Fiche nº 3. Calcul littéral

Réponses

$$2 \left[\left(x + \frac{3}{4} \right)^2 - \frac{233}{16} \right] \ \text{et} \ 2 \left(x + \frac{3 - \sqrt{233}}{4} \right) \left(x + \frac{3 + \sqrt{233}}{4} \right)$$

3.4 f)

$$-5\left[\left(x-\frac{3}{5}\right)^2 - \frac{4}{25}\right]$$
 et $-5(x-1)\left(x-\frac{1}{5}\right)$

3.5 a) (x+y-z)(x+y+z)

3.5 b) (14x+3y)(-12x+3y)

3.5 c) (x+1)(y+1)

3.5 d) (x-1)(y-1)

3.5 e) $(x+y)(x+1)^2$

3.5 f) $(a^2+b^2)(y-4x^2)(y+4x^2)$

3.6 a)..... $(x-1)(x+1)(x^2+1)$

3.6 b) $-8(x^2+1)(x-4)(x+4)$

3.6 c) $(x^2 + x + 1)(x^2 - x + 1)$

3.6 e) $(a^2+b^2+c^2+d^2)(p^2+q^2+r^2+s^2)$

Corrigés

3.1 a) On utilise directement l'identité remarquable $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$.

3.1 b) On peut écrire : $(x-1)^3(x^2+x+1)=(x^3-3x^2+3x-1)(x^2+x+1)=x^5-2x^4+x^3-x^2+2x-1$. Pour être

"efficace", il suffit de rechercher directement le coefficient du terme d'un degré donné (sachant que $(ax^n)(bx^p) = abx^{n+p}$). Par exemple, dans l'expression finale et en utilisant l'étape intermédiaire, le coefficient du terme de degré 2 est donné par $(-3) \times 1 + 3 \times 1 + (-1) \times 1 = -1$. Ici, l'étape intermédiaire n'étant pas compliquée (à effectuer et à retenir), on peut (éventuellement) se passer de l'écrire.

3.1 c) Connaissant les identités remarquables $(x-1)(x+1) = x^2 - 1$ et $(x+1)(x^2 - x + 1) = x^3 + 1$, on a facilement : $(x+1)^2(x-1)(x^2 - x + 1) = [(x+1)(x-1)][(x+1)(x^2 - x + 1)] = (x^2 - 1)(x^3 + 1) = x^5 - x^3 + x^2 - 1$.

Que pensez-vous de la nécessité d'écrire les étapes intermédiaires?

- **3.1** d) On calcule: $(x+1)^2(x-1)(x^2+x+1) = (x^2+2x+1)(x^3-1) = x^5+2x^4+x^3-x^2-2x-1$.
- **3.1** e) On calcule: $(x-1)^2(x+1)(x^2+x+1) = (x^2-1)(x^3-1) = x^5-x^3-x^2+1$.
- 3.3 a) Une identité remarquable fait apparaître le facteur commun 6x + 7. On calcule alors

$$-(6x+7)(6x-1) + 36x^2 - 49 = -(6x+7)(6x-1) + (6x)^2 - 7^2 = (6x+7)[-(6x-1) + 6x - 7] = -6(6x+7)(6x+7)$$

.....

•

-
- 3.3 b) On calcule $25 (10x + 3)^2 = 5^2 (10x + 3)^2 = (10x + 8)(-10x + 2) = 4(5x + 4)(-5x + 1)$.
- 3.4 c) La forme canonique est $\left(x+\frac{3}{2}\right)^2-\frac{1}{4}$. On en déduit la factorisation à l'aide de l'identité remarquable $a^2-b^2=\dots$
- **3.5** b) On calcule $x^2 + 6xy + 9y^2 169x^2 = (x+3y)^2 (13x)^2 = (14x+3y)(-12x+3y)$.
- 3.5 e) On calcule $x^3 + x^2y + 2x^2 + 2xy + x + y = (x+y)(x^2 + 2x + 1) = (x+y)(x+1)^2$.
- **3.6** a) On calcule $x^4 1 = (x^2 1)(x^2 + 1) = (x 1)(x + 1)(x^2 + 1)$.
- 3.6 b) On calcule $(-9x^2 + 24)(8x^2 + 8) + 64x^4 64 = -8(x^2 + 1)[9x^2 24 8(x^2 1)] = -8(x^2 + 1)(x 4)(x + 4)$.

3.6 c) On calcule $x^4 + x^2 + 1 = x^4 + 2x^2 + 1 - x^2 = (x^2 + 1) - x^2 = (x^2 + x + 1)(x^2 - x + 1)$. La factorisation est alors terminée sur \mathbb{R} puisque les deux équations, $x^2 + x + 1 = 0$ et $x^2 - x + 1 = 0$, n'ont pas de solutions réelles.

......

3.6 d) Une fois n'est pas coutume : on peut commencer par développer avant de factoriser. Ce qui donne

$$(ac+bd)^2 + (ad-bc)^2 = a^2c^2 + b^2d^2 + a^2d^2 + b^2c^2 = (a^2+b^2)(c^2+d^2).$$

Remarque : signalons tout de même qu'une autre voie (sans calcul) consiste à interpréter en termes de module d'un produit de deux nombres complexes!

Fiche nº 3. Calcul littéral