∈ J0, 5K. Choisir cinq jetons dont k voyelles revient à choisir k voyelles parmi les 6
(il y a

(
6
k

)
choix) et 5− k consonnes parmi les 20 disponibles (il y a

(
20
5−k

)
choix). Ainsi

card([X = k]) =

(
6

k

)(
20

5− k

)
.

La loi de X est donc donnée par :

∀k ∈ J0, 5K, P(X = k) =
card([X = k])

card(Ω)
=

(
6
k

)(
20
5−k

)(
26
5

) .

2. Remarquons tout d’abord qu’il y a équiprobabilité des choix des individus et que le
cardinal de l’univers de l’expérience est card(Ω) =

(
9
6

)
. Remarquons ensuite que X(Ω) =

J1, 4K.
Soit k ∈ J1, 4K. Choisir 6 personnes dont k femmes revient à choisir k femmes parmi les
4 (il y a

(
4
k

)
choix) et 6− k hommes parmi les 5 disponibles (il y a

(
5

6−k

)
choix). Ainsi

card([X = k]) =

(
4

k

)(
5

6− k

)
.

La loi de X est donc donnée par :

∀k ∈ J1, 4K, P(X = k) =

(
4
k

)(
5

6−k

)(
9
6

) .

3. La variable aléatoire X est égale au nombre de succès (“on range une paire dans le premier
tiroir”) lors de la répétition de 20 expériences de Bernoulli indépendantes de paramètre
de succès p = 1

3
. Ainsi X suit la loi binomiale B

(
20, 1

3

)
.

4. Il y a équiprobabilité dans le choix des animaux, donc X suit la loi uniforme sur J0, 2K.
5. La variable aléatoire X est égale au nombre de succès (“obtenir une fille”) lors de la

répétition de 3 expériences de Bernoulli indépendantes de paramètre de succès p = 1
2
.

Ainsi X suit la loi binomiale B
(
3, 1

2

)
.

Exercice 2. On pose q = 1− p.

1. Il vient immédiatement que X(Ω) = J1, nK. Pour tout k ∈ J1, nK, on note Ck l’événement
“l’archer atteint sa cible au k-ème tir”.

Pour tout k ∈ J1, n− 1K, on a par indépendance des lancers :

P(X = k) = P(C1 ∩ · · · ∩ Ck−1 ∩ Ck) = p qk−1.

De plus,
P(X = n) = qn−1.

On a enfin,



E(X) =
n∑

k=1

kP(X = k) =
n−1∑
k=1

kp qk−1 + qn−1 = p
n−2∑
k=0

k qk + qn−1.

Or d’après le DM 7 on a :
n−2∑
k=0

kqk =
q − (n− 1)qn−1 + (n− 2)qn

(1− q)2

Après calculs, on obtient :

E(X) =
1− qn

p
.

2. Notons C l’événement “l’archer a atteint sa cible”. Alors P(C) = 1−P(aucun succès en n tirs) =
1− qn. Pour k ∈ J1, nK,

P(X = k | C) =
P(C ∩ [X = k])

P(C)
=

p qk−1

1− qn
.

3. Pour tout k ∈ J1, nK, on note Yk le gain du joueur au k-ème tir. Il vient immédiatement
que Y =

∑n
k=1 Yk et Yk(Ω) = {0, n − k + 1} avec [Yk = n − k + 1] = Ck. La variable Yk

étant finie, elle admet une espérance :

E(Yk) = (n− k + 1)P(Ck) = (n− k + 1)p.

Par linéarité de l’espérance :

E(Y ) =
n∑

k=1

E(Yk) = p
n∑

k=1

(n− k + 1) = p
n(n+ 1)

2
.

Exercice 3. Remarquons que X(Ω) = J1, n − 1K. Pour tout k ∈ J1, n − 1K, on note Bk

l’événement “on tire une boule blanche au k-ème tirage”. Alors :

[X = k] =

(
k−1⋂
i=1

Bi

)
∩Bk.

En appliquant la formule des probabilités composées, on trouve :

∀k ∈ J1, n− 1K, P(X = k) =
n− 2

n
× · · · × n− (k − 2)− 2

n− (k − 2)
× 2

n− (k − 1)
=

2(n− k)

n(n− 1)
.

Exercice 4. SoitX une variable aléatoire suivant la loi uniforme surX(Ω) = J1, nK, c’est-à-dire

∀k ∈ J1, nK, P(X = k) =
1

n
.

1. On a

E(X) =
n+ 1

2
.

2. On a V (X) = E(X2)− E(X)2.

Or, d’après le théorème du transfert,

E(X2) =
n∑

k=1

k2P(X = k) =
1

n

n∑
k=1

k2 =
n(n+ 1)(2n+ 1)

6n
=

(n+ 1)(2n+ 1)

6
.

Ainsi,

V (X) =
(n+ 1)(2n+ 1)

6
− (n+ 1)2

4
=

(n+ 1)(4n+ 2− 3n− 3)

12
=

n2 − 1

12
.



3. Cas n = 7.

E(X) =
7 + 1

2
= 4, Var(X) =

72 − 1

12
=

49− 1

12
=

48

12
= 4.

Ainsi,

E(X) = 4 et V(X) = 4 .

4. On résout :
n2 − 1

12
= 24 ⇐⇒ n2 − 1 = 288 ⇐⇒ n2 = 289.

Or 289 = 172, donc n = 17 (avec n ∈ N∗).

Oui, pour n = 17, on a bien V(X) = 24.

Exercice 5.

1. On a (X = Y ) =
n⊔

k=1

((X = k) ∩ (Y = k)) donc

P(X = Y ) =
n∑

k=1

P((X = k) ∩ (Y = k)) =
n∑

k=1

P(X = k)P(Y = k)

par indépendance des variables alétoires X et Y.

Or, pour tout k ∈ J1, nK,P(X = k) = P(Y = k) =
1

n
donc

P(X = Y ) =
n∑

k=1

1

n2
=

n

n2
=

1

n
.

2. On a (X ⩾ Y ) =
n⊔

k=1

((X = k) ∩ (Y ⩽ k)) donc

P(X ⩾ Y ) =
n∑

k=1

P((X = k) ∩ (Y ⩽ k)) =
n∑

k=1

P(X = k)P(Y ⩽ k)

par indépendance de X et Y d’où P(X ⩾ Y ) =
1

n

n∑
k=1

k

n
=

n(n+ 1)

2n2
=

n+ 1

2n
.

3. La variable aléatoire X − Y prend ses valeurs dans J1 − n, n − 1K et on a pour tout
k ∈ J1− n, n− 1K,

P(X − Y = k) =
n∑

i=1

P((Y = i) ∩ (X = i+ k))

=
n∑

i=1

P(Y = i)P(X = i+ k) par indépendance deX etY

=
1

n

n∑
i=1

P(X = i+ k)

=
1

n

n+k∑
j=k+1

P(X = j).



• Si k ⩽ 0, on obtient P(X − Y = k) =
1

n

n+k∑
j=1

P(X = j) =
n+ k

n2
.

• Si k ⩾ 0, on obtient P(X − Y = k) =
1

n

n∑
j=k+1

P(X = j) =
n− k

n2
.

Finalement, pour tout k ∈ J1− n, n− 1K,P(X − Y = k) =
n− |k|
n2

.

Exercice 6.

1. Soit k ∈ J1, n− 2K.
On a Ak ∩ Ak+1 = (Xk = 0, Xk+1 = 1, Xk+2 = 0) ∪ (Xk = 1, Xk+1 = 0, Xk+2 = 1).

Ces deux événements étant incompatibles, on obtient

P(Ak ∩ Ak+1) = P(Xk = 0, Xk+1 = 1, Xk+2 = 0) + P(Xk = 1, Xk+1 = 0, Xk+2 = 1)

= P(Xk = 0)P(Xk+1 = 1)P(Xk+2 = 0) + P(Xk = 1)P(Xk+1 = 0)P(Xk+2 = 1) (indépendance)

= p(1− p)2 + p2(1− p)

= p(1− p).

2. Si les événements (Ak)1⩽k⩽n−1 sont deux à deux indépendants, alors nécessairement, pour
tout k ∈ J1, n− 2K, on a P(Ak ∩ Ak+1) = P(Ak)P(Ak+1).

Pour tout k ∈ J1, n−1K,P(Ak) = P(Xk = 0, Xk+1 = 1)+P(Xk = 1, Xk+1 = 0) = 2p(1−p).

On a donc P(Ak ∩ Ak+1) = P(Ak)P(Ak+1) ⇔ p(1− p) = 4p2(1− p)2.

Puisque p(1− p) ̸= 0, ceci équivaut à 4p(1− p) = 1 d’où p =
1

2
.

De plus, si |i − j| > 1, les événements Ai = (Xi ̸= Xi+1) et Aj = (Xj ̸= Xj+1) sont
indépendants d’après le lemme des coalitions quelle que soit la valeur de p puisque les
variables aléatoires (Xk)1⩽k⩽n sont indépendantes

Ainsi, les événements (Ak)1⩽k⩽n−1 sont deux à deux indépendants si et seulement si p =
1

2
.

Exercice 7. On a X(Ω) = J0, nK donc Y (Ω) =

{
1

1 + k
, k ∈ J0, nK

}
et pour tout k ∈ J0, nK,

on a

P
(
Y =

1

1 + k

)
= P(X = k) =

(
n

k

)
pk(1− p)n−k

d’où

E(Y ) =
n∑

k=0

1

1 + k

(
n

k

)
pk(1− p)n−k

=
1

n+ 1

n∑
k=0

(
n+ 1

k + 1

)
pk(1− p)n−k

=
1

n+ 1

n+1∑
k=1

(
n+ 1

k

)
pk−1(1− p)n−k+1

• Si p = 0, on a E(Y ) = 1.



• Si p ̸= 0, on obtient

E(Y ) =
1

p(n+ 1)

n+1∑
k=1

(
n+ 1

k

)
pk(1− p)n+1−k

=
1

p(n+ 1)

(
n+1∑
k=0

(
n+ 1

k

)
pk(1− p)n+1−k − (1− p)n+1

)

=
(p+ 1− p)n+1 − (1− p)n+1

p(n+ 1)

=
1− (1− p)n+1

p(n+ 1)
.

Exercice 8.

1. Loi de Y .
Pour k ∈ {0, 1, . . . , n},

P(Y = k) = P(n−X = k) = P(X = n− k).

Or, comme X ∼ B(n, p),

P(X = n− k) =

(
n

n− k

)
pn−k(1− p)k.

En utilisant la symétrie des coefficients binomiaux
(

n
n−k

)
=
(
n
k

)
, on obtient

P(Y = k) =

(
n

k

)
(1− p)kpn−k.

C’est exactement la loi binomiale de paramètres n et 1− p. Ainsi,

Y ∼ B(n, 1− p) .

2. Espérance et variance.
Puisque Y ∼ B(n, 1− p),

E[Y ] = n(1− p) , Var(Y ) = n(1− p) p = np(1− p) .

On peut aussi retrouver E[Y ] = E[n−X] = n− E[X] = n− np = n(1− p), et Var(Y ) =
Var(n−X) = Var(X) = np(1− p).

Exercice 9.

1. On a T (Ω) = J1, 4K. Pour tout k ∈ J1, 4K, notons Ak l’événement :≪ Le rat choisit la bonne
porte au k-ème essai ≫.

On a P(T = 1) = P(A1) =
1

4
.

Ensuite, P(T = 2) = P(A2) = P(A2 ∩ A1) = P(A1)PA1
(A2) =

3

4
× 1

3
=

1

4
.

De même, P(T = 3) = P(A3) = P(A3 ∩ A2 ∩ A1) et d’après la formule des probabilités
composées, on obtient

P(T = 3) = P(A1)PA1
(A2)PA1∩A2

(A3) =
3

4
× 2

3
× 1

2
=

1

4
.

Enfin, puisque P(T = 1) + P(T = 2) + P(T = 3) + P(T = 4) = 1, on en déduit que

P(T = 4) =
1

4
.

Ainsi, T suit une loi uniforme sur J1, 4K.

2. On a E(T ) =
4 + 1

2
=

5

2
= 2, 5. Ainsi, le rat peut espérer sortir au bout de trois essais.



Exercice 10.

1. Puisque Y compte le nombre de cartes bien placées, on a Y =
n∑

k=1

Xk.

2. Par linéarité de l’espérance, on a E(Y ) = E

(
n∑

k=1

Xk

)
=

n∑
k=1

E(Xk).

Par définition de l’espérance, on a pour tout k ∈ J1, nK,

E(Xk) = 1× P(Xk = 1) + 0× P(Xk = 0) = P(Xk = 1).

Par définition, P(Xk = 1) est la probabilité que la k-ème carte soit bien placée.

Dénombrons les permutations qui laissent fixes la k-ème carte. Puisque la position de la
k-ème carte est imposée, il reste à permuter les n− 1 autres cartes, ce qui donne (n− 1)!
permutations qui laissent fixes la k-ème carte.

Puisqu’il y a n! permutations de l’ensemble des n cartes, la probabilité cherchée est

P(Xk = 1) =
(n− 1)!

n!
=

1

n
donc

E(Y ) =
n∑

k=1

1

n
= n× 1

n
= 1.

Exercice 11. Soit Ω = J1, nK.
Notons T1 et T2 les variables aléatoires égales aux numéros obtenus aux premier et deuxième
tirage respectivement.
Les variables aléatoires T1 et T2 suivent une loi uniforme sur J1, nK et on a M = max(T1, T2).
La variable aléatoire M est définie sur Ω2 et on a M(Ω2) = Ω.
Soit k ∈ J1, nK. On a

(M = k) = ((T1 = k) ∩ (T2 ⩽ k − 1)) ∪ ((T1 ⩽ k − 1) ∩ (T2 = k)) ∪ ((T1 = k) ∩ (T2 = k)).

Puisque c’est une union d’événements deux à deux incompatibles, on obtient

P(M = k) = P((T1 = k)∩ (T2 ⩽ k− 1)) + P((T1 ⩽ k− 1)∩ (T2 = k)) + P((T1 = k)∩ (T2 = k)).

Les tirages étant indépendants, les variables aléatoires T1 et T2 le sont également et on trouve :

P(M = k) = P(T1 = k)P(T2 ⩽ k − 1) + P(T1 ⩽ k − 1)P(T2 = k) + P(T1 = k)P(T2 = k)

=
1

n
× k − 1

n
+

k − 1

n
× 1

n
+

1

n2

=
2k − 1

n2
.

Ainsi,

E(M) =
n∑

k=1

kP(M = k) =
n∑

k=1

2k2 − k

n2
=

2

n2

n∑
k=1

k2− 1

n2

n∑
k=1

k =
2n(n+ 1)(2n+ 1)

6n2
− n(n+ 1)

2n2

d’où

E(M) =
4n3 + 6n2 + 2n− 3n2 − 3n

6n2
=

4n2 + 3n− 1

6n
=

(n+ 1)(4n− 1)

6n
.



Exercice 12.

1. Soit n ∈ N. On a Xn(Ω) = J0, bK et (Xn+1 −Xn)(Ω) = {−1, 1}.
En utilisant la formule des probabilités totales dans le système complet d’événements
(Xn = k)0⩽k⩽b, on obtient

P(Xn+1 −Xn = 1) =
b∑

k=0

P(Xn=k)(Xn+1 −Xn = 1)P(Xn = k)

=
b∑

k=0

b− k

b
P(Xn = k)

=
b∑

k=0

P(Xn = k)− 1

b

b∑
k=0

kP(Xn = k)

= 1− E(Xn)

b
.

Ainsi, P(Xn+1 −Xn = −1) = 1− P(Xn+1 −Xn = 1) =
E(Xn)

b
et on obtient

E(Xn+1 −Xn) = P(Xn+1 −Xn = 1)− P(Xn+1 −Xn = −1) = 1− 2

b
E(Xn).

2. Par linéarité de l’espérance, on obtient E(Xn+1 −Xn) = E(Xn+1)− E(Xn) d’où

E(Xn+1) = 1 +

(
1− 2

b

)
E(Xn).

La suite (E(Xn))n∈N est une suite arithmético-géométrique de point fixe
b

2
donc pour tout

n ∈ N,E(Xn) =

(
1− 2

b

)n(
E(X0)−

b

2

)
+

b

2
.

Puisque b ⩾ 2, on a

∣∣∣∣1− 2

b

∣∣∣∣ < 1 donc lim

(
1− 2

b

)n

= 0 d’où lim
n→+∞

E(Xn) =
b

2
.

Exercice 13.

1. Le choix des lapins consiste en 2n expériences de Bernoulli indépendantes de paramètre
1
2
donc M suit une loi binomiale de paramètres (2n, 1

2
).

Par ailleurs, s’il y a M mâles, il y a 2n−M femelles et le nombre de couples qu’on peut
former est le minimum entre le nombre de mâles et de femelles donc C = min(M, 2n−M).

2. La variable aléatoire C est à valeurs dans J0, nK.
Pour tout k ∈ J0, nK, on a

P(C = k) = P((M = k) ∪ (2n−M = k)) = P((M = k) ∪ (M = 2n− k)).

• Si k ̸= n, alors les événements (M = k) et (M = 2n− k) sont incompatibles donc

P(C = k) = P(M = k)+P(M = 2n−k) =

(
2n

k

)(
1

2

)k (
1

2

)2n−k

+

(
2n

2n− k

)(
1

2

)2n−k (
1

2

)k

=

(
2n
k

)
22n−1

.

• Si k = n, on obtient

P(C = n) = P(M = n) =

(
2n
n

)
22n

.



3. D’après la formule de transfert, on a

E(C) =
2n∑
k=0

min(k, 2n− k)P(M = k)

=
n∑

k=0

k

(
2n

k

)(
1

2

)k (
1

2

)2n−k

+
2n∑

k=n+1

(2n− k)

(
2n

k

)(
1

2

)k (
1

2

)2n−k

=
1

22n

(
2n

n∑
k=0

(
2n− 1

k − 1

)
+

2n∑
k=n+1

(2n− k)

(
2n

2n− k

))

=
1

22n

(
2n

n−1∑
k=0

(
2n− 1

k

)
+

2n∑
k=n+1

2n

(
2n− 1

2n− k − 1

))

=
n

22n−1

(
n−1∑
k=0

(
2n− 1

k

)
+

2n∑
k=n+1

(
2n− 1

k

))

=
n

22n−1

(
2n−1∑
k=0

(
2n− 1

k

)
−
(
2n− 1

n

))

=
n(22n−1 −

(
2n−1
n

)
)

22n−1
.

Exercice 14.

1. Tout d’abord, on remarque que Sn suit une loi binomiale de paramètres (n, p) puisque c’est
une somme de n variables aléatoires indépendantes suivant chacune une loi de Bernoulli
de paramètre p donc E(Sn) = np.

Par ailleurs, par linéarité de l’espérance, on a E(Vn) =
n−1∑
k=1

E(Yk) =
n−1∑
k=1

E(XkXk+1). Or,

pour tout k ∈ J0, n − 1K, les variables aléatoires Xk et Xk+1 sont indépendantes donc
E(XkXk+1) = E(Xk)E(Xk+1) = p2. Finalement, on a E(Vn) = (n− 1)p2.

2. Puisque Sn ↪→ B(n, p), on a V (Sn) = np(1− p).

Calculons V (Vn) en utilisant la formule de König-Huygens, c’est à dire

V (Vn) = E(V 2
n )− E(Vn)

2.

On a V 2
n =

n−1∑
k=1

Y 2
k + 2

∑
(i,j)∈J1,nK2

i<j

YiYj.

Par linéarité de l’espérance, il vient E(V 2
n ) =

n−1∑
k=1

E(Y 2
k ) + 2

∑
(i,j)∈J1,n−1K2

i<j

E(YiYj).

Pour tout k ∈ J1, n− 1K, on a E(Y 2
k ) = E(X2

kX
2
k+1) = E(XkXk+1) = E(Xk)E(Xk+1) = p2.

Par ailleurs, si j > i + 1, on a YiYj = XiXi+1XjXj+1 avec les variables aléatoires
Xi, Xi+1, Xj, Xj+1 qui sont mutuellement indépendantes donc

E(YiYj) = E(Xi)E(Xi+1)E(Xj)E(Xj+1) = p4.

Enfin, si j = i+ 1, on a

E(YiYj) = E(YiYi+1) = E(XiX
2
i+1Xi+2) = E(XiXi+1Xi+2) = E(Xi)E(Xi+1)E(Xi+2) = p3.



Il y a

(
n− 1

2

)
=

(n− 1)(n− 2)

2
couples (i, j) ∈ J1, n − 1K2 tels que i < j et n − 2 tels

que j = i + 1 donc
(n− 1)(n− 2)

2
− (n − 2) =

n2 − 3n+ 2− 2n+ 4

2
=

n2 − 5n+ 6

2
=

(n− 2)(n− 3)

2
tels que j > i+ 1.

On trouve donc

E(V 2
n ) = (n−1)p2+2(n−2)p3+(n−2)(n−3)p4 = p2((n−1)+2(n−2)p+(n−2)(n−3)p2)

d’où finalement

V (Vn) = p2((n−1)+2(n−2)p+(n−2)(n−3)p2)−(n−1)2p4 = p2((n−1)+2(n−2)p+(5−3n)p2).

Exercice 15.

1. Loi de Y (nombre de clients satisfaits).

Un client est satisfait s’il obtient une voiture. Comme il n’y a que 2 voitures,

Y = min(X, 2).

Ainsi Y (Ω) = {0, 1, 2} et :

P(Y = 0) = P(X = 0) = 0,1,

P(Y = 1) = P(X = 1) = 0,3,

P(Y = 2) = P(X ≥ 2) = P(X = 2) + P(X = 3) = 0,4 + 0,2 = 0,6.

Donc la loi de Y est :
y 0 1 2

P(Y = y) 0,1 0,3 0,6

2. Marge brute moyenne par jour.

La marge brute journalière vaut
M = 50Y.

Donc
E(M) = 50E(Y ).

Or
E(Y ) = 0 · 0,1 + 1 · 0,3 + 2 · 0,6 = 0,3 + 1,2 = 1,5.

Ainsi
E(M) = 50× 1,5 = 75 euros .

3. Même questions avec passages à l’atelier.

Chaque voiture part en révision avec probabilité 1/5, indépendamment de l’autre et
indépendamment de X. Donc une voiture est disponible avec probabilité 4/5.

Loi de V , nombre de voitures disponibles.

On a alors
V ∼ B

(
2, 4

5

)
,

et donc V (Ω) = {0, 1, 2} avec

P(V = 0) =
(
1
5

)2
= 1

25
, P(V = 1) = 2 · 4

5
· 1
5
= 8

25
, P(V = 2) =

(
4
5

)2
= 16

25
.



Loi de Y dans ce nouveau contexte.

Cette fois, le nombre de clients satisfaits est

Y = min(X, V ),

avec X et V indépendantes.

On calcule à l’aide des cas V = 0, 1, 2 :

Probabilité de Y = 0.

P(Y = 0) = P(V = 0) + P(X = 0, V = 1) + P(X = 0, V = 2).

Par indépendance :

P(Y = 0) = P(V = 0) + P(X = 0)P(V = 1) + P(X = 0)P(V = 2).

Donc
P(Y = 0) = 1

25
+ 0,1

(
8
25

+ 16
25

)
= 1

25
+ 0,1 · 24

25
= 17

125
= 0,136.

Probabilité de Y = 1.

P(Y = 1) = P(V = 1, X ≥ 1) + P(V = 2, X = 1).

Par indépendance :

P(Y = 1) = P(V = 1)P(X ≥ 1) + P(V = 2)P(X = 1).

Or P(X ≥ 1) = 1− P(X = 0) = 0,9, donc

P(Y = 1) = 8
25

· 0,9 + 16
25

· 0,3 = 36
125

+ 24
125

= 12
25

= 0,48.

Probabilité de Y = 2.

P(Y = 2) = P(V = 2, X ≥ 2) = P(V = 2)P(X ≥ 2) = 16
25

· (0,4 + 0,2) = 48
125

= 0,384.

Ainsi, la loi de Y est :

y 0 1 2
P(Y = y) 17

125
12
25

48
125

(soit 0,136; 0,48; 0,384) .

Marge brute moyenne par jour.

Toujours M = 50Y , donc E(M) = 50E(Y ) avec

E(Y ) = 1 · P(Y = 1) + 2 · P(Y = 2) = 12
25

+ 2 · 48
125

= 60
125

+ 96
125

= 156
125

= 1,248.

Donc
E(M) = 50× 1,248 = 62,4 euros .



Exercice 16.

1. La V.A.R. Xn peut prendre deux valeurs : 1 et 1 + n. Ainsi Yn =
Xn

n
peut aussi prendre

deux valeurs
1

n
et 1 +

1

n
;

Yn(Ω) =

{
1

n
, 1 +

1

n

}
.

Ainsi la V.A.R. Yn−
1

n
prend pour valeurs 0 et 1 avec probabilités non nulles : c’est donc

une variable de Bernoulli.

Calculons son paramètre : l’évènement(
Yn −

1

n
= 1

)
est l’évènement : “le mélange de lait des n vaches est contaminé”, soit “au moins une
vache contaminée”. Il est plus simple de calculer l’évènement contraire : “aucune vache
contaminée”, de probabilité 0,85n (on suppose la contamination des vaches indépendantes,
avec p = 0,15 pour chaque vache).

Ainsi :

P
(
Yn −

1

n
= 1

)
= 1− 0,85n.

D’où la loi de Yn :
y 1

n
1 + 1

n

P(Yn = y) 0,85n 1− 0,85n

Par linéarité de l’espérance :

E(Yn) = E
(
Yn −

1

n

)
+

1

n
= 1− 0,85n +

1

n
.

2. a) Soit f(x) = ax+ lnx avec a < 0 ; f est dérivable et

f ′(x) = a+
1

x
.

Ainsi :

f ′(x) > 0 ⇐⇒ a+
1

x
> 0 ⇐⇒ 1

x
> −a > 0 ⇐⇒ x < −1

a
.

D’où le tableau de variation de f : f crôıt sur
]
0,− 1

a

[
puis décrôıt sur

]
− 1

a
,+∞

[
.

En particulier f présente un maximum en x = −1

a
de valeur :

f

(
−1

a

)
= −1− ln

(
−1

a

)
= −1− ln(−a).

Lorsque a = ln 0,85 :

f

(
−1

a

)
≈ 0,817 > 0 (avec la calculatrice).

b)

f(n0) = ln 0,85× n0 + lnn0 > 0 ⇐⇒ lnn0

n0

> − ln 0,85 ≈ 0,16.

L’application x 7→ lnx

x
est croissante sur

]
0, e
]
puis décroissante sur

[
e,+∞

[
puisque

sa dérivée vaut
1− lnx

x2
. À la calculatrice on trouve que l’entier n0 vaut au plus 17.



c) On a

E(Yn) < 1 ⇐⇒ 1 +
1

n
− 0,85n < 1

⇐⇒ 1

n
< 0,85n

⇐⇒ − lnn < n ln 0,85

⇐⇒ (ln 0,85)n+ lnn > 0

⇐⇒ f(n) > 0 avec a = ln 0,85.

La deuxième méthode est plus intéressante que la première si en moyenne on ef-
fectue moins de n analyses, c’est-à-dire si E(Xn) < n ⇐⇒ E(Yn) < 1 ; c’est le cas
lorsque f(n) > 0, ainsi d’après b) pour des troupeaux d’au plus 17 vaches ; au-delà
la première méthode sera préférable.

Exercice 17.

1. X1 suit la loi de Bernoulli B(p1).
X2(Ω) = {0, 1}. D’après la formule des probabilités totales avec le SCE (X1 = 0), (X1 =
1) :

P(X2 = 1) = P(X1 = 0)P(X2 = 1 | X1 = 0) + P(X1 = 1)P(X2 = 1 | X1 = 1)

= (1− p1) ·
a

2a+ 1
+ p1 ·

a+ 1

2a+ 1
=

a+ p1
2a+ 1

,

car :

— lorsque (X1 = 0) est réalisé, l’urne 2 contient a blanches et a+ 1 noires,

— lorsque (X1 = 1) est réalisé, l’urne 2 contient a+ 1 blanches et a noires.

Ainsi X2 ∼ B
(
a+ p1
2a+ 1

)
. En particulier :

E(X1) = p1, Var(X1) = p1(1− p1),

E(X2) =
a+ p1
2a+ 1

, Var(X2) =
a+ p1
2a+ 1

· a+ 1− p1
2a+ 1

.

2. X1 et X2 suivant toutes deux des lois de Bernoulli, elles suivent la même loi si et seulement
si les lois ont même paramètre :

p1 =
a+ p1
2a+ 1

⇐⇒ p1 =
1

2
.

3. Pour cette valeur :

P(X2 = 1) =
1 + p1

2
, P(X2 = 1 | X1 = 0) =

1

4
̸= P(X2 = 1),

donc X1 et X2 ne sont pas indépendantes.

4. Exprimons pk+1 et qk+1 en fonction de pk, qk. En appliquant la FPT avec le SCE (Xk = 0)
et (Xk = 1) :

pk+1 = P(Xk+1 = 1) = P(Xk+1 = 1 | Xk = 0)P(Xk = 0) + P(Xk+1 = 1 | Xk = 1)P(Xk = 1)

=
a

2a+ 1
qk +

a+ 1

2a+ 1
pk,

qk+1 = P(Xk+1 = 0) =
a+ 1

2a+ 1
qk +

a

2a+ 1
pk.



Ainsi matriciellement :(
pk+1

qk+1

)
=

1

2a+ 1

(
a+ 1 a
a a+ 1

)(
pk
qk

)
, M =

1

2a+ 1
(P + I2) ,

où

P =

(
a a
a a

)
= a

(
1 1
1 1

)
.

5. (a) On obtient :

P n =


I2 si n = 0,

an 2n−1

(
1 1

1 1

)
si n > 0,

(à établir par récurrence). Puisque P et I2 commutent, on peut appliquer la formule
du binôme :

Mn =

(
1

2a+ 1

)n

(P + I2)
n =

(
1

2a+ 1

)n n∑
k=0

(
n

k

)
P k

=

(
1

2a+ 1

)n
(
I2 +

n∑
k=1

(
n

k

)
P k

)

=

(
1

2a+ 1

)n
(
I2 +

(
n∑

k=1

(
n

k

)
(2a)k

2

)(
1 1
1 1

))
.

En posant

an =
n∑

k=1

(
n

k

)
(2a)k

2
=

1

2
((1 + 2a)n − 1) ,

on arrive à

Mn =
1

2

(
1 + 1

(2a+1)n
1− 1

(2a+1)n

1− 1
(2a+1)n

1 + 1
(2a+1)n

)
−→

n→+∞

(
1
2

1
2

1
2

1
2

)
.

(b) Puisque (
pn
qn

)
= Mn−1

(
p1
q1

)
,

on en déduit la loi de Xn : Xn(Ω) = J0, 1K et :

P(Xn = 1) = pn =
1

2
+

p1 − q1
2(2a+ 1)n−1

, P(Xn = 0) = qn =
1

2
+

q1 − p1
2(2a+ 1)n−1

.

D’où les limites

lim
n→∞

pn =
1

2
, lim

n→∞
qn =

1

2
.

Ainsi Xn tend vers la loi de Bernoulli uniforme.



Exercice 18.

1. X suit la loi binomiale B(n, p) vu qu’on est en présence d’un schéma de Bernoulli. Ainsi :

E(X) = np, Var(X) = npq.

2. (a) Z(Ω) = J0, nK.
(b) Avec la formule de conditionnement :

P(Z = 0) = P
(
(X = 0) ∩ (Y = 0)

)
= P(X = 0)P(Y = 0 | X = 0)

=

(
n

0

)
p0qn × qn = q2n.

P(Z = 1) = P
(
(X = 1) ∩ (Y = 0)

)
+ P

(
(X = 0) ∩ (Y = 1)

)
(incompatibilité)

= P(X = 1)P(Y = 0 | X = 1) + P(X = 0)P(Y = 1 | X = 0).

Or Y | (X = 0) ∼ B(n, p) ; Y | (X = 1) ∼ B(n− 1, p), donc

P(Z = 1) =

(
n

1

)
pqn−1 ×

(
n− 1

0

)
p0qn−1 +

(
n

0

)
p0qn ×

(
n

1

)
pqn−1

= npq2n−2 + npq2n−1 = npq2n−2(1 + q).

(c) On remarque que pour tout i ∈ J0, nK, Y | (X = i) suit la loi binomiale B(n− i, p),
puisqu’on est encore en présence d’un schéma de Bernoulli (répété n− i fois). Ainsi,
∀i ∈ J0, nK, ∀j ∈ J0, n− iK :

P
(
Y = j | X = i

)
=

(
n− i

j

)
pjq n−i−j.

(d) Soit k ∈ J0, nK ; d’après la loi de la somme :

P(Z = k) = P(X+Y = k) =
∑
i+j=k

(i,j)∈J0,nK2

P
(
(X = i)∩(Y = j)

)
=

k∑
i=0

P
(
(X = i)∩(Y = k−i)

)
.

(e) Soit k ∈ J0, nK :

P(Z = k) =
k∑

i=0

P(X = i)P(Y = k − i | X = i)

=
k∑

i=0

(
n

i

)
piq n−i

(
n− i

k − i

)
pk−iq n−k

=
k∑

i=0

(
n

i

)(
n− i

k − i

)
pkq 2n−i−k.

Or (
n

i

)(
n− i

k − i

)
=

(
n

k

)(
k

i

)
,

donc

P(Z = k) =

(
n

k

)
pkq 2n−2k

k∑
i=0

(
k

i

)
q k−i

=

(
n

k

)
pkq 2n−2k(1 + q)k.



Donc

P(Z = k) =

(
n

k

)(
p(1 + q)

)k(
q2
)n−k

,

car 1− p(1 + q) = 1− p− pq = q − pq = q(1− p) = q2.

Ainsi Z ∼ B
(
n, p(1 + q)

)
.

Remarquons qu’on aurait pu l’obtenir directement : on a le schéma de Bernoulli,
consistant pour chacune des n personnes à : l’appeler, et la rappeler si on ne l’a pas
eue au premier appel.

Pour chaque personne, la probabilité de la joindre est alors : p+qp (obtenu au premier
appel ou raté puis obtenu au deuxième). On répète n fois de manière indépendante
l’expérience consistant à tenter de joindre une personne en au plus 2 appels, et on
compte les réussites.

Donc Z ∼ B(n, p+ qp).


