RÉVISIONS, CALCULS DANS \mathbb{R} .

Exercice 1. Résoudre les équations suivantes d'inconnues $x \in \mathbb{R}$:

1.
$$2x^2 - 1 = 0$$

$$2. x^2 + 3 = 0$$

3.
$$x^2 - x - 1 = 0$$

4.
$$2x^2 + x - 3 = 0$$

5.
$$x^2 + 1 = x$$

6.
$$x^2 + 6x + 9 = 0$$

7.
$$\cos x = \frac{1}{2}$$

8.
$$\sin^2 x = \frac{3}{4}$$

$$9. \ 2\cos^2 x - 5\cos x + 2 = 0$$

10.
$$|x| = 3$$

11.
$$|x+5|=3$$

Exercice 2. Soient x et y deux nombres réels. Dans chacun des cas suivants :

- comparer x^2 et y^2 ,
- en supposant x et y non-nuls, comparer $\frac{1}{x}$ et $\frac{1}{y}$.

1.
$$0 \leqslant x \leqslant y$$
.

3.
$$x \le y \le 0$$
.

2.
$$0 \le x < y$$
.

4.
$$x \leq y$$
.

Exercice 3. Résoudre les inéquations suivantes d'inconnues $x \in \mathbb{R}$:

1.
$$|x| \leq 2$$
,

$$|x-1| \le 2$$
,

3.
$$|x+2| > -4$$
,

4.
$$|x+1| > 3$$
,

5.
$$-3x + 4 > 1$$
,

6.
$$x^2 - 2x - 3 \le 0$$
.

7.
$$x^2 + 2x + 2 \ge 0$$
,

8.
$$\cos x \ge 0$$
,

9.
$$\sin x > \frac{1}{2}$$
.

10.
$$\cos x < -\frac{\sqrt{3}}{2}$$
.

Exercice 4. Simplifier:

1.
$$\frac{36}{120}$$
, $\frac{24}{320}$, $\frac{280}{49}$.

2.
$$\frac{1-a}{1-a^2}$$
 (où $a \in \mathbb{R} \setminus \{-1,1\}$).

3.
$$\frac{10!}{8!}$$
, $\frac{5!}{3! \cdot 2!}$.

4.
$$\frac{1}{12} + \frac{7}{18}$$
.

$$5. \ \frac{3}{14} + \frac{5}{21}.$$

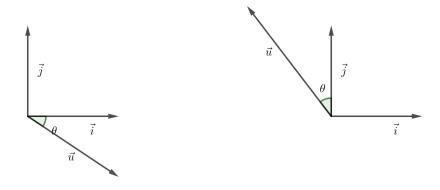
$$6. \ \frac{2}{15} + \frac{3}{25}.$$

Rappel: n! se lit "factorielle n" et désigne l'entier $n \times (n-1) \times (n-2) \dots \times 2 \times 1$. exemple : $5! = 5 \times 4 \times 3 \times 2 \times 1 = 120$.

Exercice 5. Dériver les fonctions suivantes après avoir précisé sur quels ensembles elles sont dérivables :

$$f_1: x \mapsto xe^x,$$
 $f_2: x \mapsto x^5 + 2x,$ $f_3: x \mapsto 2x \sin x,$ $f_4: x \mapsto \sin x \cos x,$
 $g_1: x \mapsto \cos^3 x,$ $g_2: x \mapsto \cos 3x,$ $g_3: x \mapsto (1+3x)^5,$ $g_4: x \mapsto \tan(x),$
 $h_1: x \mapsto x \ln x,$ $h_2: x \mapsto \ln(1+x^2),$ $h_3: x \mapsto \frac{2x+1}{x^4+2},$ $h_4: x \mapsto e^{\sin 3x},$
 $i_1: x \mapsto \tan(2x),$ $i_2: x \mapsto \ln(\ln x),$ $i_3: x \mapsto \sqrt{3x+2},$ $i_4: x \mapsto \frac{1}{\ln x}.$

Exercice 6. Dans chaque configuration, déterminer les coordonnées du vecteur \vec{u} dans la base (\vec{i}, \vec{j}) , en fonction de l'angle θ ($\in [0, \frac{\pi}{2}]$) et de $\ell = ||\vec{u}||$.



Exercice 7.

On considère un palet sur un plan incliné d'un angle α par rapport à l'horizontale. Ce palet subit trois forces : son poids, caractérisé par la vecteur \vec{P} de norme P, et, de la part du support, la réaction normale \vec{N} de norme N et la réaction tangentielle \vec{T} de norme T (frottements). On considère par ailleurs deux bases orthonormées du plan : $(\vec{u_x}, \vec{u_y})$ et $(\vec{u_{x'}}, \vec{u_{y'}})$ (voir dessin).

- 1. Exprimer les trois forces considérées dans la base $(\vec{u_{x'}}, \vec{v_{y'}})$.
- 2. Exprimer la résultante $\vec{P} + \vec{T} + \vec{N}$ dans la base $(\vec{u_{x'}}, \vec{u_{y'}})$.

