SUITES RÉCURRENTES.

Exercice 1. Déterminer le terme général des suites suivantes en fonction de n:

1.
$$u_0 = -3$$
, $\forall n \in \mathbb{N}$, $u_{n+1} = -u_n$.

2.
$$u_3 = 1$$
, $\forall n \in [3, +\infty[], u_{n+1} = u_n + 2$.

3.
$$u_1 = 2$$
, $\forall n \in [1, +\infty)$, $u_{n+1} = u_n$.

4.
$$u_2 = 1$$
, $\forall n \in [2, +\infty[], u_{n+1} = -3u_n$.

5.
$$u_0 = -2$$
, $\forall n \in \mathbb{N}$, $u_{n+1} = 3u_n - 4$.

6.
$$u_1 = 1$$
, $\forall n \in [1, +\infty]$, $u_{n+1} = -u_n + 2$.

7.
$$u_1 = 1$$
, $\forall n \in \mathbb{N}^*$, $u_{n+1} = 2u_n^3$.

Exercice 2. On considère la fonction :

$$\begin{array}{cccc} f: & \mathbb{R} \setminus \{3\} & \longrightarrow & \mathbb{R} \\ & x & \longmapsto & \frac{x-4}{x-3}, \end{array}$$

et la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=1$ et $\forall n\in\mathbb{N},\quad u_{n+1}=f(u_n)=\frac{u_n-4}{u_n-3}.$

- 1. Montrer que $\forall x \in]-\infty, 2[, f(x) < 2.$
- 2. Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est bien définie et que pour tout $n\in\mathbb{N},\,u_n<2$.
- 3. Montrer que l'équation f(x) = x admet une unique solution α sur $\mathbb{R} \setminus \{3\}$.
- 4. On pose:

$$\forall n \in \mathbb{N}, \quad v_n = \frac{1}{u_n - \alpha}.$$

Montrer que $(v_n)_{n\in\mathbb{N}}^n$ est une suite arithmétique.

5. En déduire l'expression de u_n en fonction de n. Quelle est la limite de u_n quand n tend vers $+\infty$?

Exercice 3. Déterminer le terme général des suites suivantes en fonction de n:

1.
$$u_0 = -1$$
, $u_1 = 2$, $\forall n \in \mathbb{N}$, $u_{n+2} = 2u_{n+1} - u_n$.

2.
$$u_1 = 3, u_2 = 17, \quad \forall n \in \mathbb{N}^*, u_{n+2} = 3u_{n+1} + 4u_n.$$

3.
$$u_0 = 1$$
, $u_1 = -2$, $\forall n \in \mathbb{N}$, $\frac{1}{2}u_{n+2} - 3u_{n+1} + 6u_n = 0$.

4.
$$u_0 = 0$$
, $u_1 = 0$, $\forall n \in \mathbb{N}$, $u_{n+2} = 15u_{n+1} + 6u_n$.

5.
$$u_0 = 1$$
, $u_1 = 0$, $\forall n \in \mathbb{N}$, $u_{n+2} + 5u_{n+1} + 6u_n = 0$.

6.
$$u_0 = 1, u_1 = 2, \quad \forall n \in \mathbb{N}, u_{n+2} = u_{n+1}^2 u_n.$$

7.
$$u_0 = 1, u_1 = 2, \quad \forall n \in \mathbb{N}, u_{n+2} = \sqrt{u_{n+1}u_n}.$$

Exercice 4. Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle.

- 1. Montrer que si $(u_n)_{n\in\mathbb{N}}$ est une suite arithmétique, alors $\forall n\in\mathbb{N}^*,\ u_n=\frac{u_{n+1}+u_{n-1}}{2}$.
- 2. Réciproquement, montrer que si $\forall n \in \mathbb{N}^*, \ u_n = \frac{u_{n+1} + u_{n-1}}{2}$, alors $(u_n)_{n \in \mathbb{N}}$ est une suite arithmétique.

Correction de l'exercice 1

- 1. (u_n) est une suite géométrique de raison -1 et de premier terme $u_0 = -3$. Donc $\forall n \in \mathbb{N}, \ u_n = u_0(-1)^n = -3(-1)^n = 3(-1)^{n+1}$.
- 2. (u_n) est une suite arithmétique de raison 2 et de premier terme u_3 , donc $\forall n \in [3, +\infty[$, $u_n = u_3 + 2(n-3) = 1 + 2(n-3) = 2n-5$.
- 3. (u_n) est une suite constante de premier terme $u_1 = 2$ donc $\forall n \in \mathbb{N}^*, u_n = 2$.
- 4. (u_n) est une suite géométrique de raison -3 et de premier terme $u_2=1$ Donc $\forall n\in [\![2,+\infty[\![},\ u_n=u_2(-3)^{n-2}=(-3)^{n-2}$
- 5. (u_n) est une suite arithmético-géométrique. On cherche ℓ tel que $\ell=3\ell-4$. On trouve $\ell=2$. Ainsi :

$$\begin{cases} u_{n+1} = 3u_n - 4\\ \ell = 3\ell - 4 \end{cases}$$

On en déduit : $\forall n \in \mathbb{N}, \ u_{n+1} - 2 = 3(u_n - 2).$

Posons: $\forall n \in \mathbb{N}, \ v_n = u_n - 2.$

On a donc $\forall n \in \mathbb{N}, \ v_{n+1} = 3v_n$.

 (v_n) est une suite géométrique de raison 3. Donc $\forall n \in \mathbb{N}, \ v_n = 3^n v_0 = 3^n (u_0 - 2) = -4 \times 3^n$. Ainsi, $\forall n \in \mathbb{N}, \ u_n = 2 - 4 \times 3^n$

6. Cette suite peut se traiter de deux façons :

Soit on reconnaît une suite arithmétic-géométrique et on applique la méthode usuelle (comme à la question précédente).

Soit on conjecture, en calculant les premiers termes, que la suite est constante, de valeur 1. Puis montre cela par récurrence.

C'est ce que nous allons faire :

Pour tout $n \in \mathbb{N}^*$, on définit la propriété de récurrence :

$$\mathcal{P}_n$$
: " $u_n = 1$ "

- (I) $u_1 = 1$ donc \mathcal{P}_1 est vraie
- (H) Soit $n \in \mathbb{N}^*$ fixé quelconque tel que \mathcal{P}_n soit vraie.

Donc $u_n = 1$. Donc $u_{n+1} = -u_n + 2 = -1 + 2 = 1$. Donc \mathcal{P}_{n+1} est vraie.

- (C) Ainsi, $\forall n \in \mathbb{N}^*, u_n = 1$.
- 7. Fait en TD

Correction de l'exercice 2

Exercice 5. On considère la fonction :

$$f: \ \mathbb{R} \setminus \{3\} \ \longrightarrow \ \mathbb{R}$$
$$x \ \longmapsto \ \frac{x-4}{x-3},$$

2

et la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=1$ et $\forall n\in\mathbb{N}, \quad u_{n+1}=f(u_n)=\frac{u_n-4}{u_n-3}$.

- 1. Montrer que $\forall x \in]-\infty, 2[, f(x) < 2.$
- 2. Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est bien définie et que pour tout $n\in\mathbb{N}, u_n<2$. vu en **TD**
- 3. Montrer que l'équation f(x)=x admet une unique solution α sur $\mathbb{R}\setminus\{3\}$. Vu en TD. On trouve $\alpha=2$

4. Montrer que $(v_n)_{n\in\mathbb{N}}$ est une suite arithmétique.

MÉTHODE : On exprime v_{n+1} et on fait apparaître v_n . Si on trouve $v_{n+1} = v_n +$ constante, c'est gagné.

Si on n'y arrive pas, on exprime $v_{n+1} - v_n$ et on montre que c'est constant.

$$\forall n \in \mathbb{N}, \quad v_{n+1} = \frac{1}{u_{n+1} - 2}$$

$$= \frac{1}{f(u_n) - 2}$$

$$= \frac{1}{\frac{u_n - 4}{u_n - 3} - 2}$$

$$= \frac{1}{\frac{u_n - 4 - 2(u_n - 3)}{u_n - 3}}$$

$$= \frac{u_n - 3}{u_n - 4 - 2u_n + 6}$$

$$= \frac{u_n - 3}{-u_n + 2}$$

$$= \frac{(u_n - 2) - 1}{-(u_n - 2)}$$

$$= \frac{(u_n - 2)}{-(u_n - 2)} - \frac{1}{-(u_n - 2)}$$

$$= -1 + \frac{1}{(u_n - 2)}$$

$$= -1 + v_n$$

Donc (v_n) est une suite arithmétique de raison -1.

5. En déduire l'expression de u_n en fonction de n. Quelle est la limite de u_n quand n tend vers $+\infty$? On déduit de la question précédente que $\forall n \in \mathbb{N}, \ v_n = v_0 - n$. Or $v_0 = \frac{1}{u_0 - 2} = \frac{1}{1 - 2} = -1$.

Donc
$$\forall n \in \mathbb{N}, \ v_n = -1 - n$$
.

Or on veut u_n . Nous savons que $\forall n \in \mathbb{N}, \ v_n = \frac{1}{u_n - 2} \text{ donc } u_n - 2 = \frac{1}{v_n} = \frac{1}{-1 - n} = \frac{-1}{n + 1}$.

Donc
$$\forall n \in \mathbb{N}, \ u_n = 2 - \frac{1}{n+1}$$

Limite de u_n

 $\lim_{n \to +\infty} (n+1) = +\infty \text{ donc par quotient puis somme des limites}, \\ \lim_{n \to +\infty} 2 - \frac{1}{n+1} = 2. \boxed{\text{Donc } \lim_{n \to +\infty} u_n = 2}$

Correction de l'exercice 3

1.
$$u_n = -1 + 3n$$

2.
$$u_n = (-1)^n + 4^n$$

3.
$$u_n = (2\sqrt{3})^n (\cos n \frac{\pi}{6} - \frac{5}{\sqrt{2}} \sin n \frac{\pi}{6})$$

4.
$$u_n = 0$$

5.
$$u_n = (-2)(-3)^n + 3(-2)^n$$

6.
$$u_n = \exp\left[-\frac{1}{2\sqrt{2}}\ln(2)(1-\sqrt{2})^n + \frac{1}{2\sqrt{2}}\ln(2)(1+\sqrt{2})^n\right]$$

7.
$$u_n = \exp\left[\frac{2}{3}\ln 2 - \left(-\frac{1}{2}\right)^n \frac{2}{3}\ln 2\right]$$

Correction de l'exercice 4

- 1) On suppose que (u_n) est une suite arithmétique. On pose r sa raison (donc $\forall n \in \mathbb{N}, \ u_{n+1} = u_n + r$). Soit $n \in \mathbb{N}^*$ fixé quelconque. Alors $u_{n+1} = u_n + r$ et $u_{n-1} = u_n r$. Donc $u_{n+1} + u_{n-1} = 2u_n$, d'où $u_n = \frac{u_{n-1} + u_{n+1}}{2}$.
- 2) Réciproquement, on suppose que $\forall n \in \mathbb{N}^*, \ u_n = \frac{u_{n-1} + u_{n+1}}{2}$. Ici, on peut utiliser deux méthodes :
- 1ère méthode : (u_n) est une suite récurrente linéaire d'ordre 2, d'équation caractéristique $r = \frac{1+r^2}{2}$...
- 2ème méthode : puisque $\forall n \in \mathbb{N}^*, \ u_n = \frac{u_{n-1} + u_{n+1}}{2}$, on a : $2u_n = u_{n-1} + u_{n+1}$, donc $\forall n \in \mathbb{N}^*, \ u_n u_{n-1} = u_{n+1} u_n$. Si on pose, $\forall n \in \mathbb{N}^*, \ v_n = u_n u_{n-1}$, on a : $\forall n \in \mathbb{N}^*, \ v_{n+1} = v_n$. Donc la suite (v_n) est constante. On pose $\forall n \in \mathbb{N}^*, \ v_n = r$. Ainsi, $\forall n \in \mathbb{N}, \ u_{n+1} u_n = r$. Donc (u_n) est une suite arithmétique de raison r.