Programme de colle de la semaine 23.

Semaine du lundi 29 avril au vendredi 4 avril 2025.

Questions de cours:

- 1. Toutes les questions de cours de la semaine 22.
- 2. Définition de fonction dérivable en a. Exemple : établir la dérivabilité et calculer la dérivée de $x \mapsto \sqrt{x}$ sur \mathbb{R}_+^* . Montrer que cette fonction n'est pas dérivable en a.
- 3. Proposition : lien entre dérivabilité en a et dérivabilité à droite et à gauche en a (énoncé). Application : Étudier la dérivabilité en 0 de $x\mapsto |x|$ et de $x\mapsto \left\{ \begin{array}{ll} e^{-\frac{1}{x}} & \text{si } x>0 \\ 0 & \text{si } x\leqslant 0 \end{array} \right.$
- 4. Montrer que

$$f: \ \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \begin{cases} x^2 \sin \frac{1}{x} & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$$

est dérivable sur \mathbb{R} et calculer sa dérivée. Tracer l'allure du graphe au voisinage de 0.

- 5. Dérivabilité de l'application réciproque d'une bijection : énoncé. Application : calcul de la dérivée de la fonction Arctangente.
- 6. Formule des accroissements finis : énoncé, démonstration en admettant le théorème de Rolle. On énoncera précisément les hypothèses permettant d'appliquer le théorème de Rolle.
- 7. Inégalité des accroissements finis. Énoncé, démonstration.

Thème de la colle :

CALCULS - Poser un exercice de la liste « EXOS-CHRONOS 9». L'exercice doit être fait en moins de 3 minutes.

CONTINUITÉ

Tout le cours (voir programme de colle de la semaine 24)

DÉRIVABILITÉ

Définitions.

Dérivée en un point. Dérivées à droite et à gauche en un point. Dérivabilité et continuité. Dérivabilité, continuité et DL. Fonction dérivée.

Opérations sur les fonctions dérivables

Combinaison linéaire et produit. Inverse et quotient. Composée.

Dérivabilité de l'application réciproque d'une bijection. Exemples : dérivée de la fonction arctangente.

Théorème de Rolle, formule des accroissements finis

Théorème de Rolle. Formule des accroissements finis. Applications : inégalité des accroissements finis (le résultat est hors programme, il doit être démontré à chaque fois qu'on veut l'utiliser), variations d'une fonction sur un intervalle.