INTERROGATION ÉCRITE NUMÉRO 13. SUJET A.

Vendredi 15 mars 2024.

L'usage de la calculatrice n'est pas autorisé.

Exercice 1

Calculer la limite quand x tend vers 0 des fonctions suivantes :

1.
$$f: x \mapsto \frac{1 - e^{2x} - \ln(1 - 2x)}{x^3}$$

Le dénominateur est x^3 : on effectue un DL à l'ordre 3 du numérateur. $1-e^{2x}-\ln(1-2x)=\frac{4}{3}x^3+o(x^3)$

$$1 - e^{2x} - \ln(1 - 2x) = \frac{4}{3}x^3 + o(x^3)$$

Ce développement limité est non-nul, on peut donc en déduire un équivalent :

$$1 - e^{2x} - \ln(1 - 2x) \sim \frac{4}{3}x^3$$

$$\frac{\text{Puis, par quotient des \'equivalents,}}{1-e^{2x}-\ln(1-2x)} \underset{0}{\sim} \frac{4}{3}.$$

On en déduit :
$$\lim_{x \to 0} f(x) = \frac{4}{3}.$$

2.
$$g: x \mapsto \frac{\sqrt{1-4x^2} - \cos(2x)}{x^3}$$

De même, on effectue un DL à l'ordre 3 du numérateur.

$$\sqrt{1-4x^2} - \cos(2x) = o(x^3).$$

On multiplie par $\frac{1}{x^3}$ (y compris dans le "o"):

$$\frac{\sqrt{1-4x^2} - \cos(2x)}{x^3} = o(1).$$

Cela veut dire que la fonction tend vers 0. Ainsi : $\lim_{x\to 0} g(x) = 0$.

Déterminer le développement limité d'ordre 3 en 0 de $h: x \mapsto \ln(1+\sin(x)) - \cos(2x)$

Par opérations sur les développements limités, on trouve :

$$\ln(1+\sin(x)) - \cos(2x) = -1 + x + \frac{3}{2}x^2 + \frac{1}{6}x^3 + o(x^3)$$

Exercice 3

Soit f une fonction définie sur \mathbb{R} . On note \mathcal{C} sa courbe représentative. On suppose que f admet un développement limité en 0 qui est : $f(x) = -1 + \frac{x}{2} + \frac{x^2}{2} - 2x^3 + o(x^3)$.

- 1. Déterminer (sans justifier) l'équation de la tangente à \mathcal{C} au point d'abscisse 0.
- 2. Déterminer la position de \mathcal{C} par rapport à sa tangente au voisinage de 0.
- 3. Dessiner l'allure de la courbe au voisinage du point d'abscisse 0.
- 1. $y = -1 + \frac{x}{2}$ est l'équation de la tangente à \mathcal{C} au point d'abscisse 0
- 2. Position de $\mathcal C$ par rapport à sa tangente :

D'après le DL, on a :
$$f(x) - (-1 + \frac{x}{2}) = \frac{x^2}{2} - 2x^3 + o(x^3)$$
.
Ce DL est non-nul, on en déduit un équivalent (le premier terme non-nul du DL) :

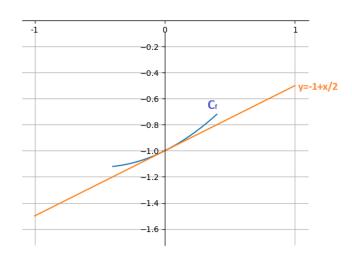
$$f(x) - (-1 + \frac{x}{2}) \sim \frac{x^2}{2}$$

Donc $f(x) - (-1 + \frac{x}{2})$ est du signe de $\frac{x^2}{2}$ au voisinage de 0.

Or au voisinage de 0, $\frac{x^2}{2} \ge 0$. Donc $f(x) - (-1 + \frac{x}{2}) \ge 0$.

Donc au voisinage de 0, $f(x) \ge -1 + \frac{x}{2}$. Donc C_f est au-dessus de sa tangente au voisinage de 0.

3. On en déduit l'allure de la courbe au voisinage du point d'abscisse 0 :



Soit g une fonction définie sur \mathbb{R} . On note \mathcal{C} sa courbe représentative. On suppose que g admet un développement limité en 2 qui est : $g(2+h) = 1 - 2h + \frac{h^3}{3} - \frac{h^4}{4} + o(h^4)$.

- 1. y = 1 2(x 2) est l'équation de la tangente à C_g au point d'abscisse 2.
- 2. On déduit du DL que $g(2+h) (1-2h) = \frac{h^3}{0} \frac{h^4}{4} + o(h^4)$.

Ce développement limité est non-nul, donc on en déduit un équivalent (premier terme non-nul du DL) :

$$g(2+h) - (1-2h) \sim \frac{h^3}{3}.$$

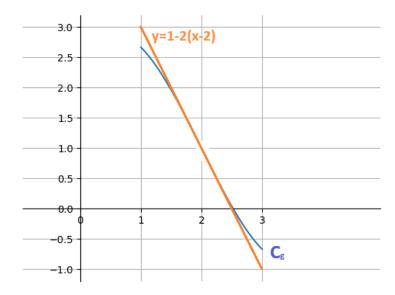
Donc
$$g(x) - (1 - 2(x - 2)) \sim \frac{(x - 2)^3}{3}$$
.

Donc au voisinage de 2, g(x) - (1 - 2(x - 2)) est du signe de $\frac{(x - 2)^3}{3}$. Ainsi :

À droite de 2: x > 2 donc $\frac{(x-2)^3}{3} > 0$, donc g(x) - (1-2(x-2)) > 0, donc \mathcal{G}_g est au-dessus de sa tangente.

À gauche de 2 : x < 2 donc $\frac{(x-2)^3}{3} < 0$, donc g(x) - (1-2(x-2)) < 0, donc \mathcal{G}_g est en-dessous de sa tangente.

3. On en déduit l'allure de la courbe au voisinage du point d'abscisse 2:
Attention, la tangente passe par le point de coordonnées (2,1) et a pour coefficient directeur -2.



INTERROGATION ÉCRITE NUMÉRO 13. SUJET B.

Vendredi 15 mars 2024.

L'usage de la calculatrice n'est pas autorisé.

Exercice 1

Calculer la limite quand x tend vers 0 des fonctions suivantes :

1.
$$f: x \mapsto \frac{\cos(x) - \sqrt{1 - 4x^2}}{x^3}$$

Puisque le dénominateur est x^3 et qu'on cherche la limite en 0 (qui est indéterminée), on effectue un DL en 0 du numérateur, à l'ordre 3:

$$\cos(x) - \sqrt{1 - 4x^2} = \frac{3}{2}x^2 + o(x^2).$$

Ce DL est non-nul, on en déduit un équivalent : $\cos(x) - \sqrt{1 - 4x^2} \sim \frac{3}{2}x^2$.

D'où, par quotient des équivalents : $f(x) \sim \frac{3}{2x}$

• Or
$$\lim_{x\to 0^+} \frac{3}{2x} = +\infty$$
, donc $\lim_{x\to 0^+} f(x) = +\infty$.

• Et
$$\lim_{x\to 0^-} \frac{3}{2x} = -\infty$$
, donc $\lim_{x\to 0^-} f(x) = -\infty$.

f a une limite à droite et une limite à gauche différentes en 0, donc f n'a pas de limite en 0.

2.
$$g: x \mapsto \frac{e^{2x} + \ln(1 - 2x) - 1}{x^3}$$

De-même que précédemment, on effectue un développement limité d'ordre 3 en 0 du numérateur :

$$e^{2x} + \ln(1 - 2x) - 1 = -\frac{4}{3}x^3 + o(x^3).$$

Ce développement limité est non-nul, on en déduit un équivalent : $e^{2x} + \ln(1-2x) - 1 \sim -\frac{4}{3}x^3$

Puis, par quotient des équivalents, $g(x) \sim -\frac{4}{3}$.

On en déduit
$$\lim_{x\to 0} g(x) = -\frac{4}{3}$$
.

Déterminer le développement limité d'ordre 3 en 0 de $h: x \mapsto \exp(\sin(x)) - \ln(1+2x)$

Par opérations usuelles sur les développements limités :

$$\exp(\sin(x)) - \ln(1+2x) = 1 - x + \frac{5}{2}x^2 - \frac{8}{3}x^3 + o(x^3)$$

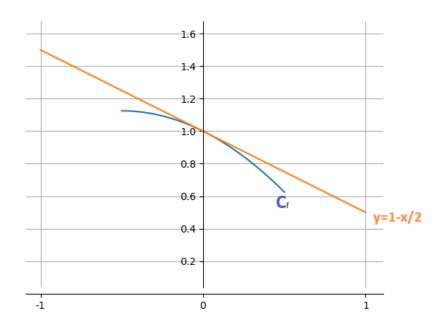
Exercice 3

Soit f une fonction définie sur \mathbb{R} . On note \mathcal{C} sa courbe représentative. On suppose que f admet un développement limité en 0 qui est : $f(x) = 1 - \frac{x}{2} - \frac{x^2}{2} - 2x^3 + o(x^3)$.

- 1. $y = 1 \frac{x}{2}$ est l'équation de la tangente à \mathcal{C} au point d'abscisse 0.
- 2. $f(x) (1 \frac{x}{2}) = -\frac{x^2}{2} 2x^3 + o(x^3)$. Ce développement limité est non-nul, donc on en déduit l'équivalent : $f(x) (1 \frac{x}{2}) \approx -\frac{x^2}{2}$.

Donc au voisinage de 0, $f(x)-(1-\frac{x}{2})$ est du signe de $-\frac{x^2}{2}$. Puisque $-\frac{x^2}{2}\leqslant 0$, on a $f(x)-(1-\frac{x}{2})\leqslant 0$. Donc $\mathcal C$ est en-dessous de sa tangente au voisinage du point d'abscisse 0.

 $3.\ \,$ On en déduit l'allure de la courbe au voisinage du point d'abscisse 0:



Soit g une fonction définie sur \mathbb{R} . On note \mathcal{C} sa courbe représentative. On suppose que g admet un développement limité en 1 qui est : $g(1+h) = -1 + 2h + \frac{h^3}{3} + \frac{h^4}{4} + o(h^4)$.

1.
$$y = -1 + 2(x - 1)$$
 est l'équation de la tangente à \mathcal{C} au point d'abscisse 1.

2.
$$g(1+h) - (-1+2h) = \frac{h^3}{3} + \frac{h^4}{4} + o(h^4)$$
.

Ce développement limité est non-nul, on en déduit un équivalent (premier terme non-nul du DL) :

$$g(1+h) - (-1+2h) \sim \frac{h^3}{3}$$
. Donc $g(x) - (-1+2(x-1)) \sim \frac{(x-1)^3}{3}$.

Donc
$$g(x) - (-1 + 2(x - 1))$$
 est du signe de $\frac{(x - 1)^3}{3}$. Ainsi :

À droite de 1: x > 1 donc $\frac{(x-1)^3}{3} > 0$, donc g(x) > -1 + 2(x-1). Donc \mathcal{C} est au-dessus de sa tangente.

À gauche de 1 : x < 1 donc $\frac{(x-1)^3}{3} < 0$, donc g(x) < -1 + 2(x-1). Donc \mathcal{C} est en-dessous de sa tangente.

3. On en déduit l'allure de la courbe au voisinage du point d'abscisse 1 :

