«Exos-Chronos IX»

Pour chacune des fonctions suivantes, déterminer son ensemble de définition, son ensemble de dérivabilité et calculer sa dérivée :

Exercice 1. $f: x \mapsto \ln(1+2x)$

Exercice 2. $f: x \mapsto \frac{2x}{1+x^2}$

Exercice 3. $f: x \mapsto \sqrt{1-x^2}$

Exercice 4. $f: x \mapsto \sqrt{\frac{x-1}{x-2}}$

Exercice 5. $f: x \mapsto \frac{1}{\sin(x)}$

Exercice 6. $f: x \mapsto \cos^3 x$ et $g: x \mapsto \sin(2x)\cos^2(x)$

Correction

Exercise 1. • $f: x \mapsto \ln(1+2x)$

Ensemble de définition :

Soit $x \in \mathbb{R}$.

$$f(x)$$
 existe $\iff 1 + 2x > 0 \iff x > -\frac{1}{2}$.

Donc l'ensemble de définition de f est $]-\frac{1}{2},+\infty[$.

Dérivabilité:

f est la composée de $x\mapsto 1+2x$, dérivable sur $]-\frac{1}{2},+\infty[$, à valeurs dans \mathbb{R}_+^* , par ln, dérivable sur \mathbb{R}_+^* , donc f est dérivable sur $]-\frac{1}{2},+\infty[$

Dérivabilité 2ème méthode :

f est la composée de deux fonctions dérivables sur leur ensemble de définition donc f est dérivable sur son ensemble de définition, $]-\frac{1}{2},+\infty[$.

Remarque : il faut savoir justifier la dérivabilité par les deux méthodes.

Dérivée₁:

$$\forall x \in]-\frac{1}{2}, +\infty[, \ f'(x) = \frac{2}{2x+1}.$$

Exercice 2. $g: x \mapsto \frac{2x}{1+x^2}$

Ensemble de définition

$$\forall x \in \mathbb{R}, \ x^2 \geqslant 0 \text{ donc } 1 + x^2 > 0.$$

Donc g est définie sur \mathbb{R} (c'est une fraction rationnelle dont le dénominateur ne s'annule pas).

Dérivabilité :

g est le quotient de deux fonctions dérivables sur \mathbb{R} , le dénominateur ne s'annulant pas. Donc g est dérivable sur \mathbb{R} .

Dérivabilité 2ème méthode :

g est le quotient de deux fonctions dérivables sur leur ensemble de définition, donc g est dérivable sur son ensemble de définition (\mathbb{R}).

Remarque : il faut savoir justifier la dérivabilité par les deux méthodes.

Dérivée:

$$\forall x \in \mathbb{R}, \ g'(x) = \frac{2 - 2x^2}{(1 + x^2)^2}$$

Exercice 3.

$$f: x \mapsto \sqrt{1-x^2}$$

Ensemble de définition :

Soit $x \in \mathbb{R}$.

f(x) existe $\iff 1-x^2 \geqslant 0 \iff -1 \leqslant x \leqslant 1$. (car $x \mapsto 1-x^2$ est un trinôme de racines 1 et -1, de coefficient dominant -1, donc on connaît parfaitement le signe de ce trinôme. Faire un dessin pour préciser). Donc l'ensemble de définition de f est [-1,1].

Dérivabilité :

f est la composée de $x \mapsto 1 - x^2$, dérivable sur]-1,1[, à valeurs dans \mathbb{R}_+^* , par $\sqrt{}$, dérivable sur \mathbb{R}_+^* . Donc f est dérivable sur]-1,1[

2

Dérivabilité 2ème méthode :

Pas de 2ème méthode car la fonction $\sqrt{}$ n'est pas dérivable sur son ensemble de définition!

Dérivée:

$$\forall x \in]-1,1[, f'(x) = \frac{-x}{\sqrt{1-x^2}}.$$

Exercice 4.

$$f: x \mapsto \sqrt{\frac{x-1}{x-2}}$$

Ensemble de définition :

$$f(x)$$
 existe \iff
$$\begin{cases} x-2 \neq 0 \\ \frac{x-1}{x-2} \geqslant 0 \end{cases}$$

On fait un tableau de signe pour étudier le signe de $\frac{x-1}{x-2}$ (à faire). On en déduit que l'ensemble de définition de f est $D=]-\infty,1]\cup]2,+\infty[$. (attention : fermé en 1, ouvert en 2 : il faut savoir expliquer pourquoi!)

Dérivablité :

f est la composée de $x\mapsto \frac{x-1}{x-2}$, dérivable sur $D\setminus\{1\}$, à valeurs dans \mathbb{R}_+^* , par $\sqrt{\ }$, dérivable sur \mathbb{R}_+^* . Donc f est dérivable sur $D \setminus \{1\}$

Dérivabilité 2ème méthode :

Pas de 2ème méthode car la fonction $\sqrt{\text{n'est}}$ pas dérivable sur son ensemble de définition!

$$\forall x \in D \setminus \{1\}, \ f'(x) = \frac{-1}{(x-2)^2} \frac{1}{2\sqrt{\frac{x-1}{x-2}}} = \frac{-1}{2(x-2)^2} \sqrt{\frac{x-2}{x-1}}.$$

Exercice 5.
$$f: x \mapsto \frac{1}{\sin(x)}$$

Ensemble de définition :

Soit $x \in \mathbb{R}$.

$$f(x)$$
 existe $\iff \sin(x) \neq 0$.

Donc l'ensemble de définition est $D = \mathbb{R} \setminus \{k\pi, k \in \mathbb{Z}\}.$

Dérivabilité:

f est l'inverse de la fonction sinus, dérivable sur D et ne s'annulant pas sur D, donc f est dérivable sur D.

Autre méthode : f est l'inverse d'une fonction dérivable sur son ensemble de définition, donc f est dérivable sur son ensemble de définition, D.

3

Dérivée :
$$\forall x \in D, \ f'(x) = \frac{-\cos(x)}{\sin^2(x)}.$$

Exercice 6. $f: x \mapsto \cos^3 x$

Ensemble de définition : \mathbb{R} (car cos et la fonction cube sont définies sur \mathbb{R})

Dérivabilité:

f est le cube d'une fonction dérivable sur \mathbb{R} (cos) donc f est dérivable sur \mathbb{R} .

Dérivée:

$$\forall x \in \mathbb{R}, \ f'(x) = -3\sin(x)\cos^2(x)$$

$$g: x \mapsto \sin(2x)\cos^2(x)$$

Ensemble de définition : \mathbb{R} .

Dérivabilité :

g est le produit de deux fonctions dérivables sur $\mathbb R$ donc g est dérivable sur $\mathbb R.$

Dérivée :

$$\forall x \in \mathbb{R}, \ g'(x) = 2\cos(2x)\cos^2(x) - \sin(2x)2\sin(x)\cos(x) = 2\cos(2x)\cos^2(x) - \sin^2(2x)$$