Programme de colle de la semaine 5.

Semaine du lundi 13 octobre au vendredi 17 octobre 2025.

Questions de cours à connaître par cœur :

- 1. Toutes les questions de cours de la semaine 4
- 2. Forme trigonométrique (ou "forme exponentielle") d'un nombre complexe non-nul : définition. Proposition (numéro 10 du cours) : égalité de deux nombres complexes écrits sous forme trigonométrique. Application : Soit $R \in \mathbb{R}_+^*$ et $\alpha \in \mathbb{R}$. Résoudre l'équation $z^2 = Re^{i\alpha}$, d'inconnue $z \in \mathbb{C}$.
- 3. Formules d'Euler avec démonstration.
- 4. Factorisation par l'angle moitié de $1 + e^{i\theta}$ et $e^{i\alpha} e^{i\beta}$.
- 5. Linéariser $\sin^5 \theta$
- 6. Résolution dans C d'une équation du second degré à coefficients réels : énoncé, démonstration.

Thème de la colle :

CALCULS: Exos-Chronos 1.

• Tous les élèves seront interrogés sur un exercice (choisi par l'examinateur) de la feuille "Exos-Chronos 1". L'exercice doit être fait en moins de 2 minutes.

SOMMES ET PRODUITS

Notation Σ . Linéarité, relation de Chasles. Changements d'indices. Application : somme télescopique. Sommes doubles. Exemples de sommes à connaître.

Notation ∏.

Propriétés. Exemples.

Formule du binôme

Coefficients binomiaux : définition. premières propriétés

$$(\binom{n}{k} = \binom{n}{n-k}, \ \binom{n}{0} = \binom{n}{n} = \dots, \binom{n}{1} = \binom{n}{n-1} \dots, \binom{n}{2} = \binom{n}{n-2} = \dots)$$

Relation de Pascal. Triangle de Pascal. Formule du binôme.

NOMBRES COMPLEXES

Introduction et premières définitions

Forme algébrique. Plan complexe. Conjugué.

Écrire un nombre complexe sous forme algébrique. Déterminer la partie réelle et la partie imaginaire d'un nombre complexe.

Forme géométrique

Module. Inégalités triangulaires. Cercle trigonométrique. Complexes de module 1. Argument d'un nombre complexe non-nul. Application : transformation de $a\cos x + b\sin x$. Exponentielle complexe : pour tout $\theta \in \mathbb{R},\ e^{i\theta} = \cos\theta + i\sin\theta$. Formules d'Euler. Application : factorisation par l'angle moitié. Formule de Moivre. Forme trigonométrique d'un nombre complexe non nul. Linéarisation d'expressions trigonométriques (formule du binôme, triangle de Pascal).

Équations du second degré à coefficients réels

Résolution dans \mathbb{C} . Somme et produit des racines. Exemples.

Résolution de $z^2 = a$, $a \in \mathbb{C}$ fixé (de deux façons : recherche sous forme algébrique, recherche sous forme trigonométrique).