Programme de colle de la semaine 7.

Semaine du lundi 10 novembre au vendredi 14 novembre 2025.

Questions de cours à connaître par cœur :

- 1. Toutes les questions de cours de la semaine 6
- 2. Définition de suite arithmétique, suite géométrique, expression du terme général en fonction de n, somme de termes consécutifs (sans démonstration)
- 3. Soit la suite définie par $u_0 = 1$ et $\forall n \in \mathbb{N}, \ u_{n+1} = 2u_n + 3$. Déterminer u_n en fonction de n.
- 4. Suite récurrente linéaire d'ordre 2 : Détermination de u_n en fonction de n. Énoncer la proposition (proposition 5 du cours), sans démonstration.
- 5. Soit (u_n) la suite définie par $u_0 = 0$, $u_1 = 1$, $\forall n \in \mathbb{N}$, $u_{n+2} = u_{n+1} + u_n$ (suite de Fibonacci) Déterminer u_n en fonction de n.
- 6. Soit (u_n) la suite définie par : $u_0=1,\ u_1=2,\ \forall n\in\mathbb{N},\ u_{n+2}=2u_{n+1}-2u_n.$ Déterminer u_n en fonction de n.
- 7. Soit (u_n) la suite définie par $u_0 = 1$, $u_1 = 1$, $\forall n \in \mathbb{N}$, $4u_{n+2} 4u_{n+1} + u_n$ Déterminer u_n en fonction de n.
- 8. Définition d'ensemble fini, de cardinal d'un ensemble fini. Exemple : soient p et q deux entiers tels que $p \leq q$. Montrer que $[\![p,q]\!]$ est un ensemble fini dont on déterminera le cardinal (on admettra que la fonction définie est bijective).
- 9. Deux ensembles finis non-vides E et F ont même cardinal si, et seulement si, il existe une bijection de E vers F: énoncé, démonstration.

Thème de la colle :

CALCULS: Exos-Chronos 2.

Tous les élèves seront interrogés sur un exercice de la feuille "Exos-Chronos 2". L'exercice doit être fait en moins de 3 minutes.

APPLICATIONS

Vocabulaire des applications.

image, antécédent, graphe. Restriction et prolongement. Composition des applications. Image directe d'un ensemble par une application.

Applications injectives, surjectives, bijectives.

Applications injective, surjectives, bijectives. Exemples. Si f et g sont injectives/surjectives/bijectives, alors $g \circ f$ est injective/surjective/bijective. Application réciproque d'une bijection. $f \circ f^{-1} = Id$, $f^{-1} \circ f = Id$. Si f est bijective, alors f^{-1} est bijective, d'application réciproque $(f^{-1})^{-1} = f$. Si f et g sont bijectives, alors $g \circ f$ est bijective, d'application réciproque $f^{-1} \circ g^{-1}$.

EXEMPLES DE SUITES RÉCURRENTES

Rappels sur les suites arithmétiques et géométriques

Définition, somme de termes consécutifs.

Suites arithmético-géométriques

Méthode pour déterminer u_n en fonction de n.

Suites récurrentes linéaires d'ordre 2

Méthode pour déterminer u_n en fonction de n.